26,079 research outputs found

    Fermions in gravity and gauge backgrounds on a brane world

    Full text link
    We solve the fermionic zero modes in gravity and gauge backgrounds on a brane involving a warped geometry, and study the localization of spin 1/2 fermionic field on the brane world. The result is that there exist massless spin 1/2 fermions which can be localized on the bulk with the exponentially decreasing warp factor if including U(1) gauge background. Two special cases of gauge backgrounds on the extra dimensional manifold are discussed.Comment: 11 pages, no figures, final versio

    Localization of fermionic fields on braneworlds with bulk tachyon matter

    Full text link
    Recently, Pal and Skar in [arXiv:hep-th/0701266] proposed a mechanism to arise the warped braneworld models from bulk tachyon matter, which are endowed with a thin brane and a thick brane. In this framework, we investigate localization of fermionic fields on these branes. As in the 1/2 spin case, the field can be localized on both the thin and thick branes with inclusion of scalar background. In the 3/2 spin extension, the general supergravity action coupled to chiral supermultiplets is considered to produce the localization on both the branes as a result.Comment: 9 pages, no figure

    Local spin polarisation of electrons in Rashba semiconductor nanowires: effects of the bound state

    Full text link
    The local spin polarisation (LSP) of electrons in two typical semiconductor nanowires under the modulation of Rashba spin-orbit interaction (SOI) is investigated theoretically. The influence of both the SOI- and structure-induced bound states on the LSP is taken into account via the spin-resolved lattice Green function method. It is discovered that high spin-density islands with alternative signs of polarisation are formed inside the nanowires due to the interaction between the bound states and the Rashba effective magnetic field. Further study shows that the spin-density islands caused by the structure-induced bound state exhibit a strong robustness against disorder. These findings may provide an efficient way to create local magnetic moments and store information in semiconductors.Comment: 8 pages, 3 figure

    Performance of Photosensors in the PandaX-I Experiment

    Full text link
    We report the long term performance of the photosensors, 143 one-inch R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the first phase of the PandaX dual-phase xenon dark matter experiment. This is the first time that a significant number of R11410 photomultiplier tubes were operated in liquid xenon for an extended period, providing important guidance to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers' comment

    Effects of land incremental value allocation on rural operational construction land (ROCL) under market mechanism: case study in China

    Full text link
    The use of the market mechanism to convert the rural operational construction land (ROCL) into urban construction land without ownership changes is currently being introduced into reform pilot projects in China, changing the only form of governmental expropriation in the past. The new system allows rural collective economic organizations and members of the rural collective economy to directly participate in the allocation of land incremental value increases due to changes in land use. This replaces the previous way of allocating only the original use compensation from the government. This paper investigates the collectively owned new system, to establish the positive effects and shortcoming of the new model. Three cases are applied for the analysis using inductive-deductive reasoning methodology based on the property right and landrent theories. We have found that local government land adjustment charges on the transactions of rural construction land are suggested to be from 16 to 20 percent. The share ownership quantification model (SOQM) of land incremental value allocation between the collective economic organizations and members is effective and beneficial to the development of the rural collective economy and its members

    Ultrafast fluorescent decay induced by metal-mediated dipole-dipole interaction in two-dimensional molecular aggregates

    Full text link
    Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the single or colloidal dye molecules or quantum dots in most previous research. In this paper, we verify for the first time that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at picosecond timescale. Our streak-camera lifetime measurement and interacting lattice-dipole calculation reveal that the metal-mediated dipole-dipole interaction shortens the fluorescent lifetime to about one half and increases the energy dissipation rate by ten times than expected from the noninteracting single-dipole picture. Our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a new direction for developing fast and efficient optoelectronic devices.Comment: 9 pages, 6 figure
    corecore