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ABSTRACT
Hardware cache prefetching is deployed in modern multicore pro-

cessors to reduce memory latencies, addressing the memory wall

problem. However, it tends to increase the Last Level Cache (LLC)

contention among applications in multiprogrammed workloads,

leading to a performance degradation for the overall system. To

study the interaction between hardware prefetching and LLC cache

management, we first analyze the variation of application perfor-

mance when varying the effective LLC space in the presence and ab-

sence of hardware prefetching. We observe that hardware prefetch-

ing can compensate the application performance loss due to the

reduced effective cache space. Motivated by this observation, we

classify applications into two categories, prefetching sensitive (PS)
and non prefetching sensitive (NPS) applications, by the degree of

performance benefit they experience from hardware prefetchers.

To address the cache contention and also to mitigate the potential

prefetch-related cache interference, we propose CPpf , a cache par-

titioning approach for improving the shared cache management in

the presence of hardware prefetching. CPpf consists of a method

using Precise Event-Based Sampling techniques for the online classi-

fication of PS and NPS applications and a cache partitioning scheme

using Cache Allocation technology to distribute the cache space

among PS and NPS applications. We implemented CPpf as a user-

level runtime system on Linux. Compared with a non-partitioning

approach, CPpf achieves speedups of up to 1.20, 1.08 and 1.06 for

workloads with 2, 4 and 8 single-threaded applications, respectively.

Moreover, it achieves speedups of up to 1.22 and 1.11 for work-

loads composed of two applications with 4 threads and 8 threads,

respectively.
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1 INTRODUCTION
Modern multicore processors implement a large Last Level Cache

(LLC) to hide the long memory access latencies. Such a LLC is

usually shared by multiple cores to allow high cache utilization.

However, cache sharing also causes inter-application cache inter-

ference, which occurs when concurrently running applications

compete among each other for shared cache space, governed by a

cache replacement policy.

Hardware prefetching is another optimization technique that is

commonly employed to reduce memory latencies. Although hard-

ware prefetching can improve the applications’ performance by

fetching useful data in advance, it tends to increase the LLC con-

tention among applications running concurrently on different cores.

Taking the hardware prefetching into account, inter-application

cache interference becomes more complicated.

Much research has been done to address the problem of inter-

application cache interference and the shared cache management [4,

11, 22, 29, 33, 34]. In those works, cache partitioning policies are

proposed to improve system throughput, fairness and (or) average

slowdown using cache allocation technology, a hardware partition-

ing approach supported by Intel processors. A significant amount

of work has also been devoted to software-based cache partitioning

approaches [3, 14, 28, 35] based on a well accepted technique of OS

page-coloring. Most of those works have been implemented and

evaluated the performance of their cache partitioning policies on

real machines. However, those works do not study the impact of

hardware prefetching on cache performance nor do they explicitly

reveal the interaction between the hardware prefetching and LLC

management.

Prior work to this end involves fine-tuned cache insertion and

replacement policies [23, 26, 31] to improve the cache management

policy in the presence of hardware prefetching. However, the addi-

tional hardware components required by those works are not yet

available in existing hardware.

Contribution. In a real system, many factors such as cache

references by the operating system and hardware prefetching con-

tribute to LLC interference [32]. In this study, we focus on the LLC
management in the presence of hardware prefetching for multipro-

grammed workloads. To study the interaction between hardware

prefetching and LLC cache management, we first analyze the vari-

ation of application performance when varying the effective LLC

space in the presence and absence of hardware prefetching. Here,

we show that hardware prefetching can compensate the application

performance loss due to the reduced effective cache space. Moti-

vated by this observation, we then classify applications into two

https://doi.org/10.1145/3337821.3337895
https://doi.org/10.1145/3337821.3337895
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categories, prefetching sensitive (PS) and non prefetching sensi-

tive (NPS) applications, by the performance benefit they experience

from hardware prefetchers. To address the cache contention and to

also mitigate the potential prefetch-related cache interference, we

propose CPpf , a prefetch aware LLC partitioning approach for im-

proving LLC management.CPpf consists of a method using Precise

Event-Based Sampling (PEBS) techniques for online classification

of PS and NPS applications and a LLC partitioning scheme using

Cache Allocation technology (CAT) for PS and NPS applications.

Compared with a non-partitioning approach, CPpf achieves per-

formance improvements of up to 1.20, 1.08 and 1.06 for workloads

with, respectively, 2, 4, and 8 applications and achieves speedups

of up to 1.21 and 1.11 for workloads composed of two applications

with 4 threads and 8 threads, respectively.

