16 research outputs found

    The computer simulation investigation of the Hamilton neural network model

    No full text
    University,Xiamen,Fujiang 361005,China) The Dirac symbol was used to represent the 16 level Hamilton discrete neural network.By using the computer simulation,the storage capacity and the error tolerance capacity of the model were studied and compared with the Hopfield model.The model was applied to recognize the 16 level gray or color patterns

    The far and distal enhancers in the CYP3A4 gene co-ordinate the proximal promoter in responding similarly to the pregnane X receptor but differentially to hepatocyte nuclear factor-4α

    No full text
    CYP3A4 (cytochrome P450 3A4) is involved in the metabolism of more than 50 % of drugs and other xenobiotics. The expression of CYP3A4 is induced by many structurally dissimilar compounds. The PXR (pregnane X receptor) is recognized as a key regulator for the induction, and the PXR-directed transactivation of the CYP3A4 gene is achieved through a co-ordinated mechanism of the distal module with the proximal promoter. Recently, a far module was found to support constitutive expression of CYP3A4. The far module, like the distal module, is structurally clustered by a PXR response element (F-ER6) and elements recognized by HNF-4α (hepatocyte nuclear receptor-4α). We hypothesized that the far module supports PXR transactivation of the CYP3A4 gene. Consistent with the hypothesis, fusion of the far module to the proximal promoter of CYP3A4 markedly increased rifampicin-induced reporter activity. The increase was synergistically enhanced when both the far and distal modules were fused to the proximal promoter. The increase, however, was significantly reduced when the F-ER6 was disrupted. Chromatin immunoprecipitation detected the presence of PXR in the far module. Interestingly, HNF-4α increased the activity of the distal-proximal fused promoter, but decreased the activity of the far-proximal fused promoter. Given the fact that induction of CYP3A4 represents an important detoxification mechanism, the functional redundancy and synergistic interaction in supporting PXR transactivation suggest that the far and distal modules ensure the induction of CYP3A4 during chemical insults. The difference in responding to HNF-4α suggests that the magnitude of the induction is under control through various transcriptional networks. © The Authors

    The Hamilton neural network model: recognition of the color patterns

    No full text
    A 16-state Hamilton neural-network model is discussed. The storage capacity of the model is analyzed through theory and through a computer numerical simulation. The storage-capacity ratio of the presented model equals that of the Hopfield model. This 16-state neural network can be applied to the recognition of 16-level color patterns, and some examples are discussed

    Additional file 1: Table S1. of Structure alignment-based classification of RNA-binding pockets reveals regional RNA recognition motifs on protein surfaces

    No full text
    Some RBPs and their corresponding domains and families. Table S2. The overlapping number of pockets in the six groups. Table S3. Functional GO annotations for the five proteins in the case study. Figure S1. The dendrogram of pocket groups and the sequences of the RNA-binding pockets. (PDF 314 kb

    Clofibrate and perfluorodecanoate both upregulate the expression of the pregnane X receptor but oppositely affect its ligand-dependent induction on cytochrome P450 3A23

    No full text
    The pregnane X receptor (PXR) interacts with a vast array of structurally dissimilar chemicals and confers induction of several major types of drug metabolizing enzymes such as cytochrome P450s (CYP). We previously reported that the expression of PXR was markedly increased in rats treated with clofibrate and perfluorodecanoic acid (PFDA). The present study was undertaken to test the hypothesis that induced expression of PXR increases PXR ligand-dependent induction on CYP3A23. Rat hepatocytes were treated with clofibrate or PFDA individually, or along with PXR ligand pregnenolone 16α-carbonitrile (PCN), and the levels of PXR and CYP3A23 were determined by Western blots. Both clofibrate and PFDA markedly increased the expression of PXR with PFDA being more potent, and the induction was abolished by actinomycin D, an inhibitor for mRNA synthesis. As expected, PCN alone markedly induced the expression of CYP3A23. Interestingly, co-treatment with clofibrate enhanced the induction, whereas co-treatment with PFDA suppressed it. Clofibrate and PFDA represent multi-classes of chemicals called peroxisome proliferators including many therapeutic agents and industrial pollutants. The opposing effects of clofibrate and PFDA on the PCN-induced expression of CYP3A23 suggest that peroxisome proliferators likely increase the expression of PXR but differentially alter its ligand-dependent induction. The interaction between PXR inducer and ligand provides a novel mechanism on how functionally and structurally distinct chemicals cooperatively regulate the expression of xenobiotic-metabolizing enzymes and transporters. © 2005 Elsevier Inc. All rights reserved

    Synthesis and biological evaluations of chalcones, flavones and chromenes as farnesoid x receptor (FXR) antagonists

    No full text
    Farnesoid X receptor (FXR), a nuclear receptor mainly distributed in liver and intestine, has been regarded as a potential target for the treatment of various metabolic diseases, cancer and infectious diseases related to liver. Starting from two previously identified chalcone-based FXR antagonists, we tried to increase the activity through the design and synthesis of a library containing chalcones, flavones and chromenes, based on substitution manipulation and conformation (ring closure) restriction strategy. Many chalcones and four chromenes were identified as microM potent FXR antagonists, among which chromene 11c significantly decreased the plasma and hepatic triglyceride level in KKay mice
    corecore