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Pilot Power Allocation Through User Grouping
in Multi-Cell Massive MIMO Systems

Pei Liu, Student Member, IEEE, Shi Jin, Member, IEEE, Tao Jiang, Senior Member, IEEE,
Qi Zhang, and Michail Matthaiou, Senior Member, IEEE

Abstract—In this paper, we propose a relative channel estima-
tion error (RCEE) metric, and derive closed-form expressions
for its expectation Exprcee and the achievable uplink rate
holding for any number of base station antennas M , with the
least squares (LS) and minimum mean squared error (MMSE)
estimation methods. It is found that RCEE and Exprcee converge
to the same constant value when M → ∞, which renders
the pilot power allocation (PPA) substantially simplified and a
PPA algorithm is proposed to minimize the average Exprcee per
user with a total pilot power budget P in multi-cell massive
multiple-input multiple-output systems. Numerical results show
that the PPA algorithm brings considerable gains for the LS
estimation compared with equal PPA (EPPA), while the gains
are significant only with large frequency reuse factor (FRF) for
the MMSE estimation. Moreover, for large FRF and large P ,
the performance of the LS approaches to the MMSE. Besides,
a scheduling strategy is proposed to allocate pilot power whole
system, which can approach the optimal performance. For the
achievable uplink rate, the PPA scheme delivers almost the
same average achievable uplink rate and improves the minimum
achievable uplink rate compared with the EPPA scheme.

Index Terms—Massive multiple-input multiple-output (MI-
MO), pilot power allocation, relative channel estimation error,
achievable uplink rate.
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MULTIPLE-INPUT multiple-output (MIMO) systems
have been well integrated in the fourth generation

mobile communication technology since they can improve
the achievable data rates and suppress channel fading effects.
Unlike traditional MIMO, massive MIMO [1–3] technology
deploys hundreds of antennas to serve tens of users who
share the same time-frequency resources, and has attracted
wide attention from academia and industry in recent years.
Massive MIMO can achieve considerable spatial multiplexing
gains and improve energy efficiency more effectively. Hence,
it is considered as one of the key technologies for the fifth
generation mobile communication networks [4].

A great amount of research results have been reported
on massive MIMO, in the context of linear precoders and
detectors [5, 6], achievable sum-rate analysis [3, 7], hardware
impairments [8], channel estimation [9, 10], and so on. Among
these important topics, based on the seminal work [1], the
channel estimation is one of the biggest challenges pertaining
to massive MIMO. In this context, the time-division duplex
(TDD) mode dominates the massive MIMO literature, since
the pilot sequence length is analogous to the number of users
[11]. Interestingly, based on the equal pilot power allocation
(EPPA) scheme, some works investigate the channel estimation
performance via different evaluation metrics. For example,
through the symbol error probability [12] and the bit error
rate [13, 14] all reveal the channel estimation performance
via the number of errors in the data transmission. The mean
squared error (MSE) [15, 16] discloses the quality of the
estimated channel based on the absolute channel estimation
error. In [16], a general MSE expression was given based on
the correlation matrix of the user channel. Considering the
normalized relative error of the estimated channel, [10, 16, 17]
utilized the normalized MSE (NMSE) metric, whilst [9] uti-
lized the normalized channel estimation error metric. However,
closed-form expressions for these normalized relative error
metrics are barely available in the literature. Very recently,
[18] provided an analytical expression for the NMSE, while
mainly paying attention on how to extract the desired source
data from the received signal; it also proposed a semi-blind
channel estimation method. Finally, [19] studied a channel
estimation MSE metric, which involves the channel estimation
error and the true channel, and compared the proposed soft
pilot reuse scheme and the all pilot reuse scheme through
simulations. From the above discussion, it becomes apparent
that a detailed theoretical analysis of such normalized channel
estimation error metrics for massive MIMO is missing from
the open literature.
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On a parallel avenue, pilot power allocation (PPA) repre-
sents another formidable opportunity in massive MIMO sys-
tems to improve the system performance. In [20], a resource
allocation scheme was proposed to maximize the sum spectral
efficiency (SE), which determines the optimal values of the
pilot sequence length, the pilot signal power, and the data
signal power. A joint pilot and data transmit power control was
provided in [21] to minimize the total power consumption of
all users with the constraints of per user signal to interference
plus noise ratio (SINR) and per user power. In [22], a PPA
policy was developed to maximize the minimum asymptotic
SINR in each cell, by adopting a pilot scheme where all
users in each cell share the same pilot sequence and keep
the pilot sequences orthogonal for different cells. In [23],
a binary search PPA algorithm was provided to maximize
the achievable downlink sum rate with matched filter based
precoding in single cell massive MIMO. A pilot power control
scheme was provided in [24], which can improve the channel
estimation performance. Moreover, in [25], as the number of
antennas increased, simulation results show that more power
should be allocated for pilot transmission to improve the
channel estimation performance. Recently, in [26], a joint
optimal pilot and data power allocation was proposed in
single cell uplink massive MIMO systems to maximize the
minimum SE and maximize the sum SE through geometric
programming and an algorithm based on Karush-Kuhn-Tucker
(KKT) points, respectively. From the above, it is easy to see
that the overwhelming majority of works use the PPA scheme
to improve SE and SINR or other equivalent performance
metrics.

In our work, we take a substantially different approach to
the problem of channel estimation. In particular, we strive
to improve channel estimation performance by designing a
PPA scheme in a heuristic manner. In this paper, we study
the performance of channel estimation and achievable uplink
rate in multi-cell massive MIMO systems based on the least
squares (LS) and minimum mean squared error (MMSE)
estimation methods, respectively, by considering a modified
NMSE metric derived from the MSE metric, called the relative
channel estimation error (RCEE). Closed-form expressions for
the expectation of RCEE (Exprcee) and achievable uplink rate
are obtained, which depend only on the large-scale fading
coefficients. We conclude that when the number of base station
(BS) antennas (M ) grows to infinity, the RCEE and the
Exprcee approach to the some constant value. This important
observation, which is due to the channel hardening effect,
enables us to design a simple PPA algorithm, which aims at
minimizing the average Exprcee per user in the target cell.
Numerical simulations justify the accuracy of our analytical
results, and it is found that the proposed PPA algorithm can
approach the solution of the general constrained optimization
problem very effectively. For the channel estimation perfor-
mance, compared with the EPPA scheme, the MMSE PPA
scheme obtains an increasing gain as the frequency reuse
factor grows. However, the gain of the LS PPA scheme
remains fixed. Most importantly, the simple LS estimation
method can achieve almost the same performance as with
the MMSE estimation method, with both higher frequency

reuse factors and larger total pilot power. Further, a joint
user-cell grouping (JUCG) scheduling strategy is proposed for
pilot power allocation across different cells to achieve nearly
optimal performance. For the achievable uplink rate perfor-
mance, compared with the EPPA scheme, the PPA scheme
maintains almost the same average achievable uplink rate and
improves considerably the minimum achievable uplink rate. In
particular, the main contributions of the paper are outlined as
follows.

• We investigate the channel estimation performance of
multi-cell massive MIMO through the RCEE metric and
Exprcee for which we derive a closed-form expression.
Based on this expression, we also deduce a new and
tractable expression for the achievable uplink rate.

• We develop a novel PPA scheme to improve the channel
estimation performance through appropriate user group-
ing. Our analysis accounts for both the LS and MMSE
estimation methods.

• We finally design a JUCG scheme to allocate pilot power
across different cells. This novel scheme yields near-
optimal performance with very low complexity.

