89 research outputs found

    Clearing Persistent Extracellular Antigen of Hepatitis B Virus: An Immunomodulatory Strategy To Reverse Tolerance for an Effective Therapeutic Vaccination

    Get PDF
    Development of therapeutic vaccines/strategies to control chronic hepatitis B virus (HBV) infection (CHB) has been challenging due to HBV-induced tolerance. In this study, we explored strategies for breaking tolerance and restoring the immune response to the HBV surface antigen in tolerant mice. We demonstrated that immune tolerance status is attributed to the level and duration of circulating HBsAg in HBV carrier models. Removal of circulating HBsAg by a monoclonal anti-HBsAg antibody in tolerant mice could gradually reduce tolerance and reestablish B cell and CD4+ T cell responses to subsequent Engerix-B vaccination, producing protective IgG. Furthermore, HBsAg-specific CD8+ T cells induced by the addition of a TLR agonist, resulted in clearance of HBV in both serum and liver. Thus, generation of protective immunity can be achieved by clearing extracellular viral antigen with neutralizing antibodies followed by vaccination

    A mouse model for HBV immunotolerance and immunotherapy

    Get PDF
    Lack of an appropriate small animal model remains a major hurdle for studying the immunotolerance and immunopathogenesis induced by hepatitis B virus (HBV) infection. In this study, we report a mouse model with sustained HBV viremia after infection with a recombinant adeno-associated virus (AAV) carrying a replicable HBV genome (AAV/HBV). Similar to the clinical HBV carriers, the mice infected with AAV/HBV were sero-negative for antibodies against HBV surface antigen (HBsAg). Immunization with the conventional HBV vaccine in the presence of aluminum adjuvant failed to elicit an immune response against HBV in these mice. To identify a vaccine that can potentially circumvent this tolerance, the TLR9 agonist CpG was added to HBsAg as an adjuvant. Vaccination of mice with HBsAg/CpG induced not only clearance of viremia, but also strong antibody production and T-cell responses. Furthermore, both the DNA replication and protein expression of HBV were significantly reduced in the livers of AAV/HBV-infected mice. Accordingly, AAV/HBV-infected mice may be used as a robust model for investigating the underlying mechanism(s) of HBV immunotolerance and for developing novel immunotherapies to eradicate HBV infections

    Data Mining in Networks of Differentially Expressed Genes during Sow Pregnancy

    Get PDF
    Small to moderate gains in Pig fertility can mean large returns in overall efficiency, and developing methods to improve it is highly desirable. High fertility rates depend on completion of successful pregnancies. To understand the molecular signals associated with pregnancy in sows, expression profiling experiments were conducted to identify differentially expressed genes in ovary and myometrium at different pregnancy periods using the Affymetrix Porcine GeneChipTM. A total of 974, 1800, 335 and 710 differentially expressed transcripts were identified in the myometrium during early pregnancy (EP) and late pregnancy (LP), and in the ovary during EP and LP, respectively. Self-Organizing Map (SOM) clusters indicated the differentially expressed genes belonged to 7 different functional groups. Based on BLASTX searches and Gene Ontology (GO) classifications, 129 unique genes closely related to pregnancy showed differential expression patterns. GO analysis also indicated that there were 21 different molecular function categories, 20 different biological process categories, and 8 different cellular component categories of genes differentially expressed during sow pregnancy. Gene regulatory network reconstruction provided us with an interaction model of known genes such as insulin-like growth factor 2 (IGF2) gene, estrogen receptor (ESR) gene, retinol-binding protein-4 (RBP4) gene, and several unknown candidate genes related to reproduction. Several pitch point genes were selected for association study with reproduction traits. For instance, DPPA5 g.363 T>C was found to associate with litter born weight at later parities in Beijing Black pigs significantly (p < 0.05). Overall, this study contributes to elucidating the mechanism underlying pregnancy processes, which maybe provide valuable information for pig reproduction improvement

