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a b s t r a c t

The finite mixture of regression (FMR) model is a popular tool for accommodating
data heterogeneity. In the analysis of FMR models with high-dimensional covariates,
it is necessary to conduct regularized estimation and identify important covariates
rather than noises. In the literature, there has been a lack of attention paid to the
differences among important covariates, which can lead to the underlying structure of
covariate effects. Specifically, important covariates can be classified into two types: those
that behave the same in different subpopulations and those that behave differently.
It is of interest to conduct structured analysis to identify such structures, which will
enable researchers to better understand covariates and their associations with outcomes.
Specifically, the FMR model with high-dimensional covariates is considered. A structured
penalization approach is developed for regularized estimation, selection of important
variables, and, equally importantly, identification of the underlying covariate effect
structure. The proposed approach can be effectively realized, and its statistical properties
are rigorously established. Simulation demonstrates its superiority over alternatives. In
the analysis of cancer gene expression data, interesting models/structures missed by the
existing analysis are identified.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Heterogeneous data are not uncommon. As extensively explored in the literature, multiple factors can lead to
heterogeneity. When only a small proportion of subjects behave differently and such subjects are not of interest, robust
estimation can be conducted, focusing on the majority of homogeneous subjects. When all subjects are of interest, mixture
models have been commonly adopted. In the context of regression analysis, finite mixture of regression (FMR) models have
been popular and extensively used in biology, genetics, engineering, marketing, and other fields. For relevant discussions
on the methodology and application of FMR, we refer to Wedel and Desarbo (1995, 2000), McLachlan and Peel (2000).

In early FMR studies, only a small number of covariates was present, and the focus was mostly on estimation
and inference. With the fast development of data collection techniques, high-dimensional covariates are now routinely
encountered. To accommodate high data dimensionality, regularized estimation is usually needed. In addition, among
a large number of covariates, usually only a subset is relevant, and it is necessary to distinguish important covariates
from noises. There have been extensive developments in high-dimensional estimation and selection in the past decades.
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We refer to Hastie et al. (2008), Frommlet et al. (2016), and references therein. The analysis of FMR models with high-
dimensional covariates can be more challenging because of the additional complexity brought by data heterogeneity,
complex likelihood surface, and other factors (Khalili and Lin, 2013). In the literature, a relevant study is Khalili and
Chen (2007), which proposed a class of penalty functions for variable selection and regularized estimation as well as
an EM algorithm for numerical optimization. In this study, asymptotics were established assuming a fixed number of
covariates. Städler et al. (2010) argued that a new parameterization could lead to more efficient computation with high-
dimensional data. In this study, asymptotic results were established first assuming a fixed number of covariates. In
addition, theoretical investigations were also conducted for Lasso-type penalties under high-dimensional settings with
general nonconvex and smooth loss functions. Khalili and Lin (2013) further extended this to a general family of FMR
models. In this work, the number of covariates was allowed to grow with the sample size in a polynomial manner, and a
mixture of sparse penalties and a ridge penalty was proposed. Statistical investigations were conducted under regularity
conditions weaker than those in Städler et al. (2010).

In the aforementioned and other high-dimensional studies, the focus of variable selection has been on distinguishing
between important covariates and unimportant ones. Comparatively, there has been much less attention paid to the
critical question of ‘‘what causes different subpopulations to behave differently?’’. Specifically, covariates can be classified into
three categories: (i) those that are not associated with the response in any subpopulation; (ii) those that are associated
with the response in the same manner in all subpopulations. In the context of regression analysis, they have the same
nonzero regression coefficients in all regression models. With a slight abuse of terminology, we refer to such covariates
as ‘‘homogeneous’’; and (iii) those that are associated with the response in different manners in different subpopulations
and directly cause heterogeneity. We refer to such covariates as ‘‘heterogeneous’’. Identifying such covariate categories is
equivalent to quantifying the structure of covariate effects. Homogeneous and heterogeneous covariates have significantly
different implications. Homogeneous covariates describe the shared properties (i.e., ‘‘commonality’’) of all subjects,
whereas heterogeneous covariates determine the mixture of subjects and their differences. As such, identifying the
structure of covariate effects can significantly advance our understanding of covariates and their associations with the
response. In the literature, of relevance are a handful of recent studies on the structure of covariate effects in cure
rate models (Fan et al., 2017). Penalization has been adopted for variable selection, estimation, and identification of the
covariate effect structure. Cure rate models differ significantly from FMR models. More importantly, in the existing cure
rate model studies, statistical properties have not been established.

In this article, we consider heterogeneous data with high-dimensional covariates that can be described using FMR
models. Like the literature, we conduct regularized estimation and variable selection. Significantly advancing from the
literature, our objective also includes identifying the underlying structure of covariate effects, that is, distinguishing the
homogeneous covariates from the heterogeneous ones. This effort can greatly advance our understanding of covariates
and their relationships with the response variable. Although sharing a related scheme with the recent cure rate model
studies, the modeling, proposed approach, and computation in our study are significantly different. In addition, statistical
properties are rigorously established, which can provide important insights into the proposed method as well as
other high-dimensional FMR models. With an intuitive formulation, solid statistical basis, and satisfactory numerical
performance, this study can provide a useful new venue for analyzing commonly encountered heterogeneous data.

The rest of the article is organized as follows. In Section 2, we describe the proposed method, its computational
algorithm, and the statistical properties. Simulation in Section 3 and data analysis in Section 4 demonstrate the
competitive practical performance of the proposed method. A brief discussion is provided in Section 5. Technical details
and additional numerical results are provided in Appendix A.