The rest of the paper is organized as follows. The channel
model and the procedure of the channel estimation and uplink
data transmission are described in Section II. The optimization
problem, the analysis of the RCEE and the Exprcee, and
the corresponding PPA algorithm are presented in Section
III. Section IV presents the simulation results to check the
effectiveness of the PPA algorithm and compare the PPA
and EPPA schemes on the basis of channel estimation and
achievable uplink rate performance. Conclusions are presented
in Section V.

Notation: Lower-case (underlined lower-case) and upper-
case (underlined upper-case) boldface letters denote vectors
and matrices, respectively. The CM×N denotes the M × N
complex space. The notations AH, A−1, and tr(A) indicate
the Hermitian transpose, the inverse, and the trace of the
matrix A, respectively. The M ×M identity matrix is IM .
The M ×N zero matrix is 0M×N . The expectation operation
is E{·}. A complex Gaussian random vector x is denoted as
x ∼ CN (x̄,Σ), where the mean vector is x̄ and the covariance
matrix is Σ. Finally, ∥ · ∥2 denotes the 2-norm of vector.

II. SYSTEM MODEL

A. Signal and Channel Model

The system architecture is a typical cellular communication
system with L hexagonal cells. Each cell contains K single-
antenna users and one M -antenna BS. We assume that the
BSs and users in the whole system are perfectly synchronized.
The whole system operates under a TDD protocol and adopts
the orthogonal frequency division multiplexing (OFDM) tech-
nique. Moreover, for convenience, the dependency of the user’s
channel on the sub-carrier index is suppressed. Hence, for each
channel use, the received signal vector yj ∈ CM×1 at the BS
in cell j is given by

yj =
√
pu

L∑
l=1

Hjlxl + nj , (1)
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where xl ∈ CK×1 ∼ CN (0K×1, IK) is the transmit signal
vector of the users in cell l, pu denotes the average normalized
transmitted power of all users in all cells, and nj ∈ CM×1 is
the noise vector containing independent elements ∼ CN (0, 1)
in cell j. Also, Hjl ∈ CM×K denotes the channel between all
users in cell l and the BS in cell j, which is given by

Hjl , [hjl1, . . . ,hjlk, . . . ,hjlK ], (2)

where hjlk is the uplink channel transmission vector between
the user k in cell l and the BS in cell j. The channel hjlk
is modeled as a combination of small-scale fading and large-
scale fading and is written as [1, 5]

hjlk = hjlkβ
1
2

jlk, (3)

where hjlk ∼ CN (0M×1, IM ) is the small-scale fading and
βjlk is the large-scale fading coefficient. Here, we make the
block fading assumption that the large-scale fading coefficients
are kept fixed over lots of coherence time intervals and also
assume that large-scale fading coefficients are known at the
BS [5], while small-scale fading fading coefficients remain
fixed within a coherence time interval and change between
any two adjacent coherence time intervals. At the same time,
each user’s channel is considered to be independent from other
users’ channels.

B. Channel Estimation

At the start of the coherence interval, before the user
sends data to the BS, the BS needs to acquire channel state
information (CSI) by estimating the channel between the user
and itself. We use uplink pilot sequences to perform channel
estimation. The pilot sequence sent by the user k in cell l is

slk =
√
ρlkslk ∈ Cτ×1, (4)

where slk ∈ Cτ×1 is the pilot sequence with length τ sent by
the user k in cell l, and ρlk is the pilot power of the user k in
cell l.1 Moreover, to ensure the orthogonality of users’ pilot
sequences within one cell, we set the pilot sequence length to
be larger than the number of users, i.e., τ ≥ K, and

sH
lkslk = 1 and sH

lk1
slk2 = 0, ∀k1 ̸= k2. (5)

From the perspective of pilot contamination (PC), the worst
case choice is to reuse slk in all L cells [1, 6, 9] for user k.2

That is, ∀i, j,

sik = sjk. (6)

Hence, in the phase of channel estimation, the BS in cell j
receives the signal matrix

Yj =
L∑
l=1

K∑
n=1

√
ρlnhjlns

H
ln +Nj , (7)

1Since we elaborate on the channel estimation performance, we allow the
pilot power in (4) to be variable for different users in each cell, while the
transmit data power in (1) is kept the same for all users in all cells. This
assumption also offers analytical tractability.

2Since we want to study only how the pilot power allocation affects the
system performance, we make this worst-case assumption to ensure that each
user in each cell is prone to the same number of interference sources.

where Nj represents the M×τ additive white Gaussian noise
matrix with independent and identically distributed zero-mean
and unit-variance elements.

Then, in order to estimate the channel between the user k
in cell j and the BS in cell j, while ignoring the terms in the
right-hand side of (7) as noise except the term √ρjkhjjksH

jk,
through the LS estimation method [27], we can get

ĥLS
jjk , 1

√
ρjk

Yjsjk, (8)

where ĥLS
jjk is the estimated vector of channel hjjk based on

the LS estimation method. Therefore, substituting (5)-(7) into
(8), we obtain

ĥLS
jjk = hjjk +

L∑
l ̸=j

√
ρlk
√
ρjk

hjlk +
1
√
ρjk

Njsjk. (9)

Moreover, based on the distribution of hjlk(∀j, l, k) and Nj ,
the MMSE estimation method, whose target is to minimize
the MSE of the estimated parameter, can be used to estimate
hjjk with the help of ĥLS

jjk [27]. We define

ĥMMSE
jjk , E

{
hjjk(ĥ

LS
jjk)

H
}(

E
{
ĥLS
jjk(ĥ

LS
jjk)

H
})−1

ĥLS
jjk,

(10)

to denote the estimator of the channel hjjk based on the
MMSE estimation method. Then, it is easy to prove that
Njsjk ∼ CN (0M×1, IM ) in (9).3 By substituting (3) and (9)
into (10), after some manipulations, we get

ĥMMSE
jjk =

ρjkβjjk
L∑
l=1

ρlkβjlk + 1

ĥLS
jjk. (11)

In the following, we denote the estimator of hjjk as ĥjjk for
both the LS and MMSE estimation methods, except otherwise
denoted.

C. Uplink Data Transmission

After channel estimation, the BS in each cell uses the
obtained CSI to detect the received signal of (1). We consider
the standard linear detector maximal-ratio combining (MRC)
[5]. Hence, for the BS in cell j, the received signal yj in (1)
is separated into K streams by multiplying it with the MRC
detector, that is,

rj = ĤH
jjyj ∈ CK×1, (12)

where

Ĥjj , [ĥjj1, . . . , ĥjjk, . . . , ĥjjK ] ∈ CM×K . (13)

3Since we consider the block fading assumption in this paper, the operation
E{·} regards the variables, such as small-scale fading coefficient and noise,
which change over time, as the random variables and the large-scale fading
coefficient as a constant.
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Then, expanding yj and denoting the nth component value of
xl as xln, the kth entry rjk of rj can be written as

rjk =
√
ρuĥ

H
jjkhjjkxjk︸ ︷︷ ︸

Desired signal

+
√
ρu

K∑
n ̸=k

ĥH
jjkhjjnxjn︸ ︷︷ ︸

W1: Intra-cell interference

+
√
ρu

L∑
l ̸=j

K∑
n=1

ĥH
jjkhjlnxln︸ ︷︷ ︸

W2: Inter-cell interference

+ ĥH
jjknj︸ ︷︷ ︸

W3: Noise

. (14)

Since we want to investigate the achievable uplink rate
of the kth user in cell j, using the worst-case technique of
Gaussian noise from [6, 7], we assume the term E

{
ĥH
jjkhjjk

}
is perfectly known at the BS j. Hence, rjk is written as

rjk =
√
ρuE

{
ĥH
jjkhjjk

}
xjk︸ ︷︷ ︸

Effective signal

+ ñjk︸︷︷︸
Equivalent noise

, (15)

where

ñjk,
√
ρu

{
ĥH
jjkhjjk − E

{
ĥH
jjkhjjk

}}
xjk+W1+W2+W3.

