198,497 research outputs found

    Recurrent Neural Network Based Narrowband Channel Prediction

    No full text
    In this contribution, the application of fully connected recurrent neural networks (FCRNNs) is investigated in the context of narrowband channel prediction. Three different algorithms, namely the real time recurrent learning (RTRL), the global extended Kalman filter (GEKF) and the decoupled extended Kalman filter (DEKF) are used for training the recurrent neural network (RNN) based channel predictor. Our simulation results show that the GEKF and DEKF training schemes have the potential of converging faster than the RTRL training scheme as well as attaining a better MSE performance

    Wideband Channel Estimation and Prediction in Single-Carrier Wireless Systems

    No full text
    Abstract—In this contribution wideband channel estimation and prediction designed for single-carrier wideband wireless communications systems are investigated. Specifically, the single-carrier wideband pilot signal received by the receiver is first converted to the frequency-domain. Then, the envelope of the channel transfer function (CTF) is estimated in the frequency-domain, in order to reduce the effects of background noise on the channel prediction step to be invoked. Finally, channel prediction is carried out based on the estimated CTF in the frequency-domain, where a Kalman filter assisted long-range channel prediction algorithm is employed. Our simulation results show that for a reasonable signal-to-noise ratio (SNR) value the proposed frequency-domain based wideband channel estimator is capable of efficiently mitigating the effects of the background noise, hence enhancing the performance of wideband channel prediction

    Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid

    Get PDF
    The thermodynamics and kinetics of the bulk metallic glass forming Mg65Cu25Y10 liquid were investigated using differential scanning calorimetry and three-point beam bending. The experiments lead to the determination of the thermodynamic functions as well as the viscosity of the supercooled liquid. The viscosity shows a temperature dependence, which is consistent with that of a strong glass similar to Zr–Ti–Cu–Ni–Be bulk metallic glasses or sodium silicate glasses. This contrasts with more fragile conventional metallic glass formers or pure metals. The relatively weak temperature dependence of the thermodynamic functions of the supercooled liquid is related to these sluggish kinetics in the supercooled liquid. Entropy, viscosity, and kinetic glass transition are compared in the frameworks of the fragility concept and the Adam–Gibbs theory. Strong liquid behavior retards the formation of crystals kinetically and thermodynamically

    A Model Approximation Scheme for Planning in Partially Observable Stochastic Domains

    Full text link
    Partially observable Markov decision processes (POMDPs) are a natural model for planning problems where effects of actions are nondeterministic and the state of the world is not completely observable. It is difficult to solve POMDPs exactly. This paper proposes a new approximation scheme. The basic idea is to transform a POMDP into another one where additional information is provided by an oracle. The oracle informs the planning agent that the current state of the world is in a certain region. The transformed POMDP is consequently said to be region observable. It is easier to solve than the original POMDP. We propose to solve the transformed POMDP and use its optimal policy to construct an approximate policy for the original POMDP. By controlling the amount of additional information that the oracle provides, it is possible to find a proper tradeoff between computational time and approximation quality. In terms of algorithmic contributions, we study in details how to exploit region observability in solving the transformed POMDP. To facilitate the study, we also propose a new exact algorithm for general POMDPs. The algorithm is conceptually simple and yet is significantly more efficient than all previous exact algorithms.Comment: See http://www.jair.org/ for any accompanying file

    Analytical BER Performance of DS-CDMA Ad Hoc Networks using Large Area Synchronized Spreading Codes

    No full text
    The family of operational CDMA systems is interference-limited owing to the Inter Symbol Interference (ISI) and the Multiple Access Interference (MAI) encountered. They are interference-limited, because the orthogonality of the spreading codes is typically destroyed by the frequency-selective fading channel and hence complex multiuser detectors have to be used for mitigating these impairments. By contrast, the family of Large Area Synchronous (LAS) codes exhibits an Interference Free Window (IFW), which renders them attractive for employment in cost-efficient quasi-synchronous ad hoc networks dispensing with power control. In this contribution we investigate the performance of LAS DS-CDMA assisted ad hoc networks in the context of a simple infinite mesh of rectilinear node topology and benchmark it against classic DS-CDMA using both random spreading sequences as well as Walsh-Hadamard and Orthogonal Gold codes. It is demonstrated that LAS DS-CDMA exhibits a significantly better performance than the family of classic DS-CDMA systems operating in a quasi-synchronous scenario associated with a high node density, a low number of resolvable paths and a sufficiently high number of RAKE receiver branches

    Gravitational Thermodynamics of Space-time Foam in One-loop Approximation

    Get PDF
    We show from one-loop quantum gravity and statistical thermodynamics that the thermodynamics of quantum foam in flat space-time and Schwarzschild space-time is exactly the same as that of Hawking-Unruh radiation in thermal equilibrium. This means we show unambiguously that Hawking-Unruh thermal radiation should contain thermal gravitons or the contribution of quantum space-time foam. As a by-product, we give also the quantum gravity correction in one-loop approximation to the classical black hole thermodynamics.Comment: 7 pages, revte

    Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy

    Get PDF
    We report on a small-angle x-ray-scattering (SAXS) and differential scanning calorimetry study of phase separation and crystallization in rapidly quenched amorphous Mg62Cu25Y10Li3 alloy samples. Differential scanning calorimetry demonstrates the occurrence of crystallization and grain growth upon isothermal annealing of these samples at 135 °C. The SAXS studies show the presence of large inhomogeneities even in the rapidly quenched as-prepared Mg62Cu25Y10Li3 alloy that is attributed to phase separation in the undercooled liquid during the cooling process. After isothermal annealing at 135 °C for longer than 30 min the samples exhibit a strong SAXS intensity that monotonically increases with increasing annealing time. During heat treatment, crystallization and growth of a nanocrystalline bcc-Mg7Li3 phase occurs in the Y-poor and MgLi-rich domains. The initially rough boundaries of the nanocrystals become sharper with increasing annealing time. Anomalous small-angle x-ray-scattering investigations near the Cu K edge indicate that while Cu is distributed homogeneously in the as-prepared sample, a Cu composition gradient develops between the matrix and the bcc-Mg7Li3 nanocrystals in the annealed sample

    Quantum Statistical Entropy and Minimal Length of 5D Ricci-flat Black String with Generalized Uncertainty Principle

    Full text link
    In this paper, we study the quantum statistical entropy in a 5D Ricci-flat black string solution, which contains a 4D Schwarzschild-de Sitter black hole on the brane, by using the improved thin-layer method with the generalized uncertainty principle. The entropy is the linear sum of the areas of the event horizon and the cosmological horizon without any cut-off and any constraint on the bulk's configuration rather than the usual uncertainty principle. The system's density of state and free energy are convergent in the neighborhood of horizon. The small-mass approximation is determined by the asymptotic behavior of metric function near horizons. Meanwhile, we obtain the minimal length of the position Δx\Delta x which is restrained by the surface gravities and the thickness of layer near horizons.Comment: 11pages and this work is dedicated to the memory of Professor Hongya Li

    On length spectrum metrics and weak metrics on Teichmüller spaces of surfaces with boundary

    No full text
    We define and study metrics and weak metrics on the Teichmüller space of a surface of topologically finite type with boundary. These metrics and weak metrics are associated to the hyperbolic length spectrum of simple closed curves and of properly embedded arcs in the surface. We give a comparison between the defined metrics on regions of Teichmüller space which we call ε0\varepsilon_0-relative ϵ\epsilon-thick parts} for ϵ>0\epsilon >0 and ε0ϵ>0\varepsilon_0\geq \epsilon>0
    corecore