196,278 research outputs found

    Complex Dynamics of Correlated Electrons in Molecular Double Ionization by an Ultrashort Intense Laser Pulse

    Full text link
    With a semiclassical quasi-static model we achieve an insight into the complex dynamics of two correlated electrons under the combined influence of a two-center Coulomb potential and an intense laser field. The model calculation is able to reproduce experimental data of nitrogen molecules for a wide range of laser intensities from tunnelling to over-the-barrier regime, and predicts a significant alignment effect on the ratio of double over single ion yield. The classical trajectory analysis allows to unveil sub-cycle molecular double ionization dynamics.Comment: 5 pages, 5 figures. to appear in Phys. Rev. Lett.(2007

    Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2013 IEEE.In this paper, the synchronization problem is studied for an array of N identical delayed neutral-type neural networks with Markovian jumping parameters. The coupled networks involve both the mode-dependent discrete-time delays and the mode-dependent unbounded distributed time delays. All the network parameters including the coupling matrix are also dependent on the Markovian jumping mode. By introducing novel Lyapunov-Krasovskii functionals and using some analytical techniques, sufficient conditions are derived to guarantee that the coupled networks are asymptotically synchronized in mean square. The derived sufficient conditions are closely related with the discrete-time delays, the distributed time delays, the mode transition probability, and the coupling structure of the networks. The obtained criteria are given in terms of matrix inequalities that can be efficiently solved by employing the semidefinite program method. Numerical simulations are presented to further demonstrate the effectiveness of the proposed approach.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61074129, 61174136 and 61134009, and the Natural Science Foundation of Jiangsu Province of China under Grants BK2010313 and BK2011598

    Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust synchronization problem for an array of coupled stochastic discrete-time neural networks with time-varying delay. The individual neural network is subject to parameter uncertainty, stochastic disturbance, and time-varying delay, where the norm-bounded parameter uncertainties exist in both the state and weight matrices, the stochastic disturbance is in the form of a scalar Wiener process, and the time delay enters into the activation function. For the array of coupled neural networks, the constant coupling and delayed coupling are simultaneously considered. We aim to establish easy-to-verify conditions under which the addressed neural networks are synchronized. By using the Kronecker product as an effective tool, a linear matrix inequality (LMI) approach is developed to derive several sufficient criteria ensuring the coupled delayed neural networks to be globally, robustly, exponentially synchronized in the mean square. The LMI-based conditions obtained are dependent not only on the lower bound but also on the upper bound of the time-varying delay, and can be solved efficiently via the Matlab LMI Toolbox. Two numerical examples are given to demonstrate the usefulness of the proposed synchronization scheme

    AI for public health: Self-screening for eye diseases

    Get PDF
    A software-based visual-field testing (perimetry) system is described which incorporates several AI components, including machine learning, an intelligent user interface and pattern discovery. This system has been successfully used for self-screening in several different public environment

    On passivity and passification of stochastic fuzzy systems with delays: The discrete-time case

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Takagi–Sugeno (T-S) fuzzy models, which are usually represented by a set of linear submodels, can be used to describe or approximate any complex nonlinear systems by fuzzily blending these subsystems, and so, significant research efforts have been devoted to the analysis of such models. This paper is concerned with the passivity and passification problems of the stochastic discrete-time T-S fuzzy systems with delay. We first propose the definition of passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the stochastic analysis combined with the matrix inequality techniques, a sufficient condition in terms of linear matrix inequalities is presented, ensuring the passivity performance of the T-S fuzzy models. Finally, based on this criterion, state feedback controller is designed, and several criteria are obtained to make the closed-loop system passive in the sense of expectation. The results acquired in this paper are delay dependent in the sense that they depend on not only the lower bound but also the upper bound of the time-varying delay. Numerical examples are also provided to demonstrate the effectiveness and feasibility of our criteria.This work was supported in part by the Royal Society Sino–British Fellowship Trust Award of the U.K., by the National Natural Science Foundation of China under Grant 60804028, by the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers in China under Grant 200802861044, and by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China

