1,803 research outputs found

    First-principles study of the lattice dynamics of Sb2S3

    Full text link
    We present a lattice dynamics study of orthorhombic antimony sulphide (Sb2S3) obtained using density-functional calculations in conjunction with the supercell force-constant method. The effect of Born effective charges is taken into account using a mixed-space approach, resulting in the splitting of longitudinal and transverse optical (LO-TO) phonon branches near the zone center. Zone-center frequencies agree well with Raman scattering experiments. Due to the slow decay of the interatomic force constants (IFC), a minimal 2x4x2 supercell (Pnma setting) with 320 atoms is crucial for an accurate determination of the dispersion relations. Smaller supercells result in artificial acoustic phonon softening and unphysical lifting of degeneracies along high symmetry directions. We propose a scheme to investigate the convergence of the IFC with respect to the supercell sizes. The phonon softening can be attributed to the periodic images that affect the accuracy of the force constants, and the truncation of long-ranged forces. The commensuration of the q-vectors with the supercell size is crucial to preserve degeneracies in Sb2S3 crystals.Comment: 7 pages 4 figures, 3 table

    Influence of the Mega-Urban Heat Island on Spatial Transfer of Summer Thermal Comfort: Evidence from Tianjin, China

    Get PDF
    Human thermal comfort in urban spaces deteriorates as rapid urbanization proceeds. However, effective tests and discoveries of spatial statistic patterns are currently absent. This study collected remote sensing images and measured meteorological data of the summers of 1992–2017, Tianjin of China and aims to clarify patterns of spatial transfer and thermal comfort changes caused by a mega-UHI (Urban Heat Island). An analytic transfer matrix and the spatial autocorrelation were developed to study spatial pattern changes and features of the spatial transfer of thermal comfort caused by UHI. Results show these patterns in the affected areas can be divided into different levels: patterns of low-level affected areas transferred by circular expansion into block-mass jumping, while the position of high-level affected areas remains stable. The spatial transfer of thermal comfort in the affected areas shows two apparent stages: the transfer from areas of high-density and low-storied buildings and into areas of multiple storied buildings, and transfer from areas of low and multiple storied buildings into those of high storied buildings. This implies changes in urban planning can guide spatial, structural, and functional evolution. The study identifies features of spatial change and spatial patterns related to the influence of Mega-UHI on thermal comfort

    An Epidemiological Study of Drug Resistance and Resistance Genes in Bovine Escherichia coli Isolates in Heilongjiang Province of China

    Get PDF
    Background: To explore the epidemiology of bovine multidrug-resistant Escherichia coli isolates and resistance genes in Heilongjiang province of China. This study examined the prevalence of genes in bovine E. coli isolates, which confer resistance to antibiotics that are commonly used in the clinic, in regions of Baiquan, Shangzhi, and Songbei of Harbin. The purpose of the study was to investigate the epidemiology of the main resistance genes of bovine E. coli isolates in clinical veterinary medicine, and to provide a theoretical basis for preventing the spread of drug-resistant bacteria, as well as for rational drug use.Materials, Methods & Results: The sensitivity of 105 isolates to 22 antibiotics was determined using the KirbyBauer disk diffusion method, and the distribution of 19 kinds of common drug resistance genes was investigated using Polymerase Chain Reaction. The results showed that the resistance rate to nine antibiotics was over 50%, including rifampin (84.76%), ampicillin (73.58%), tetracycline (69.52%), and sulfisoxazole (59.05%). In total, 105 strains of bovine E. coli presented 21 spectra of drug resistance, including eight strains (7.62%, 8/105) that were resistant to one antibiotic and four strains (3.81%, 4/105) that were resistant to 21 antibiotics. The resistance gene detection results showed that the streptomycin-resistance gene strA was found in 73 isolates, accounting for 69.52% of the isolates, followed by the sulfanilamide-resistance genes sul3/sul2 and the aminoglycoside-resistance gene aphA, which accounted for 57.14%, 51.43%, and 50.48%, respectively, of the isolates.Discussion: This study revealed serious drug resistance of bovine E. coli isolates in some areas of Heilongjiang province. Of 105 E. coli isolates, more than 50% were resistant to the following antibacterial drugs: rifampicin, ampicillin, tetracycline, sulfisoxazole, and cephalothin. The isolates were the most sensitive to amikacin, with a sensitivity of 84.76%, followed by sensitivity to ofloxacin, ciprofloxacin, norfloxacin, cefoxitin, and tobramycin. Drug sensitivity tests showed that the drug resistance spectra of the bovine E. coli isolates was different in different regions, indicating that there were multidrug-resistant bovine E. coli isolates in different regions of Heilongjiang province, and that drug resistance differed among different regions. This may be due to prolonged use or overuse of antibiotics in a particular locality. Additionally, because of different management modes of livestock farms, the application of antimicrobial drugs in some farms may have imposed selective pressure on the intestinal flora including E. coli, resulting in the horizontal transmission of drug resistance among the bacteria. The study found that some strains had a resistance phenotype, but no resistance gene, while some had a resistance gene without expressing a resistance phenotype, which is consistent with relevant reports in the literature. This may be related to the same genotype corresponding to different resistance phenotypes, or different levels of gene expression, or different drug metabolic rates. In our study, some strains with certain drug resistance genes were sensitive to the corresponding drug, which may be due to mutations of drug-resistance genes, the loss of a strains resistance phenotype, or the loss of gene function. These issues require further study. This study revealed serious drug resistance of bovine E. coli isolates in some areas of Heilongjiang province. Of 105 E. coli isolates, more than 50% were resistant to the following antibacterial drugs: rifampicin, ampicillin, tetracycline, sulfisoxazole, and cephalothin. The isolates were the most sensitive to amikacin, with a sensitivity of 84.76%, followed by sensitivity to ofloxacin, ciprofloxacin, norfloxacin, cefoxitin, and tobramycin

