17,703 research outputs found

    750 GeV Resonance in the Gauged U(1)′U(1)'-Extended MSSM

    Get PDF
    Recently the ATLAS and CMS collaborations at the LHC announced their observation of a potential 750 GeV di-photon resonance, after analyzing the s=13\sqrt{s}=13 TeV LHC data. This observation has significant implications for low-energy supersymmetry. Beyond the MSSM and the NMSSM, we study the MSSM-extensions with an extra U(1)′U(1)' gauge symmetry. The anomaly cancellation and the spontaneous breaking of the non-decoupled U(1)′U(1)' generically require introducing vector-like supermultiplets (both colored and color-neutral ones) and singlet supermultiplets, respectively. We illustrate that the potential 750 GeV resonance (YY) can be accommodated in various mechanisms, as a singlet-like scalar or pseudoscalar. Three benchmark scenarios are presented: (1) vector-like quarks (VLQ) mediated pp→Y→γγpp \to Y \to \gamma \gamma; (2) scalar VLQ mediated pp→Y→γγpp \to Y \to \gamma \gamma; (3) heavy scalar (pseudo-scalar) H/AH/A associated production pp→H∗/A∗→YH/hpp \to H^*/A^* \to Y H/h. Additionally, we notice that the Z′Z'-mediated vector boson fusion production and Z′Z'-associated production pp→Yqq′pp \to Y qq', if yielding a signal rate of the observed level, might have been excluded by the searches for Z′Z' via Drell-Yan process at the LHC.Comment: v3, figure update with corresponding modification in discussion, version accepted by PL

    Deterministic Constructions of Binary Measurement Matrices from Finite Geometry

    Full text link
    Deterministic constructions of measurement matrices in compressed sensing (CS) are considered in this paper. The constructions are inspired by the recent discovery of Dimakis, Smarandache and Vontobel which says that parity-check matrices of good low-density parity-check (LDPC) codes can be used as {provably} good measurement matrices for compressed sensing under â„“1\ell_1-minimization. The performance of the proposed binary measurement matrices is mainly theoretically analyzed with the help of the analyzing methods and results from (finite geometry) LDPC codes. Particularly, several lower bounds of the spark (i.e., the smallest number of columns that are linearly dependent, which totally characterizes the recovery performance of â„“0\ell_0-minimization) of general binary matrices and finite geometry matrices are obtained and they improve the previously known results in most cases. Simulation results show that the proposed matrices perform comparably to, sometimes even better than, the corresponding Gaussian random matrices. Moreover, the proposed matrices are sparse, binary, and most of them have cyclic or quasi-cyclic structure, which will make the hardware realization convenient and easy.Comment: 12 pages, 11 figure

    Echoes of Inflationary First-Order Phase Transitions in the CMB

    Full text link
    Cosmological phase transitions (CPTs), such as the Grand Unified Theory (GUT) and the electroweak (EW) ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs) which are generated during the phase transitions through the cosmic microwave background (CMB). If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG). The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.Comment: 5+6 pages, 4 figures. V2 changed title, added one figure about constraints of Planck2015+BICEP2/Keck data, added references and removed appendix. Accepted by PL

    A pathway analysis of genome-wide association study highlights novel type 2 diabetes risk pathways.

    Get PDF
    Genome-wide association studies (GWAS) have been widely used to identify common type 2 diabetes (T2D) variants. However, the known variants just explain less than 20% of the overall estimated genetic contribution to T2D. Pathway-based methods have been applied into T2D GWAS datasets to investigate the biological mechanisms and reported some novel T2D risk pathways. However, few pathways were shared in these studies. Here, we performed a pathway analysis using the summary results from a large-scale meta-analysis of T2D GWAS to investigate more genetic signals in T2D. Here, we selected PLNK and VEGAS to perform the gene-based test and WebGestalt to perform the pathway-based test. We identified 8 shared KEGG pathways after correction for multiple tests in both methods. We confirm previous findings, and highlight some new T2D risk pathways. We believe that our results may be helpful to study the genetic mechanisms of T2D

    Spectral Efficiency Analysis of Multi-Cell Massive MIMO Systems with Ricean Fading

    Get PDF
    This paper investigates the spectral efficiency of multi-cell massive multiple-input multiple-output systems with Ricean fading that utilize the linear maximal-ratio combining detector. We firstly present closed-form expressions for the effective signal-to-interference-plus-noise ratio (SINR) with the least squares and minimum mean squared error (MMSE) estimation methods, respectively, which apply for any number of base-station antennas MM and any Ricean KK-factor. Also, the obtained results can be particularized in Rayleigh fading conditions when the Ricean KK-factor is equal to zero. In the following, novel exact asymptotic expressions of the effective SINR are derived in the high MM and high Ricean KK-factor regimes. The corresponding analysis shows that pilot contamination is removed by the MMSE estimator when we consider both infinite MM and infinite Ricean KK-factor, while the pilot contamination phenomenon persists for the rest of cases. All the theoretical results are verified via Monte-Carlo simulations.Comment: 15 pages, 2 figures, the tenth International Conference on Wireless Communications and Signal Processing (WCSP 2018), to appea

    Pilot Power Allocation Through User Grouping in Multi-Cell Massive MIMO Systems

    Get PDF
    In this paper, we propose a relative channel estimation error (RCEE) metric, and derive closed-form expressions for its expectation Exprcee\rm {Exp}_{rcee} and the achievable uplink rate holding for any number of base station antennas MM, with the least squares (LS) and minimum mean squared error (MMSE) estimation methods. It is found that RCEE and Exprcee\rm {Exp}_{rcee} converge to the same constant value when M→∞M\rightarrow\infty, resulting in the pilot power allocation (PPA) is substantially simplified and a PPA algorithm is proposed to minimize the average Exprcee\rm {Exp}_{rcee} per user with a total pilot power budget PP in multi-cell massive multiple-input multiple-output systems. Numerical results show that the PPA algorithm brings considerable gains for the LS estimation compared with equal PPA (EPPA), while the gains are only significant with large frequency reuse factor (FRF) for the MMSE estimation. Moreover, for large FRF and large PP, the performance of the LS approaches to the performance of the MMSE, which means that simple LS estimation method is a very viable when co-channel interference is small. For the achievable uplink rate, the PPA scheme delivers almost the same average achievable uplink rate and improves the minimum achievable uplink rate compared with the EPPA scheme.Comment: 30 pages, 5 figures, submitted to IEEE Transactions on Communication
    • …
    corecore