34 research outputs found

    The Molecular Biogeography of the Indo-Pacific: Testing Hypotheses With Multispecies Genetic Patterns

    Get PDF
    Aim: To test hypothesized biogeographic partitions of the tropical Indo-Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test. \u3eLocation: The Indo-Pacific Ocean. Time Period: Pliocene through the Holocene. Major Taxa Studied: Fifty-six marine species. Methods: We tested eight biogeographic hypotheses for partitioning of the Indo-Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance-based redundancy analysis (dbRDA). Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance. Main Conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo-Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo-Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5

    The molecular biogeography of the Indo‐Pacific: Testing hypotheses with multispecies genetic patterns

    Get PDF
    Aim: To test hypothesized biogeographic partitions of the tropical Indo‐Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test. Location: The Indo‐Pacific Ocean. Time period: Pliocene through the Holocene. Major taxa studied: Fifty‐six marine species. Methods: We tested eight biogeographic hypotheses for partitioning of the Indo‐ Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance‐based redundancy analysis (dbRDA). Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance. Main conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo‐Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo‐Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5

    Genetic structure and relatedness of juvenile sicklefin lemon shark (Negaprion acutidens) at Dongsha Island

    No full text
    Abstract Negaprion acutidens (sicklefin lemon shark) is distributed in the Indo-Pacific and in close association with coral reefs. Under the protection of the Dongsha Atoll National Park, a small but well-established juvenile population of N. acutidens inhabiting coastal areas of Dongsha Island was recently observed to display site fidelity by using acoustic telemetry. This study was designed to reveal the fine scale genetic structure and relatedness within and among 5 juvenile shark cohorts inhabiting 3 sampling sites at Dongsha Island. A total 188 juveniles were caught and sampled between 2016 and 2017, and genotyped with twelve loci. They were assigned to 5 year cohorts (2013–2017) based on the body length and date they were caught, also assigned to 3 sites based on where they were caught. Among five cohorts, the percentage of unrelated pairs within a cohort is more than 62% in average, suggesting a potential high mortality during their early life stage. The results of Fst and assignment testing showed that there was no significant genetic structure between sites and cohorts indicating that there was no fine scale genetic structure, even though the juveniles possessed strong site fidelity. A small effective population size (Ne) was detected (Ne = 86.7) which indicates the presence of a potentially isolated and vulnerable population at Dongsha. These results provide the genetic diversity as a baseline for future management and conservation of N. acutidens in the South China Sea

    Genetic identification and hybridization in the seagrass genus Halophila (Hydrocharitaceae) in Sri Lankan waters

    No full text
    Seagrasses, as marine angiosperms, play important roles in coastal ecosystems. With increasing anthropogenic impacts, they are facing dramatic declines on a global scale. Halophila is well-known as a complex taxonomic challenge mainly due to high morphological plasticity. By using only a morphological approach, the genus could be over-split or similar species could be erroneously lumped, thus masking its true biodiversity. In the present study, we incorporated genetic identification with morphological examination to reveal the identity of Halophila plants in southern and northwestern Sri Lankan waters. The nuclear ribosomal internal transcribed spacer (ITS) region and chloroplast ribulose-bisphosphate carboxylase gene (rbcL) were used to identify plants collected from the Gulf of Mannar, Puttalam Lagoon, and Matara, Sri Lanka. Based on genetic identification, H. major (Zoll.) Miquel is reported for the first time from Sri Lanka, which might have been misidentified as H. ovalis in previous literature based on morphology alone. We also observed a first hybridization case of Halophila cross between H. ovalis and H. major. Two potential cryptic species were found, herein designated Halophila sp. 1 (allied to H. minor) and Halophila sp. 2 (closely related to H. decipiens). In order to clarify taxonomic ambiguity caused by morphological plasticity and the low resolution of genetic markers, further comparative phylogenomic approaches might be needed to solve species boundary issues in this genus

    Phylogeography of the humbug damselfish, Dascyllus aruanus (Linnaeus, 1758): evidence of Indo-Pacific vicariance and genetic differentiation of peripheral populations

    No full text
    International audienceThe phylogeographic structure of coral-associated reef fishes may have been severely affected, more than species from deeper habitats, by habitat loss during periods of low sea level. The humbug damselfish, Dascyllus aruanus, is widely distributed across the Indo-West Pacific, and exclusively inhabits branching corals. We used mitochondrial cytochrome b sequence and seven microsatellite loci on D. aruanus samples (260 individuals) from 13 locations across the Indo-West Pacific to investigate its phylogeographic structure distribution-wide. A major genetic partition was found between the Indian and Pacific Ocean populations, which we interpret as the result of geographic isolation on either side of the Indo-Pacific barrier during glacial periods. The peripheral populations of the Red Sea and the Society Islands exhibited lower genetic diversity than, and substantial genetic differences with the other populations, suggesting relative isolation. Thus, vicariance on either side of the Indo-Pacific barrier and peripheral differentiation are thought to be the main drivers that have shaped the phylogeographic patterns presently observed in D. aruanus

    Integrating phylogeographic and ecological niche approaches to delimitating cryptic lineages in the blue–green damselfish (Chromis viridis)

    No full text
    Species delimitation is challenging in sibling species/cryptic lineages because of the absence of clear diagnostic traits. However, integration of different approaches such as phylogeography and ecological niche comparison offers one potential approach to tease apart recently diverged lineages. In this study, we estimate the ecological niche divergence among lineages in Chromis viridis in a broad-scale phylogeographic framework to test whether the combination of these two approaches can effectively distinguish recently diverged lineages. Results from Cytb and Rag2 analyses identified two cryptic lineages (C. viridis A and C. viridis B) that diverged ∼3 Myr ago. Estimates of ecological niche divergence with 11 environmental parameters across the broad geographic range of these lineages showed overlapping ecological niches and niche conservatism. However, regardless of the incongruence between genetic and ecological niche divergence, the substantial genetic divergence between the two clades of C. viridis in both mtDNA and nuclear loci strong suggest that they are cryptic taxa

    Genetic diversity and connectivity of the megamouth shark (Megachasma pelagios)

    No full text
    The megamouth shark (Megachasma pelagios) was described as a new species in 1983. Since then, only ca. 100 individuals have been observed or caught. Its horizontal migration, dispersal, and connectivity patterns are still unknown due to its rarity. Two genetic markers were used in this study to reveal its genetic diversity and connectivity pattern. This approach provides a proxy to indirectly measure gene flow between populations. Tissues from 27 megamouth sharks caught by drift nets off the Hualien coast (eastern Taiwan) were collected from 2013 to 2015. With two additional tissue samples from megamouths caught in Baja California, Mexico, and sequences obtained from GenBank, we were able to perform the first population genetic analyses of the megamouth shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced and analyzed. Our results showed that there is no genetic structure in the megamouth shark, suggesting a possible panmictic population. Based on occurrence data, we also suggest that the Kuroshio region, including the Philippines, Taiwan, and Japan, may act as a passageway for megamouth sharks to reach their feeding grounds from April to August. Our results provide insights into the dispersal and connectivity of megamouth sharks. Future studies should focus on collecting more samples and conducting satellite tagging to better understand the global migration and connectivity pattern of the megamouth shark
    corecore