81 research outputs found

    Teaching Methods in English Language Instruction: Case of Selected English Language Teachers in General Santos City, Philippines

    Get PDF
    The aim of the Philippine education is to highlight the learners' equal opportunity in learning and holistic development to the best level possible amid insufficient learning materials and facilities. Hence, the teachers’ pedagogies, their best practices and strategies applied in the classroom are the key which leads to the questions on what are the most common teaching methods used by the teachers and how are they using these methods? The underpinning concept in this study is guided by the theory of constructivism. As such, in view of the research questions; the mixed method concurrent design was used to explore the experiences of the selected English language teachers in rendering an effective teaching strategy. The teaching methods in English language instruction were determined through a survey questionnaire. This is further reinforced by the qualitative data obtained through the semi-structured interview and classroom observations. Results showed that the lecture method and brainstorming were most often used as a method of teaching. The profile of the subjects showed that teachers are well experienced and qualified English language teachers in view of their educational background and professional development. Implications for teachers considering the results emphasized more innovative and contextualized teaching strategies in English instruction. Keywords: Teaching methods, constructivism, English language instruction DOI: 10.7176/JLLL/66-07 Publication date:March 31st 202

    Utilizing Internet Analysis Technology to Conduct Data Analysis of Student Attitude Survey

    Get PDF
    Language attitude is people’s understanding and evaluation of languages, which has an important effect on language learning. Based upon investigation into 605 Tibetan college students from 5 colleges in Tibet areas, and combined with network data, this paper mainly analyzes their attitude towards Tibetan, Chinese and English from four dimensions: recognizing, instrumental, integrative and transferring attitude. This paper also discusses the relationship between students’ language attitude and their gender and grade. This study utilizes internet analysis technology to analyze data obtained from a student attitude survey. The survey was conducted to examine the attitudes of students towards a particular educational program. The study includes a description of the survey instrument and the method used to collect data. The data collected was analyzed using various statistical techniques, including frequency analysis and correlation analysis. The findings reveal important insights into student attitudes towards the program and highlight areas of improvement for the program. The use of internet analysis technology proved to be an efficient and effective method of data analysis in this study. The study contributes to the growing body of knowledge on data analysis in educational research and provides useful information for educators and policymakers

    Psychological Preference of Chinese Students in Learning English as a Foreign Language: Case of Shaanxi Normal University

    Get PDF
    Students’ outlook in life is an important factor necessary for building a character, and so with creating an optimistic view in schooling as they explore unfamiliar things. In the context of Shaanxi Normal University, communicating with Chinese students using the English language will lead them to the line “Sorry, my English is poor”. This concept paved the way to explore the psychological preference of undergraduate students at Shaanxi Normal University towards learning the English language using quantitative research design. Also, the present study explored whether there is a significant difference in students’ psychological preference towards the English language based on gender, year level, and courses or field of specialization. A modified survey questionnaire aligned to Chinese students’ context was made to describe their ways of studying English. A total of 200 randomly selected students answered a 30-item survey questionnaire from different academic disciplines. Results show that Chinese students have a moderate psychological preference for studying the English language. T-test and one-way ANOVA test results show no significant difference in gender, year level, and academic disciplines. The implication of this study is for EFL teachers to have an idea of the psychological preferences of Chinese students towards learning the art of the English language. In conclusion, Chinese students have a moderate preference for learning the English language. Thus, teachers are recommended to boost the preference of Chinese students to the highest level possible in English classroom instruction for a more productive outcome. Keywords: Psychological preference, English as a Foreign Language (EFL), Classroom instruction DOI: 10.7176/JEP/10-35-13 Publication date: December 31st 201

    Scrapie infectivity is quickly cleared in tissues of orally-infected farmed fish

    Get PDF
    BACKGROUND: Scrapie and bovine spongiform encephalopathy (BSE) belongs to the group of animal transmissible spongiform encephalopathy (TSE). BSE epidemic in the UK and elsewhere in Europe has been linked to the use of bovine meat and bone meals (MBM) in the feeding of cattle. There is concern that pigs, poultry and fish bred for human consumption and fed with infected MBM would eventually develop BSE or carry residual infectivity without disease. Although there has been no evidence of infection in these species, experimental data on the susceptibility to the BSE agent of farm animals other than sheep and cow are limited only to pigs and domestic chicken. In the framework of a EU-granted project we have challenged two species of fish largely used in human food consumption, rainbow trout (Oncorhynchus mykiss) and turbot (Scophthalmus maximus), with a mouse-adapted TSE strain (scrapie 139A), to assess the risk related to oral consumption of TSE contaminated food. In trout, we also checked the "in vitro" ability of the pathological isoform of the mouse prion protein (PrP(Sc)) to cross the intestinal epithelium when added to the mucosal side of everted intestine. RESULTS: Fish challenged with a large amount of scrapie mouse brain homogenate by either oral or parenteral routes, showed the ability to clear the majority of infectivity load. None of the fish tissues taken at different time points after oral or parenteral inoculation was able to provoke scrapie disease after intracerebral inoculation in recipient mice. However, a few recipient mice were positive for PrP(Sc )and spongiform lesions in the brain. We also showed a specific binding of PrP(Sc )to the mucosal side of fish intestine in the absence of an active uptake of the prion protein through the intestinal wall. CONCLUSION: These results indicate that scrapie 139A, and possibly BSE, is quickly removed from fish tissues despite evidence of a prion like protein in fish and of a specific binding of PrP(Sc )to the mucosal side of fish intestine

    Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Get PDF
    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed

    Preparation of Cu2O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection

    No full text
    Cu2O-reduced graphene oxide nanocomposite (Cu2O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu2O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu2O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu2O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10−8 mol/L~1 × 10−6 mol/L and 1 × 10−6 mol/L~8 × 10−5 mol/L with the detection limit 6.0 × 10−9 mol/L (S/N = 3). The proposed Cu2O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results

    Morphologically Tunable MnO2 Nanoparticles Fabrication, Modelling and Their Influences on Electrochemical Sensing Performance toward Dopamine

    No full text
    The morphology or shape of nanomaterials plays an important role in functional applications, especially in the electrochemical sensing performance of nanocomposites modified electrodes. Herein, the morphology-dependent electrochemical sensing properties of MnO2-reduced graphene oxide/glass carbon electrode (MnO2-RGO/GCE) toward dopamine detection were investigated. Firstly, various morphologies of nanoscale MnO2, including MnO2 nanowires (MnO2 NWs), MnO2 nanorods (MnO2 NRs), and MnO2 nanotubes (MnO2 NTs), were synthesized under different hydrothermal conditions. Then the corresponding MnO2-RGO/GCEs were fabricated via drop-casting and the subsequent electrochemical reduction method. The oxidation peak currents increase with the electrochemical activity area following the order of MnO2 NWs-RGO/GCE, MnO2 NTs-RGO/GCE, and MnO2 NRs-RGO/GCE. The spatial models for MnO2 NWs, MnO2 NTs, and MnO2 NRs are established and accordingly compared by their specific surface area, explaining well the evident difference in electrochemical responses. Therefore, the MnO2 NWs-RGO/GCE is selected for dopamine detection due to its better electrochemical sensing performance. The response peak current is found to be linear with dopamine concentration in the range of 8.0 × 10−8 mol/L–1.0 × 10−6 mol/L and 1.0 × 10−6 mol/L–8.0 × 10−5 mol/L with a lower detection limit of 1 × 10−9 mol/L (S/N = 3). Finally, MnO2 NWs-RGO/GCE is successfully used for the determination of dopamine injection samples, with a recovery of 99.6–103%. These findings are of great significance for understanding the relationship between unlimited nanoparticle structure manipulation and performance improvement

    Chemically Surface Tunable Solubility Parameter for Controllable Drug Delivery—An Example and Perspective from Hollow PAA-Coated Magnetite Nanoparticles with R6G Model Drug

    No full text
    Solubility parameter-dependent drug releasing property is essential in practical drug delivery systems (DDS), and how to combine magnetic nanoparticles(NPs) and suitable polymer coating towards DDS is always a crucial and valuable challenge in biomedical application. Herein, a controllable drug delivery model with a surface having a chemically tunable solubility parameter is presented using hollow magnetite/polyacrylic acid (Fe3O4/PAA) nanocomposites as nanocarrier towards DDS. This composite is prepared by simply coating the modified hollow Fe3O4 with PAA. The coating amount of PAA onto the surface of Fe3O4 (measured by TGA) is about 40% (w/w). Then, Rhodamine 6G (R6G) is selected as model drug in drug delivery experiment. The efficiency of drug loading and drug release of these Fe3O4/PAA nanocarriers are evaluated under various temperature, solvent and pH values. As a result, the best drug releasing rate was achieved as 93.0% in pH = 7.4 PBS solution after 14 h. The releasing efficiency is 86.5% in acidic condition, while a lower releasing rate (30.0%) is obtained in aqueous solution, as different forms (polyacrylic acid and polyacrylate) of PAA present different solubility parameters, causing different salt and acid effects in various solvents, swelling property of PAA, and binding force between PAA and R6G. Therefore, by changing the solubility parameter of coating polymers, the drug delivery properties could be effectively tuned. These findings prove that the DDS based on magnetic particle cores and polymer encapsulation could efficiently regulate the drug delivery properties by tuning surface solubility parameter in potential cancer targeting and therapy

    Efficiently Enhancing Electrocatalytic Activity of Îą-MnO2 Nanorods/N-Doped Ketjenblack Carbon for Oxygen Reduction Reaction and Oxygen Evolution Reaction Using Facile Regulated Hydrothermal Treatment

    No full text
    Scalable, low-cost and highly efficient catalysis of oxygen electrocatalytic reactions (ORR/OER) are required for the rapid development of clean and renewable energy conversion/storage technologies. Herein, two types of α-MnO2 nanorods were prepared under hydrothermal treatment at 150 °C for 0.5 h (MnO2-150-0.5) or 120 °C for 12 h (MnO2-120-12), then supported on N-doped ketjenblack carbon (N-KB) as bi-functional ORR/OER catalysts. Their electrocatalytic activities toward ORR and OER were investigated systematically. As a result, MnO2-150-0.5/N-KB displays superior ORR catalytic activity, with much more positive half-wave potential and much larger limiting current density (0.76 V and 6.0 mA cm−2), comparable to those of 20 wt. % Pt/C (0.82 V and 5.10 mA cm−2). MnO2-150-0.5/N-KB also shows high electron transfer number (3.86~3.97) and low yield of peroxides (1–7%) during ORR process in the whole potential range of 0–1.0 V (vs. RHE). Meanwhile, the MnO2-150-0.5/N-KB also exhibits better OER activity with low overpotential, comparable to IrO2/N-KB. The excellent electrocatalytic activity of MnO2-150-0.5/N-KB can be attributed to the synergistic effect, relatively smaller size, higher amount of Mn3+, and low charge transfer resistance. This work offers a new strategy for scalable preparation of more efficient and cost-effective α-MnO2 bi-functional oxygen catalysts

    Sodium Acetate Orientated Hollow/Mesoporous Magnetite Nanoparticles: Facile Synthesis, Characterization and Formation Mechanism

    No full text
    Monodispersed magnetite (Fe3O4) nanospheres with hollow or porous interior structures were synthesized by a facile one-pot solvothermal route. The facile synthetic process was carried out by using iron (III) chloride hexahydrate (FeCl3¡6H2O) as only ferric ion resource, and anhydrous sodium acetate (NaAc) as structure-directing agent in an ethylene glycol solution without any templates or surfactants involved. The sizes, morphologies, crystal structures and magnetic properties of hollow Fe3O4 NPs are characterized via Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and Vibrating sample magnetometer (VSM) techniques. The influences of reaction time, molar ratio of reactants on the morphologies and magnetic performances are also investigated. The different morphologies of magnetite (Fe3O4) particles were presented with tunable size ranging from 85 to 250 nm and controllable structures including porous and hollow construction by using different amount of anhydrous NaAc. A plausible mechanism based on sodium acetate assistant local Ostwald ripening is proposed for acquiring the tailorable morphology and magnetic performance. Such a design conception of anhydrous NaAc assisted Ostwald ripening applied here is a significant alternative for synthesizing hollow magnetic particles, and it could elucidate some light to understand and construct other novel hollow/mesoporous nanostructures
    • …
    corecore