The rest of the paper is organized as follows. Section 2 presents

the motivation of this work. The background of hardware perfor-

mance monitoring units and cache allocation technology is intro-

duced in Section 3. Section 4 provides the definition of PS and NPS
applications. Section 5 describes CPpf , where we also detail the

online classification of PS and NPS applications and the LLC cache

partitioning scheme. Section 6 presents the performance evaluation

of CPpf . Section 7 gives an overview of related work, after which

Section 8 concludes the paper.

2 MOTIVATION
2.1 The impact of hardware prefetching on

cache performance
Hardware prefetching implemented in today’s high performance

systems significantly influences memory sub-system performance.

To understand the effects of hardware prefetching on the LLC

performance for a single application, we evaluate the variation of

application performance when varying the number of assigned LLC

cache-ways in the presence and absence of hardware prefetching.

All the experiments in this work are conducted on a 20-core

Intel Xeon commodity processor, of which the specifications are

summarized in Table 1. There are five distinct hardware prefetchers

on the Xeon platforms. Two prefetchers are associated with the

L1-data caches: a Data Cache Unit (DCU) IP prefetcher and a DCU

streamer prefetcher per core. Two prefetchers associated with the

L2 caches: a Mid-Level cache (MLC) spatial prefetcher and a MLC

streaming prefetcher. Finally, there is one LLC prefetcher. We can

activate or deactivate these hardware prefetchers by setting the

corresponding machine state register (MSR) bits [7].

Table 1: System Configuration

Component Description

Processor Intel Xeon Gold 6148 CPU @ 3.50GHz

L1 I-cache Private, 32KB

L1 D-cache Private, 32KB

L2 cache Private, 1MB

L3 cache Shared, 27.5MB, 11 ways

Memory 376G

OS CentOS 7, Linux Kernel 4.17

Given the number of assigned LLC cache-ways, we run an ap-

plication with single thread in isolation and measure its execution

time for two cases: (1) hardware prefetchers are disabled, (2) hard-

ware prefetchers are enabled. Figure 1 compares the slowdown

for applications in the SPEC CPU2017 [24], NPB [17] and Poly-

bench [20] benchmark suites when varying the number of assigned

cache-ways for the two cases. Due to space limitations, we only

show the comparison for six representative applications, each appli-

cation is identified by its index (in SPEC CPU2017) or abbreviation

for its name (in NPB and Polybench). In Figure 1(a), the slowdown

of an application is calculated by taking the execution time when

it utilizes all the cache ways (11, in our experimental platform)

and hardware prefetchers are disabled as the baseline, while in

Figure 1(b), the baseline is execution time when the application

fully utilizes all cache-cache ways and hardware prefetchers are

enabled. Note that the baselines in Figure 1(a) and Figure 1(b) are

thus different.

Figure 1: Comparison of application slowdown when vary-
ing the number of cache-ways allocated: (a) prefetching is
disabled, (b) prefetching is enabled.

As illustrated in Figure 1, some applications, which originally

experience significant performance degradation from a smaller LLC

space in the absence of prefetching, encounter less performance

degradation when the hardware prefetchers are enabled. For exam-

ple, when hardware prefetching is disabled, the worst slowdowns

for applications lu and ua are 1.41 and 1.42, respectively. However,

the worst slowdowns are improved to 1.05 and 1.02 for lu and ua,
if hardware perfetching is enabled. Thus, we make the following

observation:

Observation 1. Hardware prefetching can compensate the appli-
cation performance loss due to a reduced effective LLC space.

This can be explained by the fact that a prefetch-enabled LLC

cache-controller will prefetch data from main memory before the

actual references take place in order to try to avoid memory access

latencies. Even though the effective LLC size for an application is

decreased, the demanded data can often still be directly and timely

serviced by the hardware prefetchers.

2.2 Inter-core prefetch-related cache pollution
The prefetched data for one application are placed in the shared LLC,

competing for the available cache resources with its co-runners (i.e.,
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other, simultaneously running applications). Therefore, one major

drawback of hardware prefetching is the prefetch-related cache

pollution which occurs when prefetched blocks of one application

evict useful blocks of another application from the LLC. In this

work, we assume that hardware prefetching taking place on behalf

of an application itself has a more positive than negative influence

on its performance. Thus, we neglect cache interference caused by

self-prefetching and only consider inter-core prefetch-related LLC

interference.

In a multicore system, inter-core prefetch-related cache pollution

impacts the performance of applications in a non-uniform fashion.

Some applications can be slowed down severely as a large number

of its useful blocks can be replaced by prefetched blocks, while

others may not. Hardware prefetching can interact poorly with

LLC management, which unnecessarily reduces the overall system

performance. This leaves a significant opportunity to improve LLC

management by means of prefetch-aware cache partitioning.