(16)

From (14)-(16), we can infer that the “Effective signal” is
uncorrelated with the “Equivalent noise”. Hence, considering
the effects of the pilot overhead, total bandwidth, frequency
reuse factors, and the overhead of the cyclic prefix as in [1,
Eq. (14)], the achievable uplink rate of user k in cell j, in
units of bits/sec, is given by

Rjk =

(
B

Γ

)(
Ts − Tp
Ts

)(
Tu
To

)
log2 (1 + SINRjk) , (17)

where Γ is the frequency reuse factor, B is the total bandwidth,
Ts is the slot length, Tp is the time spent transmitting pilot
sequences, Tu is the useful symbol duration, and To is the
OFDM symbol interval. Also, using the definition of the
effective SINR in multi-cell massive MIMO systems as in [28,
Eq. (12)] and [29, Eq. (20)], SINRjk is defined as

SINRjk,
ρu

∣∣∣E{ĥH
jjkhjjk

}∣∣∣2
ρu

L∑
l=1

K∑
n=1

E
{∣∣∣̂hH

jjkhjln

∣∣∣2}−ρu∣∣∣E{̂hH
jjkhjjk

}∣∣∣2+E{∥∥∥ĥjjk∥∥∥2
2

} .
(18)

The following theorem presents a closed-form expression for
SINRjk for both the LS and MMSE estimation methods.

Theorem 1: The exact SINRjk, for both the LS and MMSE
estimation methods, can be analytically evaluated as

SINRjk=
Mρjkβ

2
jjk

M
L∑
l ̸=j
ρlkβ2

jlk+

(
L∑
l=1

ρlkβjlk+1

)(
1
ρu

+
L∑
l=1

K∑
n=1

βjln

) .
(19)

Proof: See Appendix A.

Note that the exact expression in Theorem 1 can be easily
evaluated since it involves only the pilot power, data power,

and large-scale fading coefficients, as well as, M . Interestingly,
from (19), the achievable uplink rate for both the LS and
MMSE estimation methods are identical, and this result can
be easy obtained by substituting (11) into (18) for the MMSE
case and then divide both the numerator and the denominator

of (18) by the common factor (ρjkβjjk)
2/(

L∑
l=1

ρlkβjlk + 1)2.

Note that this common factor stems from the fact that (11)
of the LS estimator is proportional to the MMSE estimator.
The underlying reason behind (11) is that the Rayleigh fading
model with no correlation between the antennas in the BS
is considered, that is, E{hjlkhH

jlk} = βjlkIM (∀j, l, k). The
fact that LS and MMSE estimators can achieve the same
uplink rate with an MRC detector was first observed in [30]
for massive MIMO systems with no correlation between the
antennas. However, the authors in [30] just gave a qualitative
explanation, while we also give the quantitative analysis in
Theorem 1. As the next result shows, the exact SINRjk admits
further simplifications in the large antenna regime.

Corollary 1: When M →∞, the exact analytical expression
in (19) approaches to

lim
M→∞

SINRjk =
ρjkβ

2
jjk

L∑
l ̸=j

ρlkβ2
jlk

. (20)

Proof: The proof is completed by calculating the limit of
(19) when M →∞.

It is important to note from (20) that in the high M regime,
the PC interference from the other cells’ users, which use the
same pilot sequence as the user in the target cell, is the only
limit for the achievable uplink rate performance. Moreover,
when ρjk = ρlk,∀j, l, the SINRjk is equal to the signal-to-
interference ratio (SIR) based on LS estimation in [1, Eq. (13)]
and the SIR based on MMSE estimation in [31, Eq. (32)],
respectively. Hence, the conclusion of Corollary 1 gives a
universal formula for SINRjk when M → ∞ for any pilot
power setting.

III. PILOT POWER ALLOCATION

In this section, we introduce the RCEE metric and, there-
after, aim to find a PPA scheme to minimize the average
Exprcee per user. Based on the closed-form expressions for
Exprcee, we propose a PPA algorithm to solve this optimiza-
tion problem.

A. RCEE

We can now define the RCEE, which is basically a modified
NMSE metric derived from the MSE metric, of user k in cell
j as follows

Λjk , ∥hjjk − ĥjjk∥22
∥hjjk∥22

, (21)

and also, its expectation or Exprcee given by

∆jk , E {Λjk} . (22)
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The former metric indicates the instantaneous relative change
between the channel estimation error and the true channel in
any coherence interval, while the latter metric indicates this
relative change over many coherence intervals. The following
theorem gives a closed-form expression for Exprcee.

Theorem 2: The term ∆jk can be analytically evaluated as

∆jk=



∞, LS&MMSE,M=1,

M

(
L∑

l ̸=j

ρlkβjlk+1

)
(M−1)ρjkβjjk

, LS,M ≥ 2,

(
L∑

l̸=j

ρlkβjlk+1

)(
L∑

l ̸=j

ρlkβjlk+1+
Mρjkβjjk

M−1

)
(

L∑
l=1

ρlkβjlk+1

)2 , MMSE,M ≥ 2.

(23)

Proof: See Appendix B.

Note that the formulas in (23) are only meaningful when
M ≥ 2. Moveover, the exact analytical expressions in Theorem
2 can be easily evaluated as they involve only the number
of BS antennas, pilot power, as well as, the large-scaling
fading coefficients. Compared with ∆LS

jk, ∆MMSE
jk is more

complicated.4 Hence, the following corollary gives an upper
bound for ∆MMSE

jk in the M ≥ 2 regime.

Corollary 2: In the M ≥ 2 regime, ∆MMSE
jk satisfies

∆MMSE
jk < ∆̃MMSE

jk =

M

(
L∑
l ̸=j

ρlkβjlk + 1

)

(M − 1)

(
L∑
l=1

ρlkβjlk + 1

) . (24)

Proof: The proof is trivial and thus omitted.

It is important to note that ∆̃MMSE
jk in Corollary 2 will be

particularly useful for the PPA problem in subsection III.C.

Corollary 3: When M → ∞, the exact analytical expres-
sions in (23) approach to

lim
M→∞

∆jk = ∆̄jk =



L∑
l̸=j

ρlkβjlk+1

ρjkβjjk
, LS,

L∑
l ̸=j

ρlkβjlk+1

L∑
l=1

ρlkβjlk+1

, MMSE,
(25)

whilst ∆̃MMSE
jk also approaches to the same limit as ∆MMSE

jk .
Proof: The proof is completed by calculating the limit of

(23) and ∆̃MMSE
jk when M →∞.

It is interesting to note from Corollary 3 that as M grows,
Exprcee will decrease and approach a constant value for both
the LS and MMSE estimation methods. Moreover, from (23)
and (25), we see that MMSE performs better than LS since the

4Here, for convenience, we use the notation ∆LS
jk and ∆MMSE

jk to replace
∆jk based on LS and MMSE estimation methods, respectively.

MMSE estimation method utilizes the additional second-order
statistical information.