2. Methods

2.1. Data, model, and estimation

Denote Y as the response variable and X as the length p vector of covariates. The conditional density of Y given X has
the form

fξ (Y |X) =

Q∑
q=1

µqg
(
Y ; h(βq0 + XTβq), σq

)
. (1)

Here Q is the number of mixture components (subpopulations); µq’s are the mixture weights and satisfy µq ≥ 0
and

∑
µq = 1; g is the known density function; h is the known link function; βq0 is the unknown intercept; βq =(

βq1, . . . , βqp
)T is the length p regression parameter vector; σq is an unknown parameter usually corresponding to

variance; and ξ =
(
µ1, . . . , µQ−1, β10, . . . , βQ0, β

T
1 , . . . , βT

Q , σ1, . . . , σQ
)T is the vector of all unknown parameters.

In the literature, multiple data distributions have been considered, including Binomial, Gaussian, Poisson, and oth-
ers (Khalili and Lin, 2013). Here we use the popular Gaussian distribution as an example and note that the proposed
analysis can also be conducted with other distributions. In the practical data analysis, Q , the number of mixture
components, needs to be determined and may not be trivial. This problem has been examined multiple times. See, for
example, Hafidi and Mkhadri (2010) and references therein. We refer to the literature for determining Q and will not
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expand on it here. In what follows, we consider the representative case with Q = 2. In (1), the intercept terms are of less
interest. In estimation, they are not subject to penalization. For the simplicity of notation, we omit them except when
absolutely necessary.

Following Städler et al. (2010), we conduct a reparameterization of (1), which can lead to a penalized estimate
scale-invariant and easier to compute. Define the new parameters

φq = βq/σq, ρq = σ−1
q , q = 1, 2.

Denote the new vector of unknown parameters as θ = (φ1, φ2, ρ1, ρ2, µ1). Assume n independent observations Z =

{(xi, yi) : i = 1, . . . , n}. Then the log-likelihood function is

l (θ;Z) = n−1
n∑

i=1

log

⎛⎝ 2∑
q=1

µq
ρq

√
2π

e−
1
2 (ρqyi−xTi φq)2

⎞⎠ .

We propose the penalized estimate

θ̌
γ

λ = argmin

⎧⎨⎩−l (θ;Z) + λ1

2∑
q=1

µγ
q

φq

1 + λ2

p∑
j=1

I(φ1j ̸= φ2j)

⎫⎬⎭ , (2)

where λ = (λ1, λ2) are data-dependent tunings, γ is a parameter designed to accommodate (un)balance in data,
µ2 = 1 − µ1, ∥·∥1 is the ℓ1 norm, and I(·) is the indicator function. Important and unimportant covariates correspond
to the nonzero and zero components of φ̌q’s, respectively. If φ̌1j = φ̌2j ̸= 0, then covariate j is a homogeneous one.
Heterogeneous covariates can be identified accordingly. The mixture probability can be inferred from µ̌1. Specifically, for
a certain subject, its posterior probability of belonging to a particular subpopulation can be calculated using the Bayesian
rule. The formula is provided in (4) using the obtained estimates.

The indicator function is not continuous, making optimization challenging. To simplify computation, we further propose
the estimate

θ̂
γ

λ = argmin

⎧⎨⎩−l (θ;Z) + λ1

2∑
q=1

µγ
q

φq

1 + λ2

p∑
j=1

[
1 − e−

(φ1j−φ2j)
2

τ

]⎫⎬⎭ , (3)

where τ is a small positive number that controls the goodness of the approximation. Note that with this approximation,
for homogeneous covariate j, φ̂1j and φ̂2j may not be exactly equal. We conclude that a covariate is homogeneous if its
estimates in the two subpopulations are sufficiently close.

To accommodate cases with Q > 2, we propose further extending the second penalty as λ2
∑

j=1,...,p;1≤q1≤q2≤Q I(φq1j ̸=

φq2j), which can be approximated with λ2
∑

j=1,...,p;1≤q1≤q2≤Q

[
1 − e−

(φq1 j
−φq2 j

)2

τ

]
. Note that here the definitions of ho-

mogeneous and heterogeneous covariates may get more complicated. For example, a covariate may have equal nonzero
coefficients in some but not all Q datasets. That is, there is a possibility of ‘‘partially homogeneous’’ covariates. With
Q > 2, as the newly added penalty has a pair-wise form, it is expected that the computational algorithm developed
below can be applied with very minor revisions (details omitted).

Rationale Under the settings of Städler et al. (2010), the reparameterization, although seemingly simple and straight-
forward, has multiple advantages. Such advantages are ‘‘inherited’’ by the proposed estimate. In (2), the first penalty
is Lasso, which can be replaced by other sparse penalties. The µ

γ
q term is included to accommodate data (un)balance.

Specifically, when data is not too far from balance (that is, the two subpopulations have similar sizes), then γ ∼ 0 (or
strictly =0) can generate satisfactory results. For highly unbalanced data, γ ∈ {1/2, 1} may generate better numerical
results, at the price of a more challenging optimization problem.