3 BACKGROUND
3.1 Hardware PMU
To provide realtime micro-architectural information about the pro-

cesses currently executing on the chip, a rich set of Hardware

Performance Monitoring Units (PMUs) is implemented in today’s

processor micro-architectures. These PMUs offer a programmable

way to count hardware events such as cpu cycles, instructions ex-

ecuted, cache statistics, etc. PMUs also support advanced event

sampling, a mechanism that collects event samples at a predefined

sampling period. The event based sampling is realized by Intel’s

Precise Event-Based Sampling (PEBS) [6] and AMD’s Instruction

Based Sampling (IBS) [9].

To use the PEBS mechanism, a counter is configured to overflow

after it has counted a preset number of events. After the counter

overflows, the processor copies the current state of the general-

purpose registers and instruction pointer in the records buffer. The

processor then resets the performance counters and restarts the

event counter.

Linux’ perf_event is a standard programming interface to set

up performance monitoring through PMUs. More specifically,

perf_event_open [8] can set the PMUs in sampling mode, and

the overflow event can be enabled via ioctl() calls. The Linux

kernel can deliver a signal to the threads whose PMU event counter

overflows. The user code can mmap a circular buffer into which the

kernel keeps appending the PMU data on each sample. The user

can also read those circular buffers.

3.2 Cache Allocation Technology
To address the contention on the LLC from multiple applications

running simultaneously on different cores and to enable isolation

and prioritization of key applications, recent commodity CPUs have

provided hardware support for LLC partitioning [12]. Intel has

proposed the so-called cache allocation technology (CAT), which

provides software-programmable control over the amount of cache

space that can be consumed by a given application.

Machines that support CAT have a predefined number of classes

of service (CLOS), for example, 11 in our experimental machine.

Each CLOS is associated with a capacity bit mask (CBM) that con-

trols the accessibility of cache resources with cache-way granularity,

where each bit in the mask grants write access to one way in the

cache. Each application belongs to a CLOS and a particular applica-

tion can only access the cache-ways defined by the CBM for that

CLOS.

In this work, we use Intel-cat-cmt, which is a library [5] de-

veloped by Intel, to configure CAT.

4 PS AND NPS APPLICATIONS
In this section, we first classify applications into two categories:

prefetching sensitive (PS) and non prefetching sensitive (NPS) appli-

cations by the performance benefit they experience from hardware

prefetchers. We then study the performance sensitiveness to the

available cache space for PS and NPS applications.

4.1 Definition of PS and NPS applications
We measure the execution time of an application in the presence

and absence of hardware prefetching, respectively. We calculate

the speedup of an application i by SpeedUpi =
ETi,nopf
ETi,enpf

, where

ETi,nopf is the execution time of application i when prefetchers

are disabled and ETi,enpf is the execution time when hardware

prefetchers are enabled.

We define applications whose performance is significantly im-

proved by hardware prefetching as prefetching sensitive (PS) appli-

cations. In this work, application i is considered a PS application
if SpeedUpi > 20%. An application that is not a PS application is

considered to be an NPS application. By this definition, we classify

the applications in the SPEC CPU2017 [24], NPB [17] and Poly-

bench [20] benchmark suites into PS and NPS applications. The

classification is shown in Table 2.

Table 2: Classification of PS and NPS applications.

Type Applications

PS
applications

619, 654, 628, 638, 603, mg, cg, sp,

is, bt, ft, fdtd2d, jacobi2d, heat3d

NPS
applications

602, 605, 607, 631, 623, 627, 600, 641,

644, 648, 657, 620, ua, lu, dc, ep, adi

4.2 Cache sensitivity of PS and NPS
applications

In a multiprogramming environment, the shared cache interference

caused by co-runners (i.e., simultaneously running applications)

reduces the effective number of cache-ways that an application can

use. To study the impact of available cache-ways on the perfor-

mance of PS and NPS applications, we conduct several experiments

in which we use CAT to adjust the number of LLC ways available to

the application from 1 to 11 (i.e., the total cache space in our exper-

imental platform). In the experiments, all hardware prefetchers are

enabled and each application has one thread. Using this approach,

we model the reduction in the available LLC space due to cache

interference caused by co-runners.

Figure 2a and Figure 2b show the slowdown for 8 representative

PS and NPS applications, respectively. The slowdown is calculated
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by taking the execution time when an application runs in isolation

and utilizes all the cache ways as the baseline.