Corollary 4: When M → ∞, the relationship between the
RCEE and the Exprcee is given by

Λjk
a.s.−−→ ∆̄jk, (26)

where a.s.−−→ denotes almost sure convergence.
Proof: By utilizing the law of large numbers [5, Eq. (4)],

we can obtain

1

M

(
hjjk−ĥjjk

)H(
hjjk−ĥjjk

)
a.s.−−→ 1

M
E
{
∥hjjk−ĥjjk∥22

}
,

(27)
1

M
hH
jjkhjjk

a.s.−−→ 1

M
E
{
∥hjjk∥22

}
. (28)

The proof is completed by substituting (27) and (28) into (21)
and utilizing the Appendix B.

It is important to note that the Rayleigh fading model with
no correlation between the antennas in the BS is adopted in
this paper. Hence, the analysis of the relationship between
the Λjk and Exprcee is proper when M → ∞. The case of
spatial correlation is outside the scope of this paper and left
to future work. Interestingly, from Corollary 3 and Corollary
4, RCEE converge to its statistical value (Exprcee) when
M is large. In other words, the stochastic nature of the
RCEE disappears when M is big enough. Note that (26)
reflects the channel hardening effect via the channel estimation
performance, though in a slightly different way than in [32].

B. Constrained Optimization Problem

Now, to avoid an iterative non-stationary optimization prob-
lem, we focus on the PPA in one cell, while the pilot power in
other cells is kept fixed, and we call it as the PPA scheme. It is
clear that the RCEE which is obtained from one time channel
estimation is not able to represent the channel estimation
performance in a period of time. For the massive MIMO setup
consideration, we can avail of the channel hardening effect and
work exclusively with the Exprcee instead of RCEE. Moreover,
considering the fairness of all users in the target cell, we
choose the average Exprcee per user as our objective function
to evaluate the system channel estimation performance. We
can now formulate the following constrained PPA optimization
problem

minimize
1

K

K∑
k=1

∆jk,

subject to
K∑
k=1

ρjk ≤ P,

ρmin ≤ ρjk ≤ ρmax, ∀k = 1, . . . ,K,

(29)

where P is the total pilot power budget of the users in each
cell, ρmin and ρmax denote the lower and upper bounds of the
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variation range of ρjk.5 Once the problem (29) is solved, it
means that the pilot power ρjk is determined.

We now turn our attention to the special case, EPPA scheme,
where all cell users have the same pilot power setting (ρjk =
P/K, ∀j, k), and obtain the following corollary.

Corollary 5: When M →∞ and for the EPPA scheme, the
exact analytical expressions in (23) approach to

lim
M→∞

∆jk = ∆̄jk =



L∑
l̸=j

βjlk+
K
P

βjjk
, LS,

L∑
l̸=j

βjlk+
K
P

L∑
l=1

βjlk+
K
P

, MMSE.
(30)

Proof: The proof is completed by calculating the limit of
(23) when considering the EPPA scheme and M →∞.

C. Approximate Unconstrained Solution

According to Theorem 2, we have already obtained the
asymptotic analytical expression for the objective function
in (29). However, ∆MMSE

jk is complicated and the second
constraint in (29) makes it challenging to solve. Hence, we
now replace ∆MMSE

jk with ∆̃MMSE
jk and release the constraint

ρmin ≤ ρjk ≤ ρmax in (29). The optimization problem can be
rewritten as

minimize
1

K

K∑
k=1

∆̃jk,

subject to
K∑
k=1

ρjk ≤ P,

(31)

where

∆̃jk,



M

(
L∑

l̸=j

ρlkβjlk+1

)
(M−1)ρjkβjjk

, LS,

M

(
L∑

l̸=j

ρlkβjlk+1

)

(M−1)

(
L∑

l=1

ρlkβjlk+1

) , MMSE.

(32)

The following theorem presents closed-form expressions for
the optimal solution of (31).

Theorem 3: The optimal solution ρ∗jk of (31) is formulated
as

ρ∗jk=


1
λLS

(
υjk
βjjk

) 1
2

, LS,

1
λMMSE

(
υjk
βjjk

) 1
2 − υjk

βjjk
, MMSE,

(33)

5Here, to ensure the user in each cell has at least the minimum power for
pilot transmission, we assume the minimum pilot power is ρmin = P/2K.
Then, to ensure that a user does not use too much pilot power that decreases
other users’ pilot power substantially, we assume the maximum pilot power
is ρmax = µP/K. To ensure that at least one user in the target cell can be
allocated the maximum power to sent pilots, we let K ≥ 2 and ρmin(K −
1) + ρmax ≤ P , that is, µ ≤ (K +1)/2. Finally, to ensure that the channel
estimation performance of the user who is allocated the maximum power can
be improved effectively, we assume µ ≥ 3/2. Hence, µ ∈ [3/2, (K+1)/2].

where

υjk ,
L∑
l ̸=j

ρlkβjlk + 1, (34)

λLS , 1

P

K∑
k=1

(
υjk
βjjk

) 1
2

, (35)

λMMSE ,

K∑
k=1

(
υjk
βjjk

) 1
2

P +
K∑
k=1

υjk
βjjk

. (36)

Proof: The proof is completed by using the Lagrange
multiplier method [33].

Note that from (33)-(36), we see that the optimal solution
of (31) is independent of the number of BS antennas. Most
importantly, the optimal solution in (31) can serve as a very
effective starting point for solving the constrained optimization
problem (29) approximately. This is one of the main ideas
behind the PPA algorithm. The second idea is to partition
the users in cell j into three groups. Users in group 1 have
the same pilot power ρmin. Users in group 2 have the same
pilot power ρmax. Group 3 users’ pilot power is determined
by solving (31) with the remaining available total pilot power
budget. We firstly consider the optimal solution in (31). Next,
if the optimal solution in (31) satisfies the power constraint
in (29), then all users are put into the group 3 and the whole
process stops. Otherwise, we select the user whose pilot power
is far lower than ρmin or far more than ρmax. Finally, we
allocate the selected user into the group 1 or group 2, and
return to carry out the above process for the rest of users
and the remaining available total pilot power budget in the
target cell until all users’ pilot power, in the target cell, meets
the power constraint in (29). Inspired by this, we propose a
PPA algorithm (Algorithm 1), based on a simple decision
criterion for both the LS and MMSE estimation methods, to
obtain an approximate solution of the optimization problem
(29). In Algorithm 1, KP,min and KP,max denote the user
groups where users’ pilot powers are the minimum pilot power
ρmin and the maximum pilot power ρmax, respectively. Also,
after removing the users in KP,min or KP,max, the remaining
users belong to the user group KP . The users’ pilot powers
have the following relationship∑

k∈KP,min

ρmin +
∑

k∈KP,max

ρmax +
∑
k∈KP

ρjk = P. (37)

These groups are initialized in Algorithm 1. The cardinalities
of these groups are denoted as KP,min, KP,max and KP ,
respectively, which satisfy

KP +KP,min +KP,max = K. (38)

Generally speaking, the core idea of the PPA algorithm is to
give an approximately optimal partition of the users in the
target cell through the quality of their channels. Note that the
entire procedure of the PPA algorithm is depicted in Fig. 1.
Given the fact that in the massive MIMO regime, the stochastic
nature of RCEE vanishes, large-scale fading coefficients are
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Algorithm 1 PPA algorithm

1: procedure PPA
2: input: P , K, βjlk, ρlk (l ̸= j), ρmin, ρmax,
3: and Flag (Flag = 0 or Flag = 1).
4: initialization: KP = {1, . . . ,K}, KP,min = Ø,
5: and KP,max = Ø.
6: if Flag == 0
7: Calculate the first expression in (33).
8: else
9: Calculate the second expression in (33).

10: end if
11: for i← 1, ...,K do
12: if ρjk ≥ ρmin & ρjk ≤ ρmax, ∀k ∈ KP
13: break
14: end if
15: Obtain {ki| ρjki < ρmin, ki ∈ KP },
16: and {ti| ρjti > ρmax, ti ∈ KP }.
17: Obtain k⋆i = arg max

k⋆i ∈{ki}
|ρjki − ρmin|,

18: and t⋆i = arg max
t⋆i ∈{ti}

|ρjti − ρmax|.

19: if (k⋆i & t⋆i & |ρjk⋆i −ρmin| ≥ |ρjt⋆i −ρmax|) || {ti}=Ø
20: ρjk⋆i ← ρmin, P ← P − ρjk⋆i , KP ← KP \ {k⋆i },
21: and KP,min ← KP,min ∪ {k⋆i }.
22: if Flag == 0

23: Replace
K∑
k=1

to
∑

k∈KP

in (35) and calculate (35).

24: for k ∈ KP do
25: Calculate the first expression in (33).
26: end for
27: else
28: Replace

K∑
k=1

to
∑

k∈KP

in (36) and calculate (36).

29: for k ∈ KP do
30: Calculate the second expression in (33).
31: end for
32: end if
33: else
34: ρjt⋆i ← ρmax, P ← P − ρjt⋆i , KP ← KP \ {t⋆i },
35: and KP,max ← KP,max ∪ {t⋆i }.
36: Execute the procedure of lines 22-32.
37: end if
38: end for
39: output: ρjk, KP , KP,min, and KP,max.
40: end procedure

the main parameters in our objective function in (29). This
observation simplifies the problem of PPA substantially, since
we can simply put the large-scale fading coefficients and other
parameters into the PPA algorithm and determine the pilot
power of the users in the target cell. Moreover, we have
considered the block fading assumption such that the large-
scale fading coefficients remain fixed over lots of coherence
time intervals. Hence, once we start the PPA algorithm and
obtain the pilot power, regardless of the small-scale variations
between two consecutive coherence intervals, our pilot power
keeps fixed within these coherence time intervals.

Fig. 1: The procedure of the PPA algorithm.

Since we propose a PPA algorithm to allocate pilot power
in the target cell to minimize the average Exprcee per user
for a given P , the limiting performance will also be obtained
with infinitely high P . Hence, the following theorem gives the
asymptotic expression for Exprcee when both P and M tend
to infinity.6

Theorem 4: When M →∞ and P →∞, and with the help
of (25), Exprcee is asymptotically approximated by

lim
P→∞

∆̄jk = ∆̆LS
jk ≈



L∑
l̸=j

δlkβjlk

αβjjk
, k ∈ K̇min,

L∑
l̸=j

δlkβjlk

µβjjk
, k ∈ K̇max,

ϕ
φψ , k ∈ K̇,

(39)

with LS estimation, and

lim
P→∞

∆̄jk = ∆̆MMSE
jk ≈



L∑
l̸=j

δlkβjlk

L∑
l̸=j

δlkβjlk+αβjjk

, k ∈ K̇min,

L∑
l̸=j

δlkβjlk

L∑
l̸=j

δlkβjlk+µβjjk

, k ∈ K̇max,

ϕ
(φ+ϖ)ψ , k ∈ K̇,

(40)

with MMSE estimation, where δlk ∈ (0, 1) is the scale factor
which satisfies δlk = ρlk/P for l ̸= j, α = ρminK/P = 0.5,

6Note that the relationship between the RCEE and Exprcee has already
been given in Corollary 4 when M → ∞. Hence, for convenience, we just
study the performance of Exprcee in the subsequent parts.
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and

ϕ ,
L∑
l ̸=j

δlkβjlk
∑
k∈K̇

(
1

βjjk

L∑
l ̸=j

δlkβjlk

) 1
2

, (41)

φ , 1− αK̇min + µK̇max

K
, (42)

ψ ,
(
βjjk

L∑
l ̸=j

δlkβjlk

) 1
2

, (43)

ϖ ,
∑
k∈K̇

L∑
l ̸=j

δlkβjlk

βjjk
. (44)

Also, K̇min, K̇max, K̇, K̇min, K̇max, and K̇ are defined in
Appendix C.7

Proof: See Appendix C.

It is important to note that, as M → ∞ and P → ∞,
Exprcee is approximately controlled by the large-scale fading
coefficients and the ratio of the user’s pilot power to the total
pilot power budget. Also, by comparing (39) and (40), for the
user groups K̇min and K̇max, respectively, the denominator
of (40) contains the impact of the users’ large-scale fading
coefficients in the other cells compared with the denominator
of (39). The main reason of this phenomenon is that the
MMSE estimation method accounts for inter-cell interference
(the large-scale fading from other cells), whereas the LS
estimation method treats the interference from other cells as
noise. Interestingly, for the group K̇, the main difference
between the third expression for (39) and (40) is the term
ϖ since the MMSE estimation method considers the effect of
βjlk (l ̸= j).

We now consider the special case of the EPPA scheme. The
following corollary evaluates RCEE and Exprcee with EPPA
scheme, when M and P are asymptotically large.

Corollary 6: When M → ∞ and P → ∞, for the EPPA
scheme,

lim
P→∞

∆̄jk =



L∑
l̸=j

βjlk

βjjk
, LS,

L∑
l ̸=j

βjlk

L∑
l=1

βjlk

, MMSE.
(45)

Proof: The proof is completed by calculating the limit of
(30) when P →∞.

Note that in the EPPA scheme, the expressions for Exprcee
with infinite M and P are simpler than that in PPA scheme.
Moreover, (45) provides physical insights into the channel
estimation performance for the LS and MMSE estimation
methods, respectively, to reflect the PC effect; interestingly,
these expressions are inversely analogous to the SIR in [1,
Eq. (13)].

7In fact, the user groups for the LS and MMSE estimation methods may be
different. However, for convenience, we still use these groups K̇min, K̇max,
and K̇ to represent both the LS and MMSE estimation methods.
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Fig. 2: The objective function values in (29) and the solutions
of PPA algorithm and fmincon method are shown in the form
of contour lines.

IV. NUMERICAL RESULTS

In this section, we consider a hexagonal cellular network
with a set of L cells and radius r meters where users are
distributed uniformly in each cell. Also, the large-scale fading
coefficients, which account for geometric attenuation and
shadow fading, are set as [34]

βjlk =
zjlk

1 + (rjlk/rmin)γ
, (46)

where zjlk is a log-normal random variable with standard
deviation σ, γ is the path loss exponent, rjlk is the distance
between the user k in cell l and the BS in cell j, and rmin is
the reference distance. In our simulations, we choose L = 7,
r = 500m, σ = 8dB, γ = 3.8, and rmin = 200m, which also
follow the methodology of [34].

A. Verification of the PPA Algorithm

In this subsection, we will check the PPA algorithm for the
LS method based on Theorem 3, while the evaluation based on
the MMSE estimation method can be omitted due to similarity.
In order to give a visual display of our PPA algorithm to solve
(29), the number of users K in each cell is assumed to be
3. Since we assume that the noise variance is 1, P can be
interpreted as the transmit signal to noise ratio (SNR) and,
thus, can be expressed in dB. For convenience, we set the
average per user pilot power P/K to 30 dB. Also, we set the
pilot sequence length to τ = K, µ = 1.5, and M = 200.

