53 research outputs found

    Yielding and hardening of flexible fiber packings during triaxial compression

    Full text link
    This paper examines the mechanical response of flexible fiber packings subject to triaxial compression. Short fibers yield in a manner similar to typical granular materials in which the deviatoric stress remains nearly constant with increasing strain after reaching a peak value. Interestingly, long fibers exhibit a hardening behavior, where the stress increases rapidly with increasing strain at large strains and the packing density continuously increases. Phase diagrams for classifying the bulk mechanical response as yielding, hardening, or a transition regime are generated as a function of the fiber aspect ratio, fiber-fiber friction coefficient, and confining pressure. Large fiber aspect ratio, large fiber-fiber friction coefficient, and large confining pressure promote hardening behavior. The hardening packings can support much larger loads than the yielding packings contributing to the stability and consolidation of the granular structure, but larger internal axial forces occur within fibers.Comment: 14 pages, 4 figure

    Structured analysis of the high-dimensional FMR model

    Get PDF
    Abstract(#br)The finite mixture of regression (FMR) model is a popular tool for accommodating data heterogeneity. In the analysis of FMR models with high-dimensional covariates, it is necessary to conduct regularized estimation and identify important covariates rather than noises. In the literature, there has been a lack of attention paid to the differences among important covariates, which can lead to the underlying structure of covariate effects. Specifically, important covariates can be classified into two types: those that behave the same in different subpopulations and those that behave differently. It is of interest to conduct structured analysis to identify such structures, which will enable researchers to better understand covariates and their associations with outcomes. Specifically, the FMR model with high-dimensional covariates is considered. A structured penalization approach is developed for regularized estimation, selection of important variables, and, equally importantly, identification of the underlying covariate effect structure. The proposed approach can be effectively realized, and its statistical properties are rigorously established. Simulation demonstrates its superiority over alternatives. In the analysis of cancer gene expression data, interesting models/structures missed by the existing analysis are identified

    Discrete Element Method Model of Elastic Fiber Uniaxial Compression

    Full text link
    A flexible fiber model based on the discrete element method (DEM) is presented and validated for the simulation of uniaxial compression of flexible fibers in a cylindrical container. It is found that the contact force models in the DEM simulations have a significant impact on compressive forces exerted on the fiber bed. Only when the geometry-dependent normal contact force model and the static friction model are employed, the simulation results are in good agreement with experimental results. Systematic simulation studies show that the compressive force initially increases and eventually saturates with an increase in the fiber-fiber friction coefficient, and the fiber-fiber contact forces follow a similar trend. The compressive force and lateral shear-to-normal stress ratio increase linearly with increasing fiber-wall friction coefficient. In uniaxial compression of frictional fibers, more static friction contacts occur than dynamic friction contacts with static friction becoming more predominant as the fiber-fiber friction coefficient increases.Comment: 30 pages, 14 figures, submitted for publicatio

    Research status of stability in dynamic process of laser-arc hybrid welding based on droplet transfer behavior : a review

    Get PDF
    With the synergistic effect of laser and arc heat sources, laser-arc hybrid welding (LAHW) technology can improve welding speed and penetration depth, and enhance gap-bridging ability. This review describes the fundamental concepts and characteristics of droplet transfer behavior in LAHW. Emphasis was placed on the physical interaction between the laser and arc and the effect of the combined laser/arc heat sources on the welding process. However, the physical understanding of these multivariable and complex interactions is still evolving. Through numerous research findings and summary, it is found that there are several critical factors, including the laser-to-arc distance, heat source leading mode, shielding gas composition, and laser power, affecting the droplet transfer characteristics. This review critically interprets the latest development in the basic understanding of LAHW. It lays great stress on the coupling effect of laser and arc in droplet transfer dynamic process of LAHW, and offers a direction for the future study and progress of LAHW. Significant fields for future research are also confirmed

    Peculiarity of the Mechanism of Early Stages of Photo-Oxidative Degradation of Linear Low-Density Polyethylene Films in the Presence of Ferric Stearate

    No full text
    Ferric stearate (FeSt3) is very efficient in accelerating polyethylene (PE) degradation, but there is a lack of exploration of its role in accelerating the early stages of polyethylene photo-oxidative degradation. This study aimed to investigate the effect of FeSt3 on the photo-oxidative degradation of PE films, especially in the early stages of photo-oxidative degradation. The results show that FeSt3 not only promotes the oxidative degradation of PE but also contributes significantly to the early behavior of photo-oxidative degradation. Moreover, the results of the density functional theory (DFT) calculations proved that the C-H in the FeSt3 ligand was more easily dissociated compared with the PE matrix. The generated H radicals participate in the coupling reaction of the primary alkyl macro radicals leading to the molecular weight reduction, thus significantly increasing the initial rate of molecular weight reduction of PE. Meanwhile, the transfer reaction of the dissociation-generated C-centered radicals induced the PE matrix to produce more secondary alkyl macroradicals, which shortened the time to enter the oxidative degradation stage. This finding reveals the mechanism by which FeSt3 promotes the degradation of PE at the early stage of photo-oxidative degradation. It provides guiding significance for the in-depth study of the early degradation behavior in photo-oxidative degradation on polyolefin/FeSt3 films

    Review on the Developments of Structure, Construction Automation, and Monitoring of Intelligent Construction

    No full text
    The building and construction industry is a traditional industry that features high-capacity investment, long return period, high environment impact, and low technology demand in the past decades. With the fast development of technology and the demand for environmental sustainability, it is inevitable for the building and construction industry to embrace the revolution of technology. Intelligent construction is developed in light of advanced technologies including advanced computing technology, 3D design and manufacturing, automation and control, sensing, unmanned aircraft, and autonomous intelligence. It is also closely integrated with using perceived, analytical, decision-making coordination for building construction with perceived intelligent execution technology in the processes. Currently, there is no consensus definition on “intelligent construction” despite its rapid development. This paper reviews existing and current development in intelligent construction focusing on the following three aspects: (a) new structural forms, which are innovative and with potential or are being applied to automated and mass manufacturing/construction; (b) automated and intelligent construction system; and (c) advanced structure sensing and monitoring technology. These three components do not compromise the entire aspects for intelligent construction, but they have no doubt are the core elements for intelligent construction towards future building systems

    Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    No full text
    Direct Current (DC) electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells) is innovatively studied by Electrical Resistance Tomography (ERT). The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC) is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature
    corecore