The main advancement is the indicator penalty term, which encourages the two coefficients of a covariate to have
exactly the same value, leading to the identification of homogeneous covariates. For heterogeneous covariates, it is of
little interest how different their covariate effects are in the two subpopulations. As such, the penalty is designed to be
not dependent on the magnitudes (if different). It may seem that the approximation makes the newly proposed penalty
depend on magnitudes again. It is noted that when τ is small, the approximated penalty is very close to the indicator
function and quite insensitive with regard to magnitudes. Shrinking the differences of regression coefficients has been
pursued in fused penalization (Tibshirani et al., 2005), Laplacian penalization (Liu et al., 2013), and other studies. However,
these penalties are all directly dependent on the magnitudes of differences (of parameters). They are not appropriate in
the present context, as shrinking the magnitude differences for heterogeneous covariates is not obviously needed. There
are also studies with sign/indicator-based penalties (Huang et al., 2017; Dicker et al., 2013). However, the contexts of
these studies are significantly different from the present one. As such, development in this article is warranted. In (3), the
approximation is developed to simplify computation. Note that several other approximations have also been proposed in
the literature for the indicator function. The approximation is not ‘‘free’’ and requires an additional cutoff (for concluding
equal coefficients). This price is shared by other approximation approaches. In the practical data analysis, we choose the
cutoff to have a magnitude much smaller than that of the nonzero estimates, so that the main conclusions are not swayed.
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Table 1
Toy example: estimation results.
True MLasso Proposed

β1 β2 β1 β2 β1 β2

−1 −1 −0.72 −0.91 −0.93 −0.93
−1 −1 −0.72 −0.66 −0.84 −0.68
−1 −1 −0.65 −0.76 −0.79 −0.79
4 −1 3.76 −0.97 3.91 −0.98
4 −1 3.72 −0.82 3.83 −0.86
0 0 0 0 0 0
0 0 0 0 0 0
· · · · · ·

· · · · · ·

A toy example To better appreciate the working characteristics of the proposed method, we simulate one dataset
with n = 100. There are two subpopulations with equal sizes. For each subject, we simulate 20 covariates from a
multivariate normal distribution. The response variable of each subject is generated from a linear regression model. The
two subpopulations satisfy different regression models, and the true regression coefficients are presented in Table 1. Out
of the 20 covariates, five are important, and of those there are three homogeneous and two heterogeneous ones. Beyond
the proposed approach, we also consider the approach ‘‘FMRLasso’’ proposed by Städler et al. (2010), which applies Lasso
to an FMR model, as an alternative (referred to as ‘‘MLasso’’ for simplicity). It is noted that this approach is just the
proposed approach with λ2 = 0. This comparison may directly establish the merit of the newly added indicator-based
penalty. The estimation results are shown in Table 1. Both approaches can correctly identify the important covariates for
this specific simulation replicate. The proposed approach identifies two out of three homogenous covariates, while MLasso
fails to distinguish between the homogenous and heterogeneous ones. The proposed approach also seems to have more
accurate estimation. More definitive results based on larger-scale simulations are presented in Section 3.

2.2. Computation

We develop a GEM (generalized Expectation–Maximization) algorithm for optimization. In the ‘‘standard’’ EM algo-
rithm, sometimes the complete-data maximum likelihood estimation can be overly complicated. One way to reduce
computational complexity is to increase the value of the objective function rather than maximizing it in each M-step,
leading to the GEM technique (Dempster et al., 1977). It is noted that the procedure in Lloyd-Jones et al. (2018), which
is constructed based on the minorization–maximization technique, may also be adapted and applied here.

For subject i(= 1, . . . , n), denote (∆i,1, ∆i,2) as the unobserved mixture membership indicators. Specifically, ∆i,1 = 1
if subject i belongs to the first subpopulation, and 0 otherwise. ∆i,2 is defined for the second subpopulation in the same
way. Denote ∆ = {(∆i,1, ∆i,2) : i = 1, . . . , n}. The complete-data log-likelihood function is

lc(θ;Z, ∆) =

n∑
i=1

2∑
q=1

{
∆i,q log

(
ρq

√
2π

e−
1
2 (ρqyi−xTi φq)2

)
+ ∆i,q log(µq)

}
.

Consider the expectation

W (θ |θ ′) = −n−1Eθ ′ [lc(θ;Z, ∆)|Z],

and its penalized counterpart

Wpen(θ |θ ′) = W (θ |θ ′) + λ1

2∑
q=1

µγ
q

φq

1 + λ2

p∑
j=1

[
1 − e−

(φ1j−φ2j)
2

τ

]
.

The proposed algorithm iterates between the following E- and M-steps. Denote the parameter estimate at the mth
iteration as θ (m). To obtain the initial value θ (0), a simple clustering can be conducted, and Lasso estimation is then
conducted for each subpopulation separately.

E-Step: For q = 1, 2, i = 1, . . . , n, compute

δ̂i,q = Eθ (m) [∆i,q|Z] =
µ

(m)
q ρ

(m)
q e−

1
2

(
ρ
(m)
q yi−xTi φ

(m)
q

)2

µ
(m)
1 ρ

(m)
1 e−

1
2

(
ρ
(m)
1 yi−xTi φ

(m)
1

)2
+ µ

(m)
2 ρ

(m)
2 e−

1
2

(
ρ
(m)
2 yi−xTi φ

(m)
2

)2 . (4)
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Generalized M-Step: Optimize Wpen(θ |θ (m)) with respect to θ .
(a) Optimize with respect to µ = (µ1, µ2):
Fix φq’s at the current estimates φ

(m)
q ’s, and optimize

−n−1
n∑

i=1

2∑
q=1

δ̂i,q log(µq) + λ1

2∑
q=1

µγ
q

φ(m)
q


1
. (5)

Denote by µ̄
(m+1)
q =

∑n
i=1 δ̂i,q
n . Update µ1 as µ

(m+1)
1 = µ

(m)
1 + t (m)(µ̄(m+1)

1 − µ
(m)
1 ), where t (m)

∈ (0, 1]. In practice, t (m) is
chosen to be the largest value in the grid {ζ 0,1,2,...