As can be seen, compared with NPS applications, the effective
LLC size has, on average, a relatively small influence on the perfor-

mance of PS applications. The performance of most PS application
is sightly degraded if the effective LLC size decreases. The average

maximum slowdown (obtained when an application runs with one

cache-way) for PS applications is 1.05 with a worst-case slowdown

of 1.15 for SPEC CPU2017 benchmark 654. For NPS applications,
however, the average slowdown is 1.18 with a worst case of 1.62,

experienced by SPEC CPU2017 benchmark 607. Thus, we make the

following observation:

Observation 2. If hardware prefetchers are enabled, on average,
the effective LLC size has a relatively small influence on the perfor-
mance of PS applications, while the performance of NPS applications
can be significantly affected by the effective LLC size.

The much smaller influence of the LLC size on the performance

of PS applications can be explained by:

(1) PS applications may have a low reuse of data cached in the

LLC because of timely prefetched data in the smaller, upper-

levels of the cache hierarchy (L1/L2 caches) [23]. Subsequent

data requests are directly serviced by the prefetched cache

lines inserted into the L1/L2 caches, and rarely reach the

LLC.

(2) PS applications can more easily cope with higher LLC miss

rates caused by the reduction of effective LLC space as a

majority of demanded data elements can still be directly and

timely serviced by the hardware prefetchers.

5 PREFETCH AWARE LLC PARTITIONING
To exploit Observation 2, this section presents the prefetch aware

LLC partitioning approach CPpf . The general idea is to classify

PS and NPS applications at run time and then divide the LLC into

two partitions: one for PS applications and the other for NPS ap-
plications. Section 5.1 describes the online classification of PS and

NPS applications, and Section 5.2 presents the LLC partitioning

approach.

5.1 Online classification of applications
5.1.1 A classification criterion: cache miss distribution. The defi-
nition of PS and NPS application cannot be used directly for the

online classification of PS and NPS applications. Due to the uncon-

trollable and unclear nature of hardware prefetching mechanisms

implemented in modern commodity processors, we developed a

non-trivial solution for the online classification of PS and NPS ap-
plications, which is based on the distribution of cache misses over

the cache sets. The idea comes from the fact that prefetchers do

not prefetch across virtual page boundaries. As indicated in [7],

prefetched data will always be within the same 4K bytes memory

page as the load instruction that triggered the prefetching.

The first (several) references to a data element in a new virtual

page usually cannot be prefetched. Therefore, accesses to those data

elements always result in LLC misses. After these first accesses, the

hardware prefetchers start to recognize the data access patterns

and start to predict and prefetch the data that is expected to be ref-

erenced in the near future. As a consequence, later data references

inside the same virtual page do not necessarily cause LLC misses,

as the hardware prefetchers may have inserted those data elements

into the LLC before referencing them.

By using the PMU sampling mechanism, one can obtain the

virtual addresses thatmissed by a process in the LLC. Given amissed

virtual address, one can determine the associated LLC set that the

virtual address maps to. We will show the method to determine

the missed cache set soon. By sampling the LLC misses over a

short execution period (for instance, 1 second) for a process, we

can obtain the cache miss distribution over the cache sets for the

sampled process.

We use histograms to represent the distribution of LLC misses

over the LLC sets. Figure 3 illustrates the histogram of missed

cache sets when hardware prefetchers are disabled. Due to space

limitations, we only show the histograms for four representative

(a) PS applications (b) NPS applications

Figure 2: Application slowdown when varying the number of available ways with respect to a 11-way cache, if hardware
prefethers are enabled.
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Figure 3: Histogram of missed LLC sets when hardware
prefetchers are disabled.

applications. As can be seen, when all hardware prefetchers are

disabled, cache misses are mostly uniformly distributed over all the

cache sets.

Although we only show cache miss distributions of PS applica-
tions for later comparison, the uniform distribution is observed also

for NPS applications. Observation 3 follows:

Observation 3. When hardware prefetchers are disabled, cache
misses are mostly uniformly distributed over all the LLC sets for both
PS and NPS applications.

Observation 3 verifies the assumption that a program block has

a uniform probability of being present in any of the cache sets in

the works on analytic cache models [1].

However, if hardware prefetchers are enabled, we obtain different

cachemiss distributions for PS andNPS applications, as illustrated in
Figure 4. Note that the scale of the y-axes in Figure 4a and Figure 4b

are different.

As shown in Figure 4a, the cache miss distributions over cache

sets are non-uniform for PS applications. It is clear that cache sets
associated with spikes exhibit many more (more than 10×) cache

misses than other sets. In most cases, the index of those sets is 64p
with p = 1, 2, 3, ..., where the beginning of a new virtual page is

mapped to. From this, we infer that cache misses at those sets are

caused by the first references to the data in a new virtual memory

page.

