5,529 research outputs found

    Transformation Thermotics and Extended Theories

    Get PDF
    This open access book describes the theory of transformation thermotics and its extended theories for the active control of macroscopic thermal phenomena of artificial systems, which is in sharp contrast to classical thermodynamics comprising the four thermodynamic laws for the passive description of macroscopic thermal phenomena of natural systems. This monograph consists of two parts, i.e., inside and outside metamaterials, and covers the basic concepts and mathematical methods, which are necessary to understand the thermal problems extensively investigated in physics, but also in other disciplines of engineering and materials. The analyses rely on models solved by analytical techniques accompanied by computer simulations and laboratory experiments. This monograph can not only be a bridge linking three first-class disciplines, i.e., physics, thermophysics, and materials science, but also contribute to interdisciplinary development

    A case crossover study on the impact of heat waves on non-accidental deaths in Jinan, China

    Get PDF
    Background: Heat waves can not only cause direct death from heat stroke but also lead to excess deaths due to other illnesses. Identifying contributing factors of population vulnerability to heat waves is particularly crucial because heat waves will affect the most disadvantaged populations aggravating health disparities. There has been little evidence on the risk of deaths from heat waves and associated contributing factors to the population vulnerability in Jinan. Purpose: To assess the impact of heat waves on non-accidental deaths and identify individual vulnerability factors to heat wave-related deaths in Jinan, China

    Dynamical Creