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A mouse model for HBV immunotolerance and
immunotherapy

Dan Yang1,2,#, Longchao Liu1,2,#, Danming Zhu1, Hua Peng1, Lishan Su3, Yang-Xin Fu1,4

and Liguo Zhang1

Lack of an appropriate small animal model remains a major hurdle for studying the immunotolerance and

immunopathogenesis induced by hepatitis B virus (HBV) infection. In this study, we report a mouse model with sustained

HBV viremia after infection with a recombinant adeno-associated virus (AAV) carrying a replicable HBV genome (AAV/

HBV). Similar to the clinical HBV carriers, the mice infected with AAV/HBV were sero-negative for antibodies against HBV

surface antigen (HBsAg). Immunization with the conventional HBV vaccine in the presence of aluminum adjuvant failed

to elicit an immune response against HBV in these mice. To identify a vaccine that can potentially circumvent this

tolerance, the TLR9 agonist CpG was added to HBsAg as an adjuvant. Vaccination of mice with HBsAg/CpG induced not

only clearance of viremia, but also strong antibody production and T-cell responses. Furthermore, both the DNA

replication and protein expression of HBV were significantly reduced in the livers of AAV/HBV-infected mice. Accordingly,

AAV/HBV-infected mice may be used as a robust model for investigating the underlying mechanism(s) of HBV

immunotolerance and for developing novel immunotherapies to eradicate HBV infections.
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INTRODUCTION

Over 350 million people worldwide are affected by chronic

hepatitis B (CHB), which remains the leading cause of liver

cancer in developing countries.1,2 Current hepatitis B virus

(HBV) treatments, including antiviral nucleos(t)ides and

alpha interferons, are administered to suppress viral replica-

tion but cannot induce a protective immune response or

viral clearance.2,3 Interruptions of these treatments would

result in unavoidable viral rebound. Moreover, long-term

treatment may be hampered by escape mutants, drug resis-

tance, side effects and heavy economic burdens. Novel treat-

ments, including therapeutic vaccines, are urgently needed

to effectively control the HBV epidemic and eventually eradi-

cate chronic HBV infection. However, the lack of a robust

animal model that closely mimics chronic HBV infection in

patients2,4 has hindered the development of novel treatments

for CHB.

Transgenic mice containing the HBV genome either persis-

tently express distinct HBV antigens or produce infectious

virions.5–7 Although such mouse models have been used to test

numerous drugs for HBV infection, the central tolerance

induced by the transgenic gene products, starting from as early

as the embryonic stage, makes the study of therapeutic HBV

vaccines in this model system difficult. Furthermore, these

mice are not suitable for monitoring viral clearance because

the integrated HBV genome persists in every mouse cell.5,7,8

Alternative models were developed by hydrodynamic injec-

tion (HDI) of the HBV genome into the tail vein.9 A later study

showed that HDI of the HBV genome, which was cloned into

an adeno-associated virus (AAV) vector, would lead to a stable
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HBV replication and long-lasting viremia due to AAV-

mediated immune suppression.10 Unfortunately, neonatal

and young mouse models of CHB could not be successfully

established using this procedure. In addition, high levels of

HBV, which are commonly detected in patients with CHB,

could not be produced in this model due to the induction of

immune clearance. This phenomenon has also been observed

in another mouse model infected by an adenovirus vector har-

boring the HBV genome.11

It has been reported that mice infected with a recombinant

AAV carrying the HBV genome (AAV/HBV) exhibited con-

tinuous viremia for more than 30 weeks.12–14 In the present

study, we further characterized the anti-HBV immune res-

ponse in AAV/HBV-infected mice and demonstrated that these

mice can be used as an appropriate model for examining the

mechanisms of HBV tolerance and developing novel therapies

for CHB.

MATERIALS AND METHODS

Mice and virus

C57BL/6 mice were purchased from Vital River Laboratories

(Beijing, China). Six- to eight-week-old male mice were used in

all experiments unless otherwise specified. All mice were

housed under controlled temperature and light conditions fol-

lowing the Institutional Animal Care guidelines. AAV/HBV

virus was provided by Beijing FivePlus Molecular Medicine

Institute (Beijing, China). This recombinant virus carries 1.3

copies of the HBV genome (genotype D, serotype ayw) and is

packaged in AAV serotype 8 (AAV8) capsids.

AAV/HBV infection

Adult C57BL/6 mice were injected with the indicated amounts

of recombinant virus (diluted to 200 ml with phosphate-buf-

fered saline) through tail vein injection. Neonatal mice (3 days

after birth) were infected with AAV/HBV through intraliver

injection. The mice were bled retro-orbitally at the indicated

time points to monitor HBV surface antigen (HBsAg), HBV e

antigen (HBeAg), HBs antibody (HBsAb) and HBV genomic

DNA in serum.

HBsAg vaccination

HBsAg with an aluminum-containing adjuvant (EngerixB;

GlaxoSmithKline Biological, Middlesex, UK) was used as a

control vaccine in some experiments. CpG (1826) was synthe-

sized by Life Technologies Corporation (Carlsbad, USA)

(TCCATGACGTTCCTGACGTT) and mixed with 2 mg of

HBsAg. All vaccines were injected subcutaneously.

HDI

HDI of the plasmid pBlue-HBV1.3 was performed according to

previous reports.9,10 In brief, various doses of endo-free plas-

mid DNA (extracted using a Qiagen kit) were diluted in a

volume of saline equivalent to 8% of the body weight of the

mouse. The total injection volume was administered within

5–8 s.

Serological and biochemical analysis

Serum was harvested by retro-orbital bleeding. Serum alanine

aminotransferase activity (ALT kit; BioSino Bio-technology

and Science Inc, Beijing, China) was determined using a

SpectraMax Plus spectrophotometer (Molecular Devices,

Sunnyvale, CA, USA) following the manufacturer’s instruc-

tions. HBV antigens and antibodies were monitored by

enzyme-linked immunosorbent assay (ELISA).

ELISA assay

Serum HBsAg was measured by ELISA (Shanghai Kehua Bio-

engineering Co., Ltd, Shanghai, China) according to the man-

ufacturer’s instructions. The lower limit of detection for

HBsAg was 0.5 ng/ml. Serum dilutions of 2.5- to 100-fold were

used to obtain values within the linear range of the standard

curve. HBsAb was analyzed on a precoated HBsAg plate and

developed by HRP-labeled anti-mouse IgG (Zhong Shan-

Golden Bridge Biological Technology Co., Ltd, Beijing,

China). Regarding the liver specimens, 50 mg of tissue was

homogenized in RIPA lysis buffer and centrifuged at 12

000 r.p.m. for 5 min. The supernatant was collected for

HBsAg ELISA according to the manufacturer’s instructions.

Real-time PCR

Serum HBV DNA was extracted from 100 ml of serum and

measured following the manufacturer’s instructions (Qiagen,

Hilden, Germany). Liver HBV DNA was extracted from

50 mg of liver tissues using a genomic DNA kit (TIANGEN

Biotech, Beijing, China). The DNA samples were analyzed by

real-time quantitative PCR (qPCR) using HBV-specific primers

(59-CACATCAGGATTCCTAGGACC-39; 59-GGTGAGTGAT-

TGGAGGTTG-39).

Mouse GAPDH was used as the control for quantification

(forward 59-GGTGAAGGTCGGTGTGAACG-39; reverse 59-

CTCGCTCCTGGAAGATGGTG-39).

Immunohistochemistry

Liver tissues were fixed with 10% neutral buffered formalin and

embedded in paraffin. After deparaffinization, the sections

were incubated with primary antibodies (polyclonal rabbit

anti-HBcAg; DAKO, Glostrup, Denmark) and the DAKO

Envision System. The sections were also counter stained with

hematoxylin.

Synthetic peptides and ELISPOT assay

ENV190 (VWLSVIWM) peptides and OVA257 (SIINFEKL)

peptides were synthesized by Invitrogen. All peptides were dis-

solved in dimethyl sulfoxide (DMSO) before use. The organs

were harvested at the indicated time points after immunization

with HBs plus CpG1826 vaccines. An enzymatic digestion

method was utilized for the isolation of intrahepatic lympho-

cytes. In brief, liver tissues were digested by collagenase IV

(Roche, Basel, Switzerland) at 37 uC for 15 min. The suspen-

sion was centrifuged at 30g for 1 min to remove hepatocytes.

Lymphocytes were then pelleted by centrifugation at 400g

for 10 min and further purified with 40% and 70% Percoll
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solutions by centrifuging at 800g for 20 min at room temper-

ature. Cells were collected from the interface, and red blood

cells were removed with ACK buffer to make a single-cell sus-

pension. For detecting an antigen-specific immune response,

liver lymphocytes (1.53105) were incubated for 48 h at 37 uC
in complete medium containing 10 mg/ml ENV190 peptide or

OVA257 peptide in an IFNc ELISPOT plate (Merck Millipore,

Billerica, Massachusetts, USA). After incubation, IFN-c secre-

tion was analyzed using a biotinylated anti-IFN-c antibody and

streptavidin-HRP (BD Biosciences, Franklin Lakes, New

Jersey, USA). Finally, spots were visualized with AEC substrate

and quantified with the auto-analyzing system.

Statistical analysis

Statistical analyses were performed using a two-tailed unpaired

t-test and Prism software (GraphPad Software, San Diego,

California, USA). P,0.05 was considered statistically significant.

RESULTS

AAV/HBV induces sustained viremia in neonatal and adult

mice

To determine whether injection of mice using the AAV/HBV

system could establish a persistent HBV infection with viremia

in immunocompetent mice, 531010 viral genome equivalents

(vg) of recombinant virus was intravenously injected into adult

C57BL/6 mice. All the mice (n512) became serum HBsAg-

positive by 14 days post-infection (Figure 1a). Importantly,

we observed that male hosts had higher HBsAg than female

hosts. This phenomenon is in accordance with clinical obser-

vations.15,16 We also found that neonatal mice became HBsAg-

positive after intrahepatic injection of 131010 or 231010 vg

AAV/HBV (n530, Figure 1b). This is the first mouse model

of persistent HBV viremia in an immunocompetent host after

neonatal infection.

To test the dose-dependent response of the AAV/HBV infec-

tion, we delivered three doses of AAV/HBV virus ranging from

231010 to 131011 vg per mouse and monitored HBV viremia

for an extended period of 3 months. We found that serum

HBsAg levels ranged from 319612 ng/ml to 24146171 ng/ml

(Figure 1c), correlating with the inoculation dosages. In addi-

tion, nearly 100% (263/265) of the injected mice became HBV-

positive during the 3-month time period (data not shown). The

viremia lasted for more than 1 year in high-dose AAV/HBV-

infected mice (Supplementary Figure 1a and b).

Additionally, HBeAg was also detected in the blood of

infected mice (Figure 1d), indicating active HBV replication

in this CHB model.17 HBV genomic DNA in the sera of infected

mice also exhibited a dose-dependent correlation. The HBV

DNA levels, ranging from 6.613106 to 7.203107 copies/ml

in the mice infected with 131011 vg AAV/HBV (Figure 1e),

are comparable to those of CHB patients in the immunotoler-

ant stage.18–20 Furthermore, the immunohistochemical stain-

ing for HBV core antigen (HBcAg) in liver cells from infected

mice revealed that the frequency of HBcAg-positive cells was

proportional to infection dose of AAV/HBV (Figure 1f). HBV

core proteins were not detected in any other organs (heart,

kidney or lung) by immunohistochemical staining (data not

shown). In addition, viral transcripts and replicative inter-

mediates were detected in the mouse liver, but not in the heart,

kidney or lung. This experimental evidence confirmed that

chronic HBV replication was restricted to the liver (data not

shown).

Immune response against HBV in AAV/HBV-infected mice

Given the lasting expression of HBV proteins, we then exa-

mined whether this chronicity could provoke host immune

responses against viral antigens. We used an HBV plasmid

hydrodynamic injection model as the positive control for an

anti-HBV response.9 The pBlue-HBV1.3 plasmid contains an

HBV sequence identical to that in AAV/HBV. These control

mice developed high-titer anti-HBs antibody (HBsAb)

(Figure 2a). However, HBsAb could not be detected in the mice

receiving AAV/HBV. This suggests that AAV/HBV infection is

more physiologically accurate than plasmid hydrodynamic

injection for modeling persistent HBV infection and immuno-

tolerance with a wider range of viremia.

To address whether AAV/HBV chronic infection causes

liver damage, serum samples were collected from mice

infected with different doses of AAV/HBV and measured

for alanine aminotransferase (ALT) activity, a key indicator

of hepatic injury. No significant increase in ALT was

observed in infected adult mice over a 6-month period

(Figure 2b and Figure 1c). No obvious infiltrating lympho-

cytes or other abnormalities were observed in the infected

liver tissue by hematoxylin and eosin (H&E) staining

(Figure 2c). These results indicate that AAV/HBV infection

did not induce detectable liver injury.