} (0 < ζ < 1) such that the value of (5) does not increase. For the
special case with γ = 0, minimization with respect to µq is achieved with µ

(m+1)
q =

∑n
i=1 δ̂i,q
n . That is, t (m)

= 1.
(b) Coordinate descent optimization with respect to φ and ρ. Consider

2∑
q=1

−
nq

n
log(ρq) +

1
2n

ρqỹ − x̃Tφq
2

+ λ1

2∑
q=1

µγ
q

φq

1 + λ2

p∑
j=1

[
1 − e−

(φ1j−φ2j)
2

τ

]
, (6)

where ỹ and x̃ are composed of (ỹi, x̃i)’s and (ỹi, x̃i) =

√
δ̂i,q(yi, xi). Also ∥·∥

2 represents the l2-norm, and nq =∑n
i=1 δ̂i,q, q = 1, 2.
As opposed to fully optimizing (6), we minimize it in a coordinate-wise manner, update one coordinate, and hold the

other coordinates at their current estimates. The closed-form coordinate updates can be obtained as

ρ(m+1)
q =

⟨
ỹ, x̃Tφ(m)

q

⟩
+

√⟨
ỹ, x̃Tφ(m)

q

⟩2
+ 4

ỹ2 nq

2
ỹ2 , q = 1, 2,

where ⟨·, ·⟩ represents the inner product.
Denote x̃j and x̃r as the jth and rth columns of x̃, respectively. Then we have:

φ
(m+1)
1,j =

⎧⎪⎨⎪⎩
(−M1,j − nλ1(µ

(m+1)
1 )γ + Lφ(m)

2,j )/(
x̃j2

+ L) if Lφ(m)
2,j > M1,j + nλ1(µ

(m+1)
1 )γ ,

(−M1,j + nλ1(µ
(m+1)
1 )γ + Lφ(m)

2,j )/(
x̃j2

+ L) if Lφ(m)
2,j < M1,j − nλ1(µ

(m+1)
1 )γ ,

0 otherwise,

φ
(m+1)
2,j =

⎧⎪⎨⎪⎩
(−M2,j − nλ1(µ

(m+1)
1 )γ + Lφ(m)

1,j )/(
x̃j2

+ L), if Lφ(m)
1,j > M2,j + nλ1(µ

(m+1)
1 )γ

(−M2,j + nλ1(µ
(m+1)
1 )γ + Lφ(m)

1,j )/(
x̃j2

+ L), if Lφ(m)
1,j < M2,j − nλ1(µ

(m+1)
1 )γ

0 otherwise,

(7)

where L = 2nλ2e−

(φ(m)
1,j −φ

(m)
2,j )2

τ /τ , Mq,j(q = 1, 2) is defined as

Mq,j = −ρ(m+1)
q

⟨
x̃j, ỹ

⟩
+

∑
r<j

φ(m+1)
q,r

⟨
x̃j, x̃r

⟩
+

∑
r>j

φ(m)
q,r

⟨
x̃j, x̃r

⟩
,

and j = 1, . . . , p.
Convergence is examined in Appendix A. It is established that the proposed algorithm converges to a stationary point. In

each numerical analysis, convergence is satisfactorily achieved with a moderate number of iterations. (λ1, λ2) are chosen
using a modified BIC criterion with the degree of freedom defined as the effective number of parameters (Pan and Shen,
2007), that is, df = 2 + (2 − 1) +

∑
j=1,...,p;q=1,2 I

(
φ̂q,j ̸= 0

)
. For τ , our simulation suggests that results are not sensitive

to its value. We set τ = 0.01 and note that, to be cautious, other values may also be considered in practice. Notably, the
proposed computational algorithm is affordable. For one simulation replicate (details described below), computation can
be accomplished within four minutes on a regular desktop. To facilitate data analysis within and beyond this study, we
have developed an R program that implements the proposed approach and algorithm. The program is publicly available
at www.github.com/shuanggema.

2.3. Statistical properties

Denote φ = (φ1, φ2) and the true value of θ = (φ1, φ2, ρ1, ρ2, µ1) as θ∗. Define the sets J1 =
{
j : φ∗

1,j ̸= φ∗

2,j

}
,

J2 =
{
j : φ∗

1,j = φ∗

2,j ̸= 0
}
, J3 =

{
j : φ∗

1,j = φ∗

2,j = 0
}
, and S =

{
(q, j) : φ∗

q,j ̸= 0
}
. J1, J2, and J3 are disjoint sets and contain

the indexes of heterogeneous, homogeneous, and irrelevant covariates, respectively. S is the active set. Let j1 = |J1|, j2 =

|J2|, j3 = |J3|, and s = |S|, where |·| denotes cardinality. Consider the estimate defined in (3), with γ = 0. The following
conditions are assumed.
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Condition 1. The parameter space is Θ = {θ : supi maxq |xTi φq| ≤ K ,maxq |log ρq| ≤ K , −K ≤ logµ1 < 0}, where K is a
fixed constant.

Condition 2. There exists a constant k ≥ 1 such that, for all φ satisfying ∥φSc∥1 ≤ 6 ∥φS∥1, ∥φS∥
2
2 ≤ k2

∑2
q=1 φT

q Σnφq, where
Sc is the complement of S and Σn =

1
n

∑n
i=1 xix

T
i .