    Vaccines targeting preS1 domain overcome immune tolerance in hepatitis B virus carrier mice

    Get PDF
    Strong tolerance to hepatitis B virus (HBV) surface antigens limits the therapeutic effect of the conventional hepatitis B surface antigen (HBsAg) vaccination in both preclinical animal models and patients with chronic hepatitis B (CHB) infection. In contrast, we observed that clinical CHB patients presented less immune tolerance to the preS1 domain of HBV large surface antigen. To study whether targeting the weak tolerance of the preS1 region could improve therapy gain, we explored vaccination with the long peptide of preS1 domain for HBV virions clearance. Our study showed that this preS1-polypeptide rather than HBsAg vaccination induced robust immune responses in HBV carrier mice. The anti-preS1 rapidly cleared HBV virions in vivo and blocked HBV infection to hepatocytes in vitro. Intriguingly, vaccination of preS1-polypeptide even reduced the tolerized status of HBsAg, opening a therapeutic window for the host to respond to the HBsAg vaccine. A sequential administration of antigenically distinct preS1-polypeptide and HBsAg vaccines in HBV carrier mice could finally induce HBsAg/hepatitis B surface antibody serological conversion and clear chronic HBV infection in carrier mice. Conclusion: These results suggest that preS1 can function as a therapeutic vaccine for the control of CHB. (Hepatology 2017;66:1067-1082)

    Genome-wide Association Study of Porcine Hematological Parameters in a Large White × Minzhu F2 Resource Population

    Get PDF
    Hematological traits, which are important indicators of immune function in animals, have been commonly examined as biomarkers of disease and disease severity in humans and animals. Genome-wide significant quantitative trait loci (QTLs) provide important information for use in breeding programs of animals such as pigs. QTLs for hematological parameters (hematological traits) have been detected in pig chromosomes, although these are often mapped by linkage analysis to large intervals making identification of the underlying mutation problematic. Single nucleotide polymorphisms (SNPs) are the common form of genetic variation among individuals and are thought to account for the majority of inherited traits. In this study, a genome-wide association study (GWAS) was performed to detect regions of association with hematological traits in a three-generation resource population produced by intercrossing Large White boars and Minzhu sows during the period from 2007 to 2011. Illumina PorcineSNP60 BeadChip technology was used to genotype each animal and seven hematological parameters were measured (hematocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell count (RBC) and red blood cell volume distribution width (RDW)). Data were analyzed in a three step Genome-wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) method. A total of 62 genome-wide significant and three chromosome-wide significant SNPs associated with hematological parameters were detected in this GWAS. Seven and five SNPs were associated with HCT and HGB, respectively. These SNPs were all located within the region of 34.6-36.5 Mb on SSC7. Four SNPs within the region of 43.7-47.0 Mb and fifty-five SNPs within the region of 42.2-73.8 Mb on SSC8 showed significant association with MCH and MCV, respectively. At chromosome-wide significant level, one SNP at 29.2 Mb on SSC1 and two SNPs within the region of 26.0-26.2 Mb were found to be significantly associated with RBC and RDW, respectively. Many of the SNPs were located within previously reported QTL regions and appeared to narrow down the regions compared with previously described QTL intervals. In current research, a total of seven significant SNPs were found within six candidate genes SCUBE3, KDR, TDO, IGFBP7, ADAMTS3 and AFP. In addition, the KIT gene, which has been previously reported to relate to hematological parameters, was located within the region significantly associated with MCH and MCV and could be a candidate gene. These results of this study may lead to a better understanding of the molecular mechanisms of hematological parameters in pigs

    A Review of Spatter in Laser Powder Bed Fusion Additive Manufacturing: In Situ Detection, Generation, Effects, and Countermeasures