Induction of HBV immune tolerance in AAV/HBV-infected

mice

In CHB patients, seroconversion to HBsAb is considered to

be a marker of disease resolution. However, the induction of

HBsAb is a challenging clinical goal to achieve due to HBV-

induced tolerance. We tested whether mice infected with

AAV/HBV virus could resist the challenge of a conventional

HBsAg vaccine, as observed in HBV infections. We used a

clinical HBV vaccine with aluminum adjuvant (Engerix-B).

Whereas naive mice developed considerable antibodies

against HBsAg at day 28 post-vaccination, AAV/HBV-

infected mice failed to develop anti-HBsAg antibody res-

ponses, which indicated immune tolerance toward HBsAg

(Figure 3a). By 42 days post-vaccination, none of the

AAV/HBV-infected mice that received Engerix-B treatment

showed significant reduction of serum HBsAg or HBeAg

when compared with the unimmunized mice (Figure 3b

and c). To detect the HBsAg-specific T-cell toler-

ance in this model, we challenged the AAV/HBV (131011

vg)-infected mice with HBsAg plus CpG and analyzed HBsAg-

specific CD8 T cells in the liver using IFN-c ELISPOT. AAV/

HBV-infected mice generated very low levels of IFN-c-producing

T cells compared with naive mice after vaccination (Figure 3d).
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Therapeutic vaccination with CpG adjuvant in AAV/HBV-

infected mice

To explore an effective vaccine that is capable of breaking

immune tolerance, we reconstituted the conventional HBsAg

vaccine with a strong TLR9 agonist, CpG, as an adjuvant.

HBV carrier mice that received 231010 vg AAV/HBV were

vaccinated with an equal amount of HBsAg in the presence

of either 1 or 50 mg of CpG1826 and subsequently boosted with

Engerix-B. HBsAg levels rapidly declined after vaccination and

remained undetectable without rebound (Figure 4a). HBsAb

induction is a clinical indication of immune protection. More

impressively, mice receiving a vaccine with a high dose of CpG
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Figure 1 AAV/HBV inoculation resulted in persistent HBV viremia in immunocompetent mice. (a) Female or male C57BL/6 mice (n56, 6–8 weeks
old) were infected with AAV/HBV at 531010 viral genome equivalents (vg) through tail vein injection. At 14 days post-infection, blood samples were
collected and serum HBsAg was measured by ELISA. (b) Intraliver injection of 3-day-old neonatal C57BL/6 mice (n56–7) was performed with
131010 or 231010 vg AAV/HBV, and serum HBsAg titers were examined at 48 days post-infection. (c) C57BL/6 mice (n56, 6–8 weeks old) were
infected with AAV/HBV at 231010, 531010 or 131011 vg. The mice were bled biweekly after infection. Serum HBsAg was measured by ELISA. The
lower limit of detection was 0.5 ng/ml. (d) Adult C57BL/6 mice were intravenously injected with 231010, 531010 or 131011 vg virus and were bled
biweekly to monitor serum HBeAg titers. (e) On day 40 post-AAV/HBV infection, HBV genomic DNA in the serum was determined by real-time PCR.
(f) Immunohistochemical staining of HBcAg in the liver of AAV/HBV infected mice (12 weeks post-infection). AAV, adeno-associated virus; HBcAg,
HBV core antigen; HBsAg, HBV surface antigen; HBV, hepatitis B virus.
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Figure 3 AAV/HBV infection induces immune tolerance. (a) Adult mice were infected with 131011 vg AAV/HBV followed by Engerix-B immu-
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(131011 vg) were treated with HBsAg (2 mg/mouse) plus CpG (50 mg per mouse) at 3 weeks post-infection and euthanized on day 10 post-
vaccination. ENV190-specific CD8 T cells of liver leukocytes were detected by IFN-c ELISPOT (n53). AAV, adeno-associated virus; HBeAg, HBV e
antigen; HBsAg, HBV surface antigen; HBV, hepatitis B virus.
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developed protective anti-HBsAbs in a dose-dependent man-

ner, as vaccination with a low dose of CpG as an adjuvant failed

to induce protective anti-HBsAbs (Figure 4b). There was no

significant upregulation of ALT in either of the vaccinated

groups (Figure 4c). Because CD81 T-cell responses are an

important indicator of anti-viral immune responses and

immune clearance, we examined whether this CpG-adjuvant

vaccine could induce an HBsAg-specific CD81 T-cell response.

Indeed, vaccination with HBsAg plus a high dose of CpG

(50 mg) provoked a stronger ENV190-specific CD81 T-cell

response in the liver (Figure 4d). These data indicate that an

HBsAg vaccine containing a proper dose of the CpG adjuvant

may have a potent therapeutic effect in carriers with low-level

viremia and could restore the host immune response to HBV.

However, carriers with high-level viremia (mice infected

with 131011 vg) failed to respond to HBsAg plus CpG vaccina-

tion, as the level of HBsAg in the blood and liver tissue was not

reduced (Supplementary Figure 2). The means by which a

proper antibody response can be induced in mice with such

severe viremia remains to be determined.

Vaccination with a CpG adjuvant leads to a reduction of

HBV in the liver

Although HBsAg serological conversion is the currently accepted

marker for a cured HBV infection, viral DNA may still be present

in the liver, which could result in viral rebound when the immune

system is suppressed.21–23 Thus, clearance of HBV DNA in the

liver is considered as the ultimate goal of anti-HBV therapy. To

evaluate the therapeutic effect of vaccination with CpG adjuvant,

we tested the HBV DNA level from liver extracts by real-time PCR

at 11 weeks post-vaccination. Interestingly, we found that HBV

DNA replication in the liver decreased after vaccination with high-

dose CpG (50 mg) but not low-dose CpG (1 mg) (Figure 5a).

Meanwhile, HBsAg in the liver was significantly reduced in mice

that received high-dose CpG compared with those that received

low-dose CpG vaccination (Figure 5b). Furthermore, HBcAg, an

important marker for HBV replication, was also remarkably

decreased in the high-dose CpG vaccination group (Figure 5c).

DISCUSSION

It was recently reported that AAV/HBV infection in mice estab-

lished persistent viremia for more than 30 weeks.12,13 Here, we

further reveal that male mice exhibit a higher plasma viral load

than females. The AAV/HBV-infected mice lacked an anti-

HBV immune response regardless of the levels of HBV viremia

present. Furthermore, these mice were resistant to immuniza-

tion with the conventional vaccine with aluminum adjuvant,

which is an indication of immune tolerance. These findings are

similar to clinical observations in HBV-infected patients and

demonstrate that these AAV/HBV-infected mice can be
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utilized as a robust model to study immunotolerance induced

by HBV infection.

With the same AAV/HBV infection model, Dion et al.24

reported that HBV-specific CD81 T cells could be detected

in both peripheral lymphoid and liver tissues upon immuniza-

tion with a DNA vaccine expressing HBsAg. However, despite

the presence of HBV-specific T-cell responses, all infection

markers remained unchanged at 2 weeks post-immunization,24

including the levels of plasma HBeAg and HBsAg, intrahepatic

expression of HBcAg and HBV DNA replication intermediates.

This piece of experimental data is similar to that obtained from

the clinical trial of a DNA vaccine,25 which highlights the com-

plexity of HBV-induced dysfunction of the immune system.

Moreover, significant liver inflammation and liver damage

in AAV/HBV-infected mice, manifested by increased ALT

levels, fibrosis and steatosis, were reported by another group.

In addition, 100% of these mice (12 out of 12) developed visible

tumor nodules in the liver within 16 weeks.26 We did not

observe any tumor formation in 33 HBV-infected mice that

had been monitored for more than 1 year, although we used the

same HBV strain (a genotype D virus). In our study, one AAV

construct containing the entire HBV genome was used,

whereas Tao et al.27 used two AAVs each containing one half

of the HBV genome. However, whether this difference in AAV

constructs contributes to liver cancer formation remains to be

determined in the future.

Using our new HBV infection model, we demonstrated the

therapeutic potential of vaccines containing CpG as an adju-

vant. CpG is an oligodeoxynucleotide containing unmethylated

CpG motifs. It serves as a ‘danger signal’ to improve dendritic

and B cell functions through Toll-like receptor 9 signaling.28–30

A clinical trial of an HBV vaccine with CpG adjuvant showed

significant improvement over a conventional vaccine with alu-

minum adjuvant.31–34 Immunization with CpG adjuvant pro-

motes Th1 immune cell differentiation, which inhibits the

replication of intracellular pathogens.35 The data presented here

provide further support that CpG may serve as a potential

adjuvant for an HBV therapeutic vaccine.

In summary, we have demonstrated that AAV/HBV-infected

mice are a new and clinically relevant model that may be used

for delineating the mechanism of HBV-induced immunotoler-

ance and for developing therapeutic vaccines or other novel

immunotherapies to eradicate HBV infections.
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