    Global Gene Knockout of Kcnip3 Enhances Pain Sensitivity and Exacerbates Negative Emotions in Rats

    Get PDF
    The Ca2+-binding protein Kv channel interacting protein 3 (KChIP3) or downstream regulatory element antagonist modulator (DREAM), a member of the neuronal calcium sensor (NCS) family, shows remarkable multifunctional properties. It acts as a transcriptional repressor in the nucleus and a modulator of ion channels or receptors, such as Kv4, NMDA receptors and TRPV1 channels on the cytomembrane. Previous studies of Kcnip3-/- mice have indicated that KChIP3 facilitates pain hypersensitivity by repressing Pdyn expression in the spinal cord. Conversely, studies from transgenic daDREAM (dominant active DREAM) mice indicated that KChIP3 contributes to analgesia by repressing Bdnf expression and attenuating the development of central sensitization. To further determine the role of KChIP3 in pain transmission and its possible involvement in emotional processing, we assessed the pain sensitivity and negative emotional behaviors of Kcnip3-/- rats. The knockout rats showed higher pain sensitivity compared to the wild-type rats both in the acute nociceptive pain model and in the late phase (i.e., 2, 4 and 6 days post complete Freund’s adjuvant injection) of the chronic inflammatory pain model. Importantly, Kcnip3-/- rats displayed stronger aversion to the pain-associated compartment, higher anxiety level and aggravated depression-like behavior. Furthermore, RNA-Seq transcriptional profiling of the forebrain cortex were compared between wild-type and Kcnip3-/- rats. Among the 68 upregulated genes, 19 genes (including Nr4a2, Ret, Cplx3, Rgs9, and Itgad) are associated with neural development or synaptic transmission, particularly dopamine neurotransmission. Among the 79 downregulated genes, 16 genes (including Col3a1, Itm2a, Pcdhb3, Pcdhb22, Pcdhb20, Ddc, and Sncaip) are associated with neural development or dopaminergic transmission. Transcriptional upregulation of Nr4a2, Ret, Cplx3 and Rgs9, and downregulation of Col3a1, Itm2a, Pcdhb3 and Ddc, were validated by qPCR analysis. In summary, our studies showed that Kcnip3-/- rats displayed higher pain sensitivity and stronger negative emotions, suggesting an involvement of KChIP3 in negative emotions and possible role in central nociceptive processing

    Stair Negotiation Made Easier using Novel Interactive Energy-Recycling Assistive Stairs

    Get PDF
    Here we show that novel, energy-recycling stairs reduce the amount of work required for humans to both ascend and descend stairs. Our low-power, interactive, and modular steps can be placed on existing staircases, storing energy during stair descent and returning that energy to the user during stair ascent. Energy is recycled through event-triggered latching and unlatching of passive springs without the use of powered actuators. When ascending the energy-recycling stairs, naive users generated 17.4 ± 6.9% less positive work with their leading legs compared to conventional stairs, with the knee joint positive work reduced by 37.7 ± 10.5%. Users also generated 21.9 ± 17.8% less negative work with their trailing legs during stair descent, with ankle joint negative work reduced by 26.0 ± 15.9%. Our low-power energy-recycling stairs have the potential to assist people with mobility impairments during stair negotiation on existing staircases
    corecore