We choose the center cell of the 7-cell hexagonal cellular
network as our objective and call it cell 1, which means
we choose j = 1. The large-scale fading coefficients of the
channel between the users in cell 1-7 and the BS in cell 1 are
randomly generated and given in Table Ia.

We use the PPA algorithm to allocate the three users’ pilot
power in cell 1. In order to validate the effectiveness of the
PPA algorithm, we also compute the approximate solution
of the constrained optimization problem in (29) through the
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TABLE I

(a) List of the large-scale coefficients

Cell l

β1lk User k
1 2 3

1 0.0304 1.2899 0.0655
2 0.0006 0.0290 0.0389
3 0.0045 0.0024 0.0070
4 0.0080 0.0039 0.0045
5 0.0008 0.0842 0.0028
6 0.0078 0.0003 0.0026
7 0.0011 0.0177 0.0014

(b) List of the average runtime values for solving (29)
Average runtime×10−5(s)

K
Method PPA fmincon

2 2.2 1239.2
3 4.0 1354.6
4 6.4 1405.4
5 9.1 1471.3
6 12.3 1573.4
7 16.2 1702.1
8 20.8 1898.0
9 25.6 1966.2
10 31.4 2018.7

MATLAB function “fmincon”. Note that we use the solution
of (31) as the start point for fmincon. Based on the specific
structure and the monotonicity of the objective function, the
KKT conditions, as well as, the constraints in (29), it is
obvious that the global optimal solution point of (29) is at
the hyperplane

K∑
k=1

ρ1k = P, ρmin ≤ ρ1k ≤ ρmax, ∀k = 1, . . . ,K. (47)

Therefore, considering that the objective function in (29) now
has three variables, we use the method of coordinate transform
to transform (47) into the two-dimensional plane when K = 3.
Hence, the form of contour lines can be used to show the
objective function values in (29).

Fig. 2 gives the objective function values in (29) in the
form of contour lines. Also, the solution points of the PPA
algorithm and fmincon method are marked by a red circle
and a black asterisk, respectively. This graph shows that the
geometrical centers of these two mark symbols overlap almost
completely, which implies that the solution obtained from the
PPA algorithm is almost the same as the one obtained from
the numerically evaluated method.

We now turn our attention to the issue of computational
complexity by computing the average complexity of both
techniques. The average runtime of each algorithm is obtained
by averaging over 1000 independent large-scale coefficient re-
alizations. The average runtime values for both PPA algorithm
and fmincon method, as well as, different number of users in
cell 1, are presented in Table Ib. We can see that, when the
number of users K gets larger, the average runtime increases
for all cases under consideration. Most importantly, compared
with the fmincon method, the PPA algorithm’s average runtime
is significantly reduced, (e.g., the average runtime of the
proposed PPA algorithm decreases about 600 times for K = 2
and 70 times for K = 10). Hence, our PPA algorithm offers
the important advantage of low computational complexity.

B. Channel Estimation Performance Comparison

In this subsection, we compare the channel estimation
performance of the PPA scheme and the EPPA scheme. In this
cellular system, we consider K = 10 users in each cell and set
µ = 3. The other parameters are the same as in Section IV-A.

Moreover, different frequency reuse factors are also considered
as in [1].

1) One-Cell Performance: Here, for convenience, the ob-
jective cell is again the cell 1. For each analytical result, 100
independent large-scale coefficient realizations are generated.
The results of the PPA scheme and the EPPA scheme are
obtained by averaging over 100 independent small-scale fading
channels for each large-scale channel realization.

Fig. 3 gives the analytical and Monte-Carlo simulated
average Exprcee per user with the LS and MMSE estima-
tion methods, respectively. Results are shown for different
frequency reuse factors, and P = 40 dB. Again, we see
that in all cases the analytical curves (obtained from (23))
match precisely with the simulated curves (obtained from
(22)), which proves the validity of Theorem 2. When M →∞,
we also see that all results tend to different constants, which
match the asymptotic expressions, derived in Corollary 3 and
Corollary 5, respectively. Moreover, it is found that the PPA
scheme performs systematically better than the EPPA scheme,
which justifies the effectiveness of our PPA scheme. Also,
from Fig. 3a, as the frequency reuse factor increases, the gap
between the EPPA scheme and the PPA scheme is almost
fixed for LS. From Fig. 3b, when the frequency reuse factor
increases, the gap between the EPPA scheme and the PPA
scheme is gradually increased for MMSE estimation. When
M → ∞, compared with the LS EPPA scheme, the LS PPA
scheme reduces the average Exprcee per user 50.4%, 47.8%,
and 45.3% for Γ = 1, 3, and 7, respectively, while the MMSE
case remains nearly similar.

Fig. 4a presents the cumulative distribution function (CDF)
of the analytical average Exprcee per user with P = 40 dB
and frequency reuse factors Γ = 1, 3, and 7, for the LS and
MMSE estimation methods, respectively, under the setting of
asymptotically large antenna number. This figure shows that
using the PPA algorithm to allocate pilot power improves the
average Exprcee per user in the whole probability distribution
range compared with the EPPA scheme for all cases. We also
see that by increasing the frequency reuse factor, the channel
estimation performances of the LS and MMSE methods get
closer for both the EPPA and PPA schemes, respectively. To
be more specific, when Γ = 1, the co-channel interference is
still stronger than the channel power between the user in cell
1 and the BS in cell 1, so the average Exprcee per user of the
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Fig. 3: The average Exprcee per user with asymptotic expressions (25) for PPA scheme and (30) for the EPPA scheme as a
function of the number of BS antennas with P = 40 dB.
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Fig. 4: The CDF of the average Exprcee per user for asymptotically large antenna numbers with P = 40 dB, as well as, the
average Exprcee per user as P increases with M = 200. The asymptotic expressions are based on (39-40) for the PPA scheme
and (45) for the EPPA scheme.

LS estimation method is much worse than the MMSE, since
the former treats co-channel interference as noise and fails
to deliver precise estimates. On the contrary, when Γ = 7,
the co-channel interference becomes small compared with the
thermal noise at the receiver, such that the performance of the
LS PPA scheme approaches the performance of the MMSE
PPA scheme.

Fig. 4b investigates the impact of the total pilot power
budget P on the average Exprcee per user performance. In
this figure, the number of BS antennas is set to 200. It shows
that the analytical values and simulation values are almost
indistinguishable for both EPPA and PPA schemes, regardless
of the value of P . When P → ∞, the average Exprcee per
user approaches to different constant values, which match
the asymptotic expressions (obtained by calculating the limit
of (23) when P → ∞ and combining with Theorem 4

and Corollary 6) well, respectively. This result showcases
the beneficial impact of larger frequency reuse factor on the
channel estimation performance, since the average Exprcee per
user is lower for larger Γ. Moreover, as the frequency reuse
factor and P increase, the channel estimation performance of
LS and MMSE estimation methods are close to each other for
both the EPPA and PPA schemes. In other words, by extending
the distance between cells which use the same frequency
benefits the channel estimation performance, and the simple
estimation method (LS) approaches the more sophisticated
estimation method (MMSE) when P is big enough.

2) Multi-cell Performance With Scheduling Strategy: Now,
we consider to allocate all the users’ pilot power in multi-
cell systems to minimize the average Exprcee per cell per
user. Based on the user grouping concept of the proposed
PPA scheme and inspired by the cell grouping concept in
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1 3

7

Fig. 5: The JUCG scheduling strategy for Γ = 1, 3, and 7,
respectively.