    Get PDF
    Spatter is an inherent, unpreventable, and undesired phenomenon in laser powder bed fusion (L-PBF) additive manufacturing. Spatter behavior has an intrinsic correlation with the forming quality in L-PBF because it leads to metallurgical defects and the degradation of mechanical properties. This impact becomes more severe in the fabrication of large-sized parts during the multi-laser L-PBF process. Therefore, investigations of spatter generation and countermeasures have become more urgent. Although much research has provided insights into the melt pool, microstructure, and mechanical property, reviews of spatter in L-PBF are still limited. This work reviews the literature on the in situ detection, generation, effects, and countermeasures of spatter in L-PBF. It is expected to pave the way towards a novel generation of highly efficient and intelligent L-PBF systems

    AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells

    Get PDF
    Mutations in STK11/LKB1 in non-small cell lung cancer (NSCLC) are associated with poor patient responses to immune checkpoint blockade (ICB), and introduction of a Stk11/Lkb1 (L) mutation into murine lung adenocarcinomas driven by mutant Kras and Trp53 loss (KP) resulted in an ICB refractory syngeneic KPL tumor. Mechanistically this occurred because KPL mutant NSCLCs lacked TCF1-expressing CD8 T cells, a phenotype recapitulated in human STK11/LKB1 mutant NSCLCs. Systemic inhibition of Axl results in increased type I interferon secretion from dendritic cells that expanded tumor-associated TCF1+PD-1+CD8 T cells, restoring therapeutic response to PD-1 ICB in KPL tumors. This was observed in syngeneic immunocompetent mouse models and in humanized mice bearing STK11/LKB1 mutant NSCLC human tumor xenografts. NSCLC-affected individuals with identified STK11/LKB1 mutations receiving bemcentinib and pembrolizumab demonstrated objective clinical response to combination therapy. We conclude that AXL is a critical targetable driver of immune suppression in STK11/LKB1 mutant NSCLC.publishedVersio

    PrandtlPlane wing-box least-weight design: A multi-scale optimisation approach

    Get PDF
    The PrandtlPlane (PrP) aircraft wing-box least-weight design is presented in thiswork. This design problem is formulated as a constrained non-linear programming prob-lem (CNLPP), by integrating static, buckling, fatigue and manufacturability requirements,under different loading conditions. The solution search is carried out by means of a suit-able multi-scale optimisation (MSO) approach. The physical responses involved into theCNLPP formulation are evaluated at the wing-box architecture level (macroscopic scale)and at the stiffened panel level (component scale), as well. The scale transition is ensuredby means of a suitable global-local (GL) modelling approach, while the CNLPP is solvedby means of an in-house genetic algorithm. The effectiveness of the proposed approach istested on the PrP wing-box structure, but the presented strategy can be easily extendedto conventional aircraft wings

    Expression and Genetic Effects of GLI Pathogenesis-Related 1 Gene on Backfat Thickness in Pigs

    No full text
    Backfat thickness (BFT) is an important carcass composition trait and regarded as a breeding focus. Our initial transcriptome analysis of pig BFT identified GLI pathogenesis-related 1 (GLIPR1) as one of the promising candidate genes. This study was conducted to identify the expression profiles, polymorphisms, and genetic effects of the GLIPR1 gene on BFT in pigs. The expression of the GLIPR1 gene existed in every detected tissue, and there was a significantly higher expression in spleen and adipose tissue than others (p GLIPR1 gene was low at an early age, increased with growth, and reached the highest level at 180 days. Genetic polymorphism analysis was detected in 553 individuals of the Large White × Minzhu F2 population. Four SNPs in the promoter significantly associated with 6–7 rib BFT (p G and g.38758114 G>C were predicted to change the TFs associated with the regulation of adipogenesis. Haplotypes were formed by the detected SNPs, and one block showed a strong association with BFT (p GLIPR1 affected the BFT of pigs. To our knowledge, this study is the first to demonstrate the biological function and genetic effects of the GLIPR1 gene on the BFT of pig and provide genetic markers to optimize breeding for BFT in pigs
    corecore