    Geometric phases in a scattering process

    Full text link
    The study of geometric phase in quantum mechanics has so far be confined to discrete (or continuous) spectra and trace preserving evolutions. Consider only the transmission channel, a scattering process with internal degrees of freedom is neither a discrete spectrum problem nor a trace preserving process. We explore the geometric phase in a scattering process taking only the transmission process into account. We find that the geometric phase can be calculated by the some method as in an unitary evolution. The interference visibility depends on the transmission amplitude. The dependence of the geometric phase on the barrier strength and the spin-spin coupling constant is also presented and discussed.Comment: 4 pages, 5 figure

    High-resolution DEM generated from LiDAR data for water resource management

    Get PDF
    Terrain patterns play an important role in determining the nature of water resources and related hydrological modelling. Digital Elevation Models (DEMs), offering an efficient way to represent ground surface, allow automated direct extraction of hydrological features (Garbrecht and Martz, 1999), thus bringing advantages in terms of processing efficiency, cost effectiveness, and accuracy assessment, compared with traditional methods based on topographic maps, field surveys, or photographic interpretations. However, researchers have found that DEM quality and resolution affect the accuracy of any extracted hydrological features (Kenward et al., 2000). Therefore, DEM quality and resolution must be specified according to the nature and application of the hydrological features. The most commonly used DEM in Victoria, Australia is Vicmap Elevation delivered by the Land Victoria, Department of Sustainability and Environment. It was produced by using elevation data mainly derived from existing contour map at a scale of 1:25,000 and digital stereo capture, providing a state-wide terrain surface representation with a horizontal resolution of 20 metres. The claimed standard deviations, vertical and horizontal, are 5 metres and 10 metres respectively (Land- Victoria, 2002). In worst case, horizontal errors could be up to ±30m. Although high resolution stereo aerial photos provide a potential way to generate high resolution DEMs, under the limitations of currently used technologies by prevalent commercial photogrammetry software, only DSMs (Digital Surface Models) other than DEMs can be directly generated. Manual removal of the nonground data so that the DSM is transformed into a DEM is time consuming. Therefore, using stereo aerial photos to produce DEM with currently available techniques is not an accurate and costeffective method. Light Detection and Ranging (LiDAR) data covering 6900 km² of the Corangamite Catchment area of Victoria were collected over the period 19 July 2003 to 10 August 2003. It will be used to support a series of salinity and water management projects for the Corangamite Catchment Management Authority (CCMA). The DEM derived from the LiDAR data has a vertical accuracy of 0.5m and a horizontal accuracy of 1.5m. The high quality DEM leads to derive much detailed terrain and hydrological attributes with high accuracy. Available data sources of DEMs in a catchment management area were evaluated in this study, including the Vicmap DEM, a DEM generated from stereo aerial photos, and LiDAR-derived DEM. LiDAR technology and LiDAR derived DEM were described. In order to assess the capability of LiDAR-derived DEM for improving the quality of extracted hydrological features, sub-catchment boundaries and drainage networks were generated from the Vicmap DEM and the LiDAR-derived DEM. Results were compared and analysed in terms of accuracy and resolution of DEMs. Elevation differences between Vicmap and LiDAR-derived DEMs are significant, up to 65m in some areas. Subcatchment boundaries derived from these two DEMs are also quite different. In spite of using same resolution for the Vicmap DEM and the LiDARderived DEM, high accuracy LiDAR-derived DEM gave a detailed delineation of sub-catchment. Compared with results derived from LiDAR DEM, the drainage networks derived from Vicmap DEM do not give a detailed description, and even lead to discrepancies in some areas. It is demonstrated that a LiDAR-derived DEM with high accuracy and high resolution offers the capability of improving the quality of hydrological features extracted from DEMs
    corecore