TABLE II: List of the average Exprcee per cell per user

Method
Γ 1 3 7

LS
EPPA 2.4757dB -7.6347dB -12.8171dB
JUCG -0.1959dB -10.1606dB -15.1958dB

fmincon -1.0478dB -10.5540dB -15.2979dB

MMSE
EPPA -5.4686dB -10.5643dB -14.1414dB
JUCG -5.7410dB -11.5722dB -15.6628dB

fmincon -5.8442dB -11.7061dB -15.6986dB

[35], we propose and adopt the JUCG scheduling strategy in
Fig. 5. First, we assume that all users in the whole system
utilize the EPPA scheme, that is, ρjk = P/K, ∀j, k. Next,
the users in cell group 1 (Cell 1) adjust their pilot power
simultaneously based on the PPA scheme, while the users in
cell group 2 (Cell 2, 4, and 6) and cell group 3 (Cell 3, 5, and
7) keep their pilot power fixed. The scheduling strategy stops
when the similar action is taken for the cell group 2 and cell
group 3, respectively. As a benchmark, we compare with the
optimal performance provided by the fmincon method across
all cells, and with the EPPA scheme based on M = 200 and
the analytical expressions (23) for both the LS and MMSE
estimation methods and different Γ in Table II. The results
are obtained by averaging over 100 independent large-scale
coefficient realizations.

From Table II, we can see that, for all cases, the performance
of the average Exprcee per cell per user increases when Γ
increases. For both the LS and MMSE estimation methods,
not only the performance of the JUCG scheduling strategy
is better than the EPPA scheme, but also the gap between
the JUCG and fmincon method is negligible for all Γ except
to the little gap which exists for the LS case when Γ = 1.
However the high complexity of the fmincon method makes
its implementation a big challenge. Therefore, the JUCG is a
very attractive solution. In other words, our PPA scheme is
still very useful for practical applications and yields nearly
optimal performance.

C. Achievable Uplink Rate Comparison

In this subsection, we compare the achievable uplink rate
performance of the PPA scheme and the EPPA scheme. The

relative parameters are the same as subsection B except for
ρu = 20 dB and P = 40 dB. Also, by considering the
methodology of [1], we set To = 71.4 ms, Tu = 66.7 ms,
B = 20 MHz, and (Ts − Tp)/Ts = 3/7. For comparison, we
define two metrics called “Minimum achievable uplink rate”
and “Average achievable uplink rate” in target cell 1, which
are given as

Rmin = min{R11, . . . , R1k, . . . , R1K}, (48)

and

Rav =
1

K

K∑
k=1

R1k, (49)

respectively.
Fig. 6a gives the minimum achievable uplink rate based on

(17), (19), and (48) for both the EPPA and PPA schemes,
as well as, the fmincon method.8 For all cases, when M
increases, Rmin increases and the PPA scheme performance
is almost the same as the fmincon performance. To be more
specific, when Γ = 1, the PPA scheme performance is better
than the EPPA scheme. Moreover, the LS PPA scheme is
better than the MMSE PPA scheme since (19) is an increasing
function of the target user’s pilot power and the PPA algorithm
allocates more power to the user whose relative channel
estimation performance is bad; yet, note that for a given user’s
pilot power in the taget cell, the LS estimation performance
is worse than the MMSE. Compared with Γ = 1, although
Γ = 3 makes the available bandwidth B/3, the effective
SINR grows larger since the interference from other cells’
users drops drastically. Hence, Γ = 3 is better than Γ = 1.
Also, compared with the EPPA scheme, the PPA scheme
performance improves considerably. Note that the performance
of the MMSE PPA scheme approaches that of the LS PPA
scheme. When Γ = 7, compared with Γ = 3, the available
bandwidth becomes substantially smaller, while the effective
SINR grows marginally. Hence, regarding Rmin, Γ = 7
performs worse than Γ = 3. Therefore, Γ = 3 yields the
best performance and we can infer that the channel estimation
performance is not proportional to Γ, due to the trade off
between the available bandwidth and the effective SINR. Note
also that the MMSE performance is almost the same with that
of the LS. Moreover, compared with the EPPA scheme, for
both the LS and MMSE estimation methods, our PPA scheme
improves substantially the performance of the user with the
minimum achievable uplink rate.

Fig. 6b gives the CDF of the average achievable uplink rate
with asymptotically large antenna numbers based on (17), (20),
and (49) for both the EPPA and PPA schemes, as well as,
the fmincon method. For all cases, the performance difference
between the PPA scheme and the fmincon is almost negligible.
For the case of the LS estimation method, when Γ = 1, the LS
PPA scheme performance is slightly worse that of the EPPA
scheme since the proposed PPA algorithm puts more pilot
power to the user who suffers strong co-channel interference;

8Based on Theorem 1, for convenience, we only need to use the case EPPA
scheme to replace the cases of the LS EPPA and MMSE EPPA schemes in
Fig. 6.
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Fig. 6: The minimum achievable uplink rate as a function of the number of BS antennas with P = 40 dB and ρu = 20 dB,
as well as, the CDF of the average achievable uplink rate with asymptotically large antenna numbers and P = 40 dB.

this affects negatively the rate performance of the users who
suffer small co-channel interference. As Γ = 3 and Γ = 7,
the difference of co-channel interference level between the
users in the cell becomes small; hence, the difference between
the PPA scheme and the EPPA scheme can be ignored. For
the case of the MMSE estimation method, for all frequency
reuse factors, the PPA scheme is almost the same as the EPPA
scheme. Moreover, with an increasing frequency reuse factor,
the performance of the LS approaches the performance of the
MMSE. In summary, compared with the EPPA scheme, for
both the LS and MMSE estimation methods, our PPA scheme
offers almost the same average achievable uplink rate.

V. CONCLUSION

In this paper, we studied the performance of channel estima-
tion and achievable uplink rate for multi-cell massive MIMO
systems. We provided a modified NMSE metric derived from
the MSE metric called RCEE and deduced new, tractable,
closed-form expressions for Exprcee and achievable uplink
rate for the LS and MMSE estimation methods, respectively.
We found that RCEE and Exprcee tend to the same constant
when M → ∞, which reflects the channel hardening effect.
Due to the obtained closed-form expressions for Exprcee, we
proposed a PPA algorithm to minimize the average Exprcee per
user with a total pilot power budget. The channel estimation
performance of the PPA scheme and EPPA scheme were
compared for both the LS and MMSE estimation methods.
Regarding the differences between the PPA scheme and EPPA
scheme, the LS gap remains almost fixed irrespective of the
frequency reuse factor, whilst the MMSE gap increases. More-
over, when co-channel interference is small and the pilot power
is high enough, the LS scheme channel estimation performance
approaches the MMSE scheme performance. Hence, from a
design point of view, the simple LS estimation method is a
very viable choice. Also, to allocate pilot power in the whole
systems, a JUCG scheduling strategy was proposed, which
shows it can obtain almost the optimal performance. Finally,

the average achievable uplink rate of the PPA scheme is almost
the same as the EPPA scheme, while, compared with the EPPA
scheme, the PPA scheme improves significantly the minimum
achievable uplink rate.

APPENDIX A
PROOF OF THEOREM 1

To evaluate the SINRjk in (18), we define four terms

A ,
∣∣∣E{ĥH

jjkhjjk

}∣∣∣2 , (50)

B , E
{∣∣∣ĥH

jjkhjln

∣∣∣2} , (n ̸= k), (51)

C , E
{∣∣∣ĥH

jjkhjlk

∣∣∣2} , (52)

D , E
{∥∥∥ĥjjk∥∥∥2

2

}
. (53)

Although ĥjjk has different expressions for the LS and
MMSE estimation methods, the corresponding proofs for
SINRjk are similar. Hence, it is convenient to only study the
case of the LS estimation.

• Calculate A: Substituting (3) and (9) into (50), we get

A =
∣∣∣E{∥hjjk∥22}∣∣∣2 =M2β2

jjk. (54)

• Calculate B: By considering the ĥLS
jjk is uncorrelated with

hjln when n ̸= k, we can obtain

B = E
{
(ĥLS
jjk)

HE
{
hjlnh

H
jln

}
ĥLS
jjk

}
. (55)

Then, substituting (3) and (9) into (55), yields

B =
Mβjln
ρjk

( L∑
l=1

ρlkβjlk + 1

)
. (56)
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• Calculate C: Since ĥLS
jjk is correlated with hjlk, substi-

tuting (9) into (52), we can get

C =
1

ρjk

(
E


∣∣∣∣∣∣∣
 L∑
c̸=l

√
ρckhjck +Njsjk

H

hjlk

∣∣∣∣∣∣∣
2︸ ︷︷ ︸

C1

+ ρlk E
{
∥hjlk∥42

}︸ ︷︷ ︸
C2

)
, (57)

where the closed-form expression for C1 can be obtained
based on the similar way for obtaining (51), that is,

C1 =Mβjlk

( L∑
c ̸=l

ρckβjck + 1

)
, (58)

whilst for the term C2, using the properties of Wishart
matrices [36, Lemma 2.9], C2 is given by

C2 =M(M + 1)β2
jlk. (59)

Therefore, substituting (58) and (59) into (57) and sim-
plifying, we can write C as follows

C =
1

ρjk

(
Mβjlk

( L∑
c=1

ρckβjck+1

)
+M2ρlkβjlk

)
. (60)

• Calculate D: With the help of (3) and (9), D is given by

D =
M

ρjk

( L∑
l=1

ρlkβjlk + 1

)
. (61)

Finally, substituting (54), (56), (60), and (61) into (18) and
simplifying, the closed-form expression for SINRjk based on
LS estimation method is obtained.

APPENDIX B
PROOF OF THEOREM 2

Although ∆jk has different closed-form expressions for LS
and MMSE estimation methods, the corresponding proofs are
similar. Hence, it is convenient to only study the case of the
LS estimation. Then, (22) is rewritten as

∆LS
jk = E

{∥∥hjjk − ĥLS
jjk

∥∥2
2︸ ︷︷ ︸

I1

× 1∥∥hjjk∥∥22︸ ︷︷ ︸
I2

}
. (62)

Then, substituting (9) into I1, we obtain

I1 =

∥∥∥∥ L∑
l ̸=j

√
ρlk
√
ρjk

hjlk +
1
√
ρjk

Njsjk

∥∥∥∥2
2

. (63)

It is obvious that I1 does not have the term hjjk, which means
that ∆LS

jk = E {I1}×E {I2}. Moreover, based on the properties
of the expectation operator and the trace operator and the
assumption of the user’s channel, we evaluate (63) to yield

E{I1}=tr

(
E
{ L∑
l ̸=j

ρlk
ρjk

hjlkh
H
jlk +

1

ρjk
Njsjk

(
Njsjk

)H
})
.

(64)

Then, substituting (3) into (64), we have the following result

E{I1} =
M

ρjk

( L∑
l ̸=j

ρlkβjlk + 1

)
. (65)

To evaluate I2 in (62), we firstly consider the case of
M = 1. Hence, we denote I2 as IM=1

2 . Moreover, hjjk is
now a scalar stochastic quantity ∼ CN (0, βjjk). Based on the
special structure of IM=1

2 , after some manipulations, it is easy
to obtain

E{IM=1
2 } → ∞. (66)

When M ≥ 2, we denote I2 as IM≥2
2 . Using the properties of

Wishart matrices [36, Lemma 2.10], thus, E{IM≥2
2 } is reduced

to

E{IM≥2
2 } = 1

βjjk(M − 1)
. (67)

Hence, by substituting (65)-(67) into (62) and simplifying,
the closed-form expression for ∆jk based on LS estimation
method is obtained.

APPENDIX C
PROOF OF THEOREM 4

In this proof, the main challenge is to obtain the user groups
KP,min, KP,max, and KP in Algorithm 1 when P → ∞.
However, P → ∞ means that the thermal noise in the BS
can be ignored. Hence, inspired by (31), we formulate a new
optimization problem by replacing the ∆jk in (29) with ∆̇jk

and its subproblem by replacing the ∆̃jk in (31) with ∆̇jk,
where

∆̇jk,



M
L∑

l̸=j

ρ̇lkβjlk

(M−1)ρ̇jkβjjk
, LS,

M
L∑

l̸=j

ρ̇lkβjlk

(M−1)
L∑

l=1

ρ̇lkβjlk

, MMSE.

(68)

Using the Lagrange multiplier method [33], we can determine
the optimal solution ρ̇∗jk of this new optimization problem,
which is similar with the format of (33)-(36) that we omit
it. Moreover, we find that ρ̇∗jk is proportional to P for the
LS and MMSE estimation methods, respectively. Therefore,
since the PPA algorithm solves (29) with the help of (31),
we also use the core idea of PPA algorithm to solve this new
optimization problem with the help of its subproblem. It shows
that the output user groups K̇P,min, K̇P,max, and K̇P ,9 whose
cardinalities are K̇P,min, K̇P,max, and K̇P , respectively, will
not depend on P . That is, ∀P1, P2 > 0, we have K̇P1,min =
K̇P2,min, K̇P1,max = K̇P2,max, and K̇P1 = K̇P2 . Hence, we
use K̇min, K̇max, and K̇ to replace K̇P,min, K̇P,max, and K̇P ,
respectively. Also, the K̇min, K̇max, and K̇ are obtained for the
same reason. Then, we use K̇min, K̇max, and K̇ to approximate
the user groups KP,min, KP,max, and KP , respectively, when
P → ∞. Later, considering Corollary 3, we hold M → ∞

9To avoid confusion, we redefine these three user groups when using the
core idea of PPA algorithm to solve this new optimization problem.
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and study the channel estimation performance when P →∞.
Moreover, it is obvious that the first and second expressions in
both (39) and (40) are easy to obtain with the help of the limit
theory. Therefore, this proof focuses on the third expressions
in both (39) and (40).

Although, when M → ∞ and P → ∞, the limit value of
∆jk has different closed-form expressions for LS and MMSE
estimation methods, the corresponding proofs are similar.
Hence, it is convenient to only study the case of the LS
estimation. We now substitute the first line of (33) into the first
line of (25) and considering that the user groups KP , KP,min,
and KP,max are obtained by the PPA algorithm; hence, for the

users in groups KP , we replace
K∑
k=1

with
∑

k∈KP

and P with

P − ρminKP,min − ρmaxKP,max and set α = ρminK/P , as
well as, we consider the definition of µ, to obtain

L∑
l ̸=j

ρlkβjlk + 1

ρjkβjjk
=

L∑
l ̸=j

δlkPβjlk + 1

P −KP,min
αP
K −KP,max

µP
K

×
∑
k∈KP

 1

βjjk

 L∑
l ̸=j

δlkPβjlk + 1

 1
2

×

βjjk
 L∑
l ̸=j

δlkPβjlk + 1

− 1
2

. (69)

Finally, using the limit theory when P →∞, and simplifying,
we obtain the third expression in (39).
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