Figure 4b depicts the distributions of missed cache sets for NPS
applications when hardware prefetchers are enabled. Although

there exist a few cache sets with spikes, the gap between the spikes

and the average number of misses over a cache set is much smaller.

Overall, the cache misses are still uniformly distributed over all the

cache sets. Thus, we make the following observation:

Observation 4. When hardware prefetchers are enabled, cache
miss distributions over cache sets are non-uniform for PS applications,
while the distributions are mostly uniform for NPS applications.

Based on the difference in cache miss distributions between

PS and NPS applications when hardware prefetchers are enabled,

we propose a ratio between the maximum value and the median

value of the frequency of LLC misses exhibited by one cache set

to determine whether an application is PS or not. To reduce the

complexity, the median value is approximately computed as the

average of LLC misses exhibited by 30 randomly selected cache sets.

We skip selecting the cache sets that exhibit misses more than 70%

of the maximum value. We calculated the mean of the ratio for both

PS and NPS applications. The mean of the ratio obtained from the

PS application is 25.7, while for NPS, the mean is 3.23. When the

ratio is larger than a threshold (10, in this work), the application is

classified as a PS application. Otherwise, it is considered to be an
NPS application.

5.1.2 Obtaining cache miss distribution. As described, the cache
miss distribution over the cache sets can be obtained by following

these steps: virtual addresses that missed in the LLC can be obtained

by using the PMU sampling mechanism, after which each obtained

virtual address needs to be translated to the corresponding physical

data address to determine the missed LLC cache set. By sampling

the LLC misses over a short execution period, one can obtain the

cache miss distribution. We describe those steps in details below.

PMU sampling. Intel PEBS supports address sampling, a type

of event-based sampling that allows associating sampled perfor-

mance events with instruction pointers (IP) and effective data ad-

dresses. Moreover, PEBS address sampling in recent Intel proces-

sors (i.e., Haswell and its successors) allows precisely monitoring

cache misses at memory level. In this work, we choose the event

MEM_LOAD_UOPS_RETIRED:L3_MISS to drive PMU sampling. After

experimenting with different sampling periods ranging from 5 (i.e.,

every 5th miss) to 1000, we decided to use a sampling period of 10,

as it incurs a small overhead while still providing enough samples

for the later analysis. In this configuration, the PMU therefore sam-

ples one per ten data addresses that missed in LLC. Note that the

sampled data addresses are virtual addresses.

(a) PS applications (b) NPS applications

Figure 4: Histogram of missed cache sets when hardware prefetchers are enabled.
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Virtual-to-physical address translation. As LLCs are phys-
ically indexed and physically tagged (PIPT), a virtual address ob-

tained from a PMU sample does not suffice to get the informa-

tion about the missed LLC set. Therefore, a virtual-to-physical

address translation is required. This translation can be done by us-

ing Pagemap, a set of interfaces in the Linux kernel that allow user

space programs to examine the page tables and related information.

Since the default page size of most Linux systems in the virtual

address space is 4K bytes, during the virtual-to-physical address

translation, bits 0 − 11 of the virtual address that encode the page

offset are preserved. Bits 12 and above of the virtual address, which

encode the page number in the virtual address space, are replaced by

the physical page frame number. The mapping from the virtual page

to the physical page frame can be found in /proc/self/pagemap,
a component in Pagemap.

LLC addressing. The LLC in a modern multicore processor is

usually organized into as many slices as the number of cores with

the purpose of reducing the bandwidth bottleneck when more than

one core attempts to retrieve data from the LLC at the same time.

Typically, the LLC is set-associative, with a total of k cache sets

in each cache slice andm ways. A cache line with a size of c bytes
occupies a single way of a cache set. The slice and cache set to which

a physical memory address maps is determined by its address bits,

as shown in Figure 5.

Figure 5: LLC addressing. A virtual data address is translated
to a physical data address by the memory management unit
(MMU). For a typical caching system with k = 2048, c = 64,
the lowest 6 bits (bits 0 − 5) are used to determine the offset
within a cache line and bits 6−16 select the cache set. Higher
bits (bits 17 and above) are used as tag and input to a hash
function to decide the cache slice.

As indicated in [13], the least significant log
2
c bits of the physical

address are used to address a byte or word within a cache line.

The next log
2
k bits select the set that the cache line belongs to.

Bits log
2
k + log

2
c and above are utilized as a tag for comparison

when looking for data in the cache. The Intel processors use an

undocumented hash function of higher bits (bits log
2
k + log

2
c and

above) of a physical address to decide the cache slice.

In the absence of knowledge about the hash function used for

mapping, a given cache line can be present in any of the slices. As

cache miss behavior in different cache slices is very similar, in this

work, we do not distinguish the cache lines in different cache slices.

Histogram of missed cache sets. The histogram of missed

cache sets can be derived by sampling the LLC misses for a short

execution period and calculating the missed cache set that corre-

sponds to each sampled miss. We have set the sampling period to 1

second in this work.

The proposed detection approach is accurate and able to detect

all the PS applications in the benchmarks used in this study, even

when they co-run with 10 other applications.

5.2 LLC partitioning for PS and NPS
applications

Most of the PS applications are memory-intensive. When PS ap-

plications run simultaneously with NPS applications fully sharing

the LLC, we observe that PS applications often occupy more LLC

space than the NPS applications, leading to significant performance

degradation of NPS applications. We will show such a scenario in

the next section.

One of the reasons PS applications can occupy more LLC space

is that PS applications can generate a large number of prefetching

requests. As observed in [25], applications gain more benefit from

hardware prefetching tend to generate more prefetch requests.

When the hardware prefetchers are enabled, we observed in

Section 4 that the effective LLC size has only very limited effect

on the performance of PS applications. The aim of the cache parti-

tioning in this work is therefore to limit the LLC size occupied by

PS applications and reserve more LLC space for NPS applications.
By doing so, the potential prefetch-related cache pollution for NPS
applications is also mitigated.

Our cache partitioning scheme is simple: it initially allocates one

exclusive cache-way to each newly classified PS application as it

does not benefit greatly from a larger LLC size. It then allocates

the remainder of the cache-ways to the NPS applications. When a

PS application finishes its execution, the exclusive cache-way that

was previously owned by that application is assigned to the NPS
applications.

We also observed that the performance of PS applications de-
grades only slightly even when multiple of such applications share

a single way of the LLC. If multiple PS applications are present, we
randomly select two among these applications to share the same

way for a short time interval (0.1 second, in this work), We repeat

the dynamic adjusting of one shared way for two randomly selected

PS applications for up to 10 times, each time measuring the IPC of

all co-running applications. When the repetition finishes, we keep

the best CAT configuration with the maximum sum of IPC of all

co-running applications.

Note that, in this work we only focus on LLC partitioning be-

tween PS andNPS applications. Further improvement can be achieved

by LLC partitioning among NPS applications, as has already been

done in [11, 22, 33].

6 EXPERIMENTS
The prototype of CPpf is implemented as a user-level runtime

system on Linux. This section evaluates the performance of CPpf .

The experiment platform is described in Section 2.1. It has 376GB of
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Figure 6: Average speedup achieved byCPpf for each single-threadedworkloadmix, with respect to the baseline configuration.

main memory and the maximummemory bandwidth is 119.21 GB/s,

so the memory contention will be small. Hyperthreading is disabled

to avoid intra-core interference. All of the hardware prefetchers

are kept enabled during the experiments.

Single-threadedworkloadmixes:The experiments have been

conducted with more than 200 workload mixes from the SPEC

2017 [24], NPB [17] and Polybench [20] benchmark suites. We se-

lect three representative sets of 50 multiprogram mixes. The first

set contains ten 2-application workloads with indexW 0 −W 9, the

second set twenty 4-application workloads with indexW 10 −W 29

and the third set has twenty 8-application workloads with index

W 30−W 49. Thoughwewould have liked to go beyond 8-application

workloads, CAT in our tested platform can only support at most 11

CLOSs.

In each set, the workload mixes were randomly generated by

varying the ratio of PS applications (25%, 50% and 75%). The propor-

tions of PS applications in each workload mix are listed in Table 3.

For each workload mix, performance is measured by executing each

application until all the applications have completed the same num-

ber of instructions they execute when running alone for 20 seconds.

The applications are pinned to cores to facilitate the performance

monitoring and cache partitioning.

Table 3: Composition of workload mixes.

PS applications (%) Workloads Index

25% W 10 −W 15,W 30 −W 36

50% W 0 −W 9,W 16 −W 22,W 37 −W 41

75% W 23 −W 29,W 42 −W 49

Metrics: We measure system performance using the average

speedup, calculated as follows for the workload with a mix of N
applications:

AveraдeSpeedup =
1

N

N∑
i=1

IPCi,CPpf

IPCi,FullShare

where IPCi,FullShare is the IPC of program i measured in the

baseline configuration, in which the LLC is unpartitioned and is

fully shared among all the application; IPCi,CPpf is the IPC of

program i obtained when CPpf is applied.

6.1 CPpf performance gain
Figure 6 summarizes the performance gained by CPpf for the work-

load mixes composed of single-threaded applications. Note that,

in Figure 6, workload mixes having the same number of applica-

tions and same proportions of PS applications are sorted by their

speedups. Comparedwith the baseline performance, CPpf improves

the performance for 45 out of 50 workload mixes.

CPpf achieves a speedup of 1.08 on average for workloads with 2

applications, with a best case speedup of 1.20. The average speedup

for workloads with 4 applications is 1.04 with a best case of 1.08.

Finally, for workloads with 8 applications, the average speedup is

1.03, with a best case of 1.06.

6.2 Cases study of CPpf
We now take a closer look at representative workload mixW 11

consisting of four applications (i.e. jacobi2d, 620, 607, 602) to better

understand how CPpf can improve the overall system performance.

Figure 7a and Figure 7b illustrate the run-time cache occupancy

of the 4 applications in case the LLC is fully shared and CPpf is

applied, respectively, during a 20 seconds time interval. When the

LLC is fully shared (Figure 7a), the PS application jacobi2d occupies

more than half of the LLC space for most of the time. As a result,

NPS applications 620, 607, 602 get less LLC space. This situation is

improved by CPpf . Once CPpf has identified jacobi2d as the only

PS application, it allocates only one way to jacobi2d , leaving the

rest of the LLC shared by the NPS applications 620, 607, 602, as

depicted in Figure 7b. In this case, CPpf achieves a 1.10, 1.02 and

1.06 speedup for 620, 607 and 602, respectively, while the speedup

of jacobi is 0.99. At the cost of a small slowdown of PS applications,
CPpf yields a higher speedup for NPS applications.

We also take a look at one the workload mixes that exhibits a

performance degradation under CPpf :W 9.W 9 is composed of cд
(the PS application) and 641 (the NPS application). The performance

of 641 cannot be improved enough by getting more cache space,

in this case, the speedup of 641 is 1.001. The performance of cд is

degraded by 0.975 as CPpf allocates a one-way cache space to cд.
However, no significant performance losses are observed as the

lowest speedup (i.e., slowdown) is 0.988.
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(a) when LLC is shared (b) CPpf is applied

Figure 7: Dynamic cache occupancy by applications in workloadW 11.

6.3 CPpf with multithreaded workloads
CPpf also supports multithreaded workloads. For multithreaded

workloads, cache miss distributions are obtained per thread, and

the LLC is partitioned per thread.

We generate two sets of totally 30 multithreaded workload mixes.

Each workload mix consists of two multithreaded applications, one

randomly selected from PARSEC [2] or SPLASH [30] as an NPS
application, and the other from NPB [17] or an OpenMP version

of Polybench [20] as a PS application (we skip applications from

SPEC CPU2017 [24] as it provides multithreaded implementations

for a very limited number of applications). The first set contains

fifty 4-threaded workloads with indexW 50 −W 64 and the second

set has fifty 8-threaded workloads with indexW 65 −W 79.

Figure 8 presents the average speedups for the multithreaded

workload sets. Compared with the baseline performance where

caches are fully shared among all the threads, CPpf achieves a

speedup of 1.05 on average for workloads with 4 threads, with a

best case speedup of 1.22. The average speedup for workloads with

8 threads is 1.04 with a best case of 1.11.

6.4 Sensitivity Analysis
We now analyze CPpf ’s sensitivity to the characteristics of the

workload mix, particularly the ratio between PS and NPS applica-
tions and the workload mix size.

The effect of workload distribution. CPpf achieves average

speedups of 1.03 , 1.06 and 1.04 for workloads with 25%, 50% and

75% of PS applications.

Figure 8: Average speedup achieved by CPpf for each multithreaded workload mix, with respect to the baseline configuration.
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When the workload mixes are dominated by PS applications, the
performance improvement due to an increased LLC space allocated

for NPS applications by CPpf will be limited by the small number

of NPS applications in the workload mixes.

When workload mixes are dominated by NPS applications, the
benefits of CPpf also become more muted. This is because, as in-

dicated in Section 5.2, CPpf does not partition the cache among

the NPS applications. Even though the cache space occupied by PS
applications is limited, most of the rest of the cache can be occu-

pied by NPS applications whose performance will not be improved

greatly by getting more cache space. CPpf cannot guarantee that

those NPS applications whose performance significantly improves

from a larger effective cache size will always occupy more cache

space than other applications.

The effect of workload size. We compare the performance

gained by CPpf under different sizes of workload mixes (ranging

from 2 to 8 applications per workload mix). CPpf gains less per-

formance when the number of co-executing applications increases.

This is inevitable because cache contention for both LLC space and

cache set associativity is increased as more applications share the

LLC.

6.5 Overhead
In order to obtain the actual performance degradation that CPpf
results in, we compare the execution times of the applications in

SPEC CPU2017, NPB and Polybench benchmarks with two settings,

CPpf off and CPpf on. The results show that CPpf causes 0.56%

slowdown on average with a worst case of 1.72%.

The overhead of CPpf mainly comes from the online classifica-

tion of PS and NPS applications at run time. For an execution phase

which typically lasts more than 30 seconds, the PMU samples LLC

misses for only 1 second, during which on average 30% of the time

is dedicated to PMU sampling and virtual-physical address transla-

tion. As PMU can sample up to 200000 data addresses in 1 second,

it takes up to 100 milliseconds to obtain the miss distribution over

cache sets.

7 RELATEDWORK
LLC management. Shared cache management has attracted a lot

of research attention in the past decades. UCP [21] and ASM [27]

designed additional hardware components to modify the eviction

and insertion policies to partition the cache, but these have not

been implemented in existing processors.

Heracles [15] and Dirigent [36] control the amount of shared

hardware resources, including the LLC, used by latency sensitive

applications to improve Quality of Service and utilization. [22] clus-

ters applications using the k-means algorithm and distributes cache

ways between the groups to improve system fairness. [19] assigns

more cache space to critical applications to improve system turn-

around time. [33] proposes a framework that dynamically monitors

and predicts a workload’s cache demand and reallocates the LLC

given a performance target. KPart [11] leverages online profiling

to obtain miss ratio curves for clustering applications and assigns

each cluster of applications to a cache partition to improve system

throughput. [18] proposed a coordinated partitioning of the LLC

and memory bandwidth to improve the fairness of workloads on

commodity servers.

A significant amount of work has been devoted to software-based

cache partitioning approaches [3, 14, 28, 35]. Most of these efforts

are based on the classic technique of OS page-coloring, which is

used to control where the physical page required by the target

application is located in the cache.

All these works have been implemented on existing processors,

however, those works do not study the impact of hardware prefetch-

ing on cache performance and do not explicitly reveal the interac-

tion between the hardware prefetching and LLC management.

Hardware prefetching. Hardware prefetching is now used in

nearly all high-performance commercial processors. [16] presents

a survey of prefetching techniques for processor caches.

Some work has also been done to improve the cache manage-

ment policy in the presence of hardware prefetching. [31] proposed

a prefetching-aware cache replacement policy that treats prefetch

and demand requests identically. [26] estimates prefetcher accuracy

and prefetch-related cache pollution to adjust the aggressiveness

of the hardware prefetcher dynamically. In [37, 38], a number of

hardware-based prefetch pollution filtering mechanisms is pro-

posed to differentiate good and bad prefetches dynamically to re-

duce the ineffective prefetches. [23] proposed a self-tuning prefetch

accuracy predictor to predict if a prefetch is accurate or inaccurate

to mitigate prefetch-related cache pollution. [10] proposed mech-

anisms that manage the shared resources on a multicore chip to

obtain high performance and fairness. However, those approaches

require additional hardware components that are not available in

existing processors.

The prefetch aware cache partitioning approach presented in

this work is a software-only solution by using hardware features

like PEBS and CAT, which are readily available in existing multicore

processors.

8 CONCLUSION
Hardware prefetching can interact poorly with LLC management,

leading to performance degradation. To study the interaction be-

tween hardware prefetching and LLC cache management, we an-

alyzed the variation of application performance when varying

the effective LLC space in the presence and absence of of hard-

ware prefetching. We observed that hardware prefetching can com-

pensate the application performance loss due to the reduced ef-

fective cache space. Motivated by this observation, we classified

applications into two categories, prefetching sensitive (PS) and
non prefetching sensitive (NPS) applications, by the degree of per-

formance benefit they experience from hardware prefetchers. To

address the cache contention and to also mitigate the potential

prefetch-related cache interference, we proposed CPpf , a prefetch

aware cache partitioning approach for improving the LLC manage-

ment in the presence of hardware prefetching. CPpf consists of a

method using PEBS techniques for the online classification of PS
and NPS applications and a LLC partitioning scheme via CAT to

distribute the cache space among PS and NPS applications. We have

implemented CPpf as a user-level runtime system on Linux. Com-

pared with a non-partitioning approach, CPpf achieves speedups of

up to 1.20 (1.08 on average), 1.08 (1.04 on average) and 1.06 (1.03 on
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average) for workloads with 2, 4 and 8 single-threaded applications,

respectively. Moreover, it achieves speedups of up to 1.22 (1.05 on

average) and 1.11 (1.04 on average) for workloads mixes composed

of two applications with 4 threads and 8 threads, respectively.
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