Recall that the conditional density of Y given X in (1) depends on X through the parameter θ . As such, we can write
it as fθ (Y |X). Define the excess risk as

ε(θ |θ∗) = −

∫
log

[
fθ (Y |X)
fθ∗ (Y |X)

]
fθ∗(X)(Y )dY ,

which is the Kullback–Leibler distance between the true and estimated density functions. Further define the empirical
excess risk as

ε̄(θ |θ∗) =
1
n

n∑
i=1

εi(θ |θ∗).

Condition 1 assumes that the parameter space Θ is a bounded subset of some finite-dimensional space. It automatically
holds for FMR models. In the Basic Inequality that is based on the fact that the proposed estimator is a penalized excess
risk minimizer, the excess risk, which stands for prediction performance, is bounded by the empirical process involving
the random error. We introduce Lasso to overrule the empirical process, which can be bounded in terms of the l1-norm of
the parameters involved. The l1 error can be bounded by the l2 one. Condition 2 is the restricted eigenvalue condition and
puts constraints on the Grammatrix that provides the bound for the l2 error. It was formalized by Bickel et al. (2009) and is
among the weakest and most general conditions that can be imposed on the Gram matrix in order to achieve satisfactory
properties under Lasso. Van De Geer and Bühlmann (2009) showed that even for fixed designs (where empirical covariance
matrices are singular), the collection of cases under which Condition 2 holds is quite large. We can establish the following
finite-sample oracle results for the proposed approach.

Theorem 1. Denote c1, c2, and c3 as constants depending on K . Assume that Conditions 1 and 2 hold, and that λ1 ≥ 2Tλ0

with λ0 = c1
√
log3 n log(p ∨ n)/n and T ≥ 1. Then, with probability at least 1 − c2 exp(− log2 n log(p ∨ n)) − n−1, for all

n ≥ c3,

ε̄(θ̂λ|θ
∗) + 2(λ1 − Tλ0)∥φ̂Sc∥1 ≤ 4(λ1 + Tλ0)2c20k

2s + 4λ2j1{1 − exp(−max
j

|φ∗

1j − φ∗

2j|
2/τ )},

where c0 is the constant defined in Lemma 1 of Städler et al. (2010).

With this result, we can obtain ε̄(θ̂λ|θ
∗) ≤ 4(λ1 + Tλ0)2c20k

2s + 4λ2j1{1 − exp(−maxj|φ∗

1j − φ∗

2j|
2/τ )}, which suggests

that the prediction error is of the order O(sλ2
0 + j1λ2). Prediction consistency can be achieved with proper tunings

(for example, when s is bounded and taking λ1 = 2Tλ0, λ2 = O(λ1)). In addition, the noises in Sc have ∥φ̂Sc∥1 ≤

2(λ1 + Tλ0)c20k
2s + 2λ2/(λ1 − Tλ0)j1{1 − exp(−maxj|φ∗

1j − φ∗

2j|
2/τ )}. That is, their estimates are small.

Remarks. This theorem establishes the convergence rate result of the proposed approach. This scheme is similar to that
in Städler et al. (2010). This result is ‘‘re-assuring’’ in that, with the newly added penalty, the main properties of the
approach in Städler et al. (2010) and others are preserved. We acknowledge that in some high-dimensional penalization
studies, asymptotic estimation and variable selection consistency properties are established. However, we note that the
strategy in such studies and that targets convergence rate results, as in this study, are often different and not ‘‘mixed
together’’. We take the strategy of Städler et al. (2010) and others and do not explore asymptotic variable selection
properties. It is noted that, as a limitation of this study, there is a lack of theoretical results that directly establish the
advantage of the new approach. This limitation is also shared by, for example, some fused Lasso, Laplacian penalization,
and other studies. Still, the satisfactory theoretical results along with the superior numerical results (shown below) can
well demonstrate the merit of the proposed approach.

3. Simulation

We simulate heterogeneous data from model (1) with sample size n = 200 and a varying p. The design matrix X
has a distribution of Np(0, Σ), where Σ is block-diagonal with block sizes p/5. The covariates in different blocks are
independent, and the covariates i and j within the same block have correlation coefficient ϱ|i−j|. We consider different
levels of sparsity, with S1–S3 having four important variables in each model and S4–S9 having six. In addition, in S1–S3,
the homogeneous variables have strong effects, whereas in S4–S9, the homogeneous effects are weak. In S1–S6, important
variables occupy the same ‘‘positions’’ in the two regression models, whereas in S7–S9, there are two variables that are
only important in the first model, and two others that are only important in the second model. More detailed information
on regression coefficients is provided in Table 5 (Appendix A). Three values of ϱ are considered, representing no, moderate,
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Table 2
Simulation results for S1–S3 and the balanced design. In each cell, mean(sd). CIRhomo: correct identification rate of
homogeneous covariates.
p Method S1 S2 S3

AUC CIRhomo AUC CIRhomo AUC CIRhomo

15 Threshold 1.00(0.00) 1(0) 1.00(0.00) 1(0) 1.00(0.00) 1(0.00))
Kmeans 0.79(0.02) 0.86(0.23) 0.84(0.01) 0.76(0.34) 0.85(0.03) 0.51(0.38)
MLasso 0.94(0.01) 1.00(0.00) 1.00(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00)
Proposed 0.95(0.00) 1.00(0.00) 0.99(0.00) 1.00(0) 1.00(0.00) 1.00(0.00)

55 Threshold 0.97(0.01) 0.70(0.32) 0.97(0.01) 0.53(0.50) 0.99(0.00) 0.56(0.42)
Kmeans 0.76(0.02) 0.70(0.35) 0.79(0.03) 0.45(0.39) 0.82(0.02) 0.58(0.36)
MLasso 0.97(0.01) 0.92(0.23) 0.99(0.00) 0.83(0.27) 1.00(0.00) 0.8(0.31)
Proposed 0.98(0.00) 0.98(0.09) 1.00(0.00) 0.98(0.09) 1.00(0.00) 0.98(0.09)

75 Threshold 0.91(0.04) 0.46(0.36) 0.93(0.01) 0.45(0.42) 0.92(0.03) 0.41(0.42)
Kmeans 0.74(0.03) 0.83(0.41) 0.78(0.02) 0.47(0.46) 0.79(0.02) 0.40(0.35)
MLasso 0.94(0.02) 0.95(0.2) 0.99(0.00) 0.8(0.28) 0.99(0.00) 0.72(0.34)
Proposed 0.98(0.00) 1.00(0) 1.00(0.00) 1.00(0) 1(0.00) 0.98(0.09)

105 Threshold 0.86(0.04) 0.70(0.37) 1.00(0.00) 0.55(0.36) 1.00(0.00) 0.58(0.37)
Kmeans 0.82(0.01) 0.77(0.35) 0.87(0.02) 0.41(0.36) 0.88(0.02) 0.57(0.40)
MLasso 0.94(0.02) 0.52(0.09) 0.99(0.00) 0.53(0.32) 0.99(0.00) 0.49(0.40)
Proposed 0.98(0.00) 1.00(0.00) 1.00(0.00) 0.84(0.28) 1.00(0.00) 0.87(0.26)

300 Threshold 0.74(0.02) 0.41(0.44) 0.78(0.03) 0.44(0.41) 0.68(0.04) 0.54(0.32)
Kmeans 0.69(0.03) 0.43(0.33) 0.73(0.04) 0.35(0.37) 0.68(0.01) 0.68(0.4)
MLasso 0.8(0.02) 0.27(0.29) 0.98(0.02) 0.15(0.3) 0.98(0.01) 0.67(0.56)
Proposed 0.97(0.00) 1.00(0.00) 1.00(0.00) 0.93(0.22) 1.00(0.00) 0.78(0.38)

500 Threshold 0.88(0.05) 0.53(0.31) 0.82(0.04) 0.44(0.43) 0.69(0.05) 0.36(0.35)
Kmeans 0.61(0.03) 0.56(0.31) 0.69(0.06) 0.32(0.31) 0.69(0.04) 0.40(0.35)
MLasso 0.85(0.04) 0.7(0.42) 0.96(0.01) 0.54(0.35) 0.97(0.01) 0.43(0.31)
Proposed 0.96(0.01) 0.93(0.25) 0.99(0.00) 0.59(0.46) 0.99(0.00) 0.67(0.4)

and strong correlations. We further consider both balanced (µ1 = µ2 = 0.5) and unbalanced (µ1 = 0.2) cases. Overall,
the simulation settings comprehensively cover all important features of mixture regression models with sparsity.

Simulation I is first conducted to ‘‘reestablish’’ the necessity of mixture modeling. Specifically, consider simulation
setting S1 and p = 105, 300, 500. We consider the proposed approach, MLasso (which conducts ‘‘FMRLasso’’), and SLasso
(which assumes homogeneity and applies Lasso for variable selection and estimation). For each approach, we examine
a sequence of tuning parameter values, evaluate variable selection performance at each tuning parameter value, and
construct the ROC (receiver operating characteristic) curves. With 100 replicates, the AUC (area under curve) values
are computed as SLasso (0.7,0.63,0.61), MLasso (0.94,0.8,0.82), and Proposed (0.98,0.97,0.96) for p = 105, 300, 500,
respectively. The two mixture modeling approaches have significantly better variable selection performance.

Simulation II is conducted to compare approaches that can accommodate heterogeneity. Beyond the proposed
approach and MLasso, we also consider ‘‘Threshold’’ (which assumes the FMR model and applies hard thresholding for
regularized estimation and variable selection) and ‘‘Kmeans’’ (which separates samples into two clusters using the Kmeans
technique and then applies Lasso to each cluster). To compare performance, we first consider AUC, which is calculated the
same way as described above and evaluates the overall variable selection performance. In addition, for all the approaches,
we select tuning parameters using the BIC and compute the CIRhomo, the correct identification rate of homogeneous
covariates. We have also examined other measures, for example, variable selection measures at the BIC-selected tunings,
and reached similar conclusions. To avoid redundancy, these measures are not included.

Summary statistics based on 100 replicates for S1–S3 and the balanced design are shown in Table 2. Results for some
settings are presented in Appendix A. All simulation settings lead to similar conclusions. Specifically, Kmeans, which
separates the identification of heterogeneity and variable selection, has inferior performance. When the data dimension is
low, Threshold and Kmeans have competitive performance. However, when the data dimension gets high, the superiority
of the proposed approach becomes prominent. For example, in Table 2 with p = 500, under setting S1, the four approaches
have AUC values of 0.88 (Threshold), 0.61 (Kmeans), 0.85 (MLasso), and 0.96 (Proposed). The CIRhomo values are 0.53
(Threshold), 0.56 (Kmeans), 0.7 (MLasso), and 0.93 (Proposed). In the Appendix A, we also present representative ROC
plots, where the superiority of the proposed approach in variable selection is clearly evidenced. Other ROC plots are
available from the authors.

Simulation III is further conducted to examine the proposed indicator-based penalty. Specifically, we additionally
consider the fused Lasso-type penalty, which takes the form λ2

∑p
j=1 |φ1j − φ2j| and directly penalizes the magnitudes of

differences. Representative results for settings S7–S9, p = 15, 55, and 75, and the unbalanced design are shown in Fig. 3
(Appendix A). The superiority of the proposed approach over the fused Lasso is clearly shown, with higher ROC curves in
almost all plots.
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4. Data analysis

We conduct an analysis of two TCGA (The Cancer Genome Atlas) datasets. TCGA is a collective effort of multiple
institutes organized by the NIH and has recently published high-quality profiling data on multiple cancer types. TCGA is
observational in nature with no strict patient selection standards, which, along with the inherent heterogeneity of cancer,
naturally lead to the heterogeneity of samples. The heterogeneity analysis of the TCGA data has already been conducted.
See, for example, Lawrence et al. (2013).

4.1. Analysis of cutaneous melanoma (SKCM) data

We first consider the SKCM data. In the literature (Jiang et al., 2016; Chai et al., 2017), the regulation of Breslow
thickness, which is an important biomarker for prognosis and other outcomes, by gene expressions has been explored.
However, the existing studies have assumed homogeneity, and there has been a lack of attention paid to potential
heterogeneity.

The data is downloaded from the TCGA data portal. We select the 170 samples with the AJCC pathologic tumor stages
being II and III. For these samples, we download 18,947 gene expression measurements. More specifically, the processed
level-3 gene expression data is used. We refer to the literature (Molony et al., 2009) for detailed information on the
generation and processing of gene expression data. To improve interpretability, we further identify 4,243 genes with
well-defined KEGG pathway information. Each gene expression is then normalized to have a mean of zero and a variance
of one. In principle, it is possible to directly apply the proposed approach to all genes. However, with the small sample size
and additional complexity brought by heterogeneity, such an analysis may not be reliable. We further conduct a marginal
screening based on correlation and select the top 300 genes for downstream analysis.

The analyzed samples have different stages. It is noted that such heterogeneity is defined mainly using pathological
characteristics. In our analysis, we are interested in the heterogeneity in the regulation of Breslow thickness by gene
expressions. A literature search does not suggest whether such heterogeneity and the pathology-based one (and other
types) are linked or not. As the proposed approach is designed to accommodate heterogeneity, mixing samples with
different stages does not pose a problem. Also because it is unclear whether stage or another variable plays a role in the
Breslow thickness-gene expression regulation, we do not adjust for other variables.

The data is analyzed using the proposed approach and alternatives. For all approaches, tuning parameters are selected
using the modified BIC criterion described in Section 2.2. Detailed estimation results obtained by using the proposed
approach are provided in Table 3. In particular, 49 genes are identified as associated with Breslow thickness, among
which 32 are identified as heterogeneous. For this dataset, the heterogeneous effects have the same signs but different
magnitudes. Some magnitudes (of the same gene effect) can be quite different. For example, gene CRELD2 has estimates
of 0.11 and 0.23 in the two subpopulations. It is observed that different approaches lead to different findings. Summary
comparison results are provided in Table 9 (Appendix A), and detailed estimation results obtained by using the alternatives
are available from the authors.

To complement the identification/estimation analysis, we also apply a resampling-based approach and evaluate
prediction performance and stability. Specifically, the dataset is randomly divided into training and testing sets, with
sizes 9:1. The parameters are estimated only using the training set and then used to make prediction for the samples
in the testing set. In addition, the training set estimates are also used to evaluate stability. This approach has been
extensively adopted in the literature to provide support for the validity of estimation. With a continuous response, we use
the prediction mean squared error (PMSE) to evaluate prediction. The squared roots of the PMSEs are 4.723 (Threshold),
6.72 (Kmeans), 4.697 (MLasso), and 3.728 (Proposed), with the proposed approach having the best prediction. In the
stability evaluation, we compute the OOI (observed occurrence index) for each gene. Briefly, the OOI is the probability of
a specific gene identified across replicates and measures the stability of a finding. For the identified homogeneous genes,
we find the mean OOI values to be 0 (Threshold), 0 (Kmeans), 0.19 (MLasso), and 0.32 (Proposed). The OOI values for
individual genes are plotted in Fig. 4 (Appendix A), where the better stability of the proposed approach is clearly shown.
The prediction and stability evaluation provide partial support for the superiority of the proposed approach.

4.2. Analysis of lung cancer data

We further conduct an analysis of lung cancer data. As the proposed approach can accommodate data heterogeneity,
to increase sample size, we combine the lung adenocarcinoma (LUAD) and lung squamous cell (LUSC) data, both of which
are non-small-cell lung cancers. Such data have been analyzed in other studies (Hammerman et al., 2012; Collisson et al.,
2014), though under the assumption of homogeneity. In our analysis, we examine the FEV (forced expiratory volume),
which measures lung capacity and is an important marker in lung cancer development. A total of 231 samples are available
for analysis. Expression data is available for 20,531 genes. We conduct the same processing as with the SKCM data and
analyze 300 gene expressions using the proposed and alternative approaches.

Estimation results obtained by using the proposed approach are provided in Table 4. Specifically, a total of 57 genes are
identified, of which there are 10 homogeneous and 47 heterogeneous genes. Different from the SKCM analysis, conflicting
signs (for the heterogeneous gene effects) are observed. For example, gene DFNA44 has estimates −0.05 and 0.01. This
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Table 3
Analysis of SKCM data: estimated coefficients using the proposed approach.
Heterogeneous Homogeneous

Gene β1 β2 Gene β1(= β2)

CKMT2 0.04 0.08 KTGNR 0.09
ANKRD20A20P 0.10 0.21 CD55 0.10
LOC115165 0.04 0.05 TMEM244 0.09
C22ORF34 0.04 0.05 FLJ23058 0.08
CRELD2 0.11 0.23 LOC102723772 0.09
C20ORF166AS1 0.00 0.33 LOC155060 0.08
DLAT 0.04 0.08 C19ORF48 −0.09
LOC148922 0.08 0.16 CCDC172 0.11
RBBP8NL 0.05 0.08 BAALC 0.06
LOC51745 0.04 0.06 CENPJ 0.10
ZFAS1 −0.04 −0.07 C10orf114 0.10
LOC101928620 0.04 0.05 BCL9L 0.10
LOC100506602 0.05 0.10 CDKL3 −0.07
CPD −0.04 −0.08 ARHGDIG 0.08
SMIM20 −0.09 −0.17 ARHGEF17 −0.07
TMEM248 0.03 0.07 BHLHE41 −0.09
TEN1 0.05 0.06 OGFOD3 0.07
ARHGAP31 −0.03 −0.07
LOC399807 0.03 0.07
ARSE 0.13 0.24
CXORF38 0.03 0.07
CDK2AP1 −0.03 −0.05
DMXL1 0.08 0.19
AKR1D1 −0.04 −0.09
SMIM21 0.01 0.08
CD151 0.04 0.09
BCAR3 −0.04 −0.06
CCDC36 0.04 0.09
LACC1 0.09 0.20
ARHGEF7 0.02 0.06
C7ORF25 −0.10 −0.18
NUTM1 −0.04 −0.07

higher level of heterogeneity may be reasonable, as the dataset contains two cancer subtypes. It is noted that most gene
effects have consistent signs. Table 10 (Appendix A) again suggests that different approaches lead to different findings.
Estimation results obtained by using the alternatives are available from the authors. A prediction and stability evaluation
is also conducted. The root PMSEs are 9.012 (Threshold), 10.05 (Kmeans), 8.928 (MLasso) and 7.925 (Proposed), with the
proposed approach showing improved prediction. The OOI results are plotted in Fig. 5 (Appendix A). The mean OOI values
for the identified homogeneous genes are 0.07 (Threshold), 0 (Kmeans), 0 (MLasso), and 0.25 (Proposed). The improved
prediction and stability provide support for the validity of the proposed analysis.

5. Discussion

Under the high-dimensional FMR framework, this study has advanced from existing ones by focusing on the structure
of covariate effects. As shown in our data analysis, the proposed approach can separate heterogeneous covariates from
homogeneous ones. Such an analysis may have important implications. For example, in the analysis of SKCM data, gene
C20ORF166AS1 has estimated effects of <0.01 and 0.33 for the two subpopulations. As such, targeting this gene as a way
to affect the Breslow thickness may be effective for only some samples. In general, the heterogeneous covariates define the
unique characteristics of subpopulations and may deserve additional attention. Besides taking a unique perspective, this
study may have also advanced from the existing literature by rigorously establishing the finite-sample consistency results,
which may shed light on other high-dimensional mixture modelings. For the simplicity of notation, we have described the
proposed approach using two subpopulations. The proposed methodology and computation can be extended to multiple
subpopulations with minor modifications. For practical data analysis under simpler (especially low-dimensional) settings,
there are proposals for determining the number of mixtures. However, establishing the validity under high-dimensional
settings is expected to be challenging and hence will be postponed to future research. It may also be of interest to examine
asymptotic variable selection consistency and normality properties. As discussed in Section 2.3, that investigation would
require an analysis scheme different from the present one and will be postponed to future research.
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Table 4
Analysis of lung cancer data: estimated coefficients using the proposed approach.
Heterogeneous

Gene β1 β2 Gene β1 β2
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LOC130618 0.07 0.04 HECH −0.10 −0.02
B3GALT1 −0.08 −0.04 LOC135662 0.17 0.12
B9D2 0.18 0.07 CENPL 0.05 0.03
ARL6IP −0.13 −0.03 C21ORF2 0.00 0.05
ASCC1 −0.46 0.00 MGME1 0.07 0.00
C2ORF44 0.09 0.03 ADAM11 0.00 0.12
C2ORF42 −0.02 −0.07 PRO1331 −0.14 0.00
CTNNAL1 −0.25 −0.13 DEFA5 −0.21 −0.10
MGC5254 −0.03 −0.06 ACAA1 0.00 0.05
ALPL 0.79 −0.03 LOC196753 0.15 0.10
ARHGAP36 −0.08 −0.01 C6ORF62 0.06 0.04
CPM 0.05 0.04 CYP4V2 0.00 0.09
CBX1 0.06 0.00 ANKRD27 −0.20 −0.08
ARHGEF1 0.00 0.08 AK4 0.21 0.12
ASAH1 0.00 0.06 TIGAR −0.07 −0.02
CHEK2 0.08 0.00 CCDC15 0.00 −0.14
COLEC10 −0.28 −0.18 LOC196411 0.21 0.08
LOC254023 0.20 0.12 CLDN22 −0.19 −0.11
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CHAF1B 0.21 0.09 DFNA44 −0.05 0.01
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Homogeneous

Gene β1(= β2) Gene β1(= β2)

LOC100132855 0.09 C15ORF54 0.19
C1orf67 −0.12 CACNA2D2 −0.09
BUB1B 0.08 SPRTN 0.08
MMS22L 0.08 CNOT10 −0.09
DNAJB4 −0.06 FLJ32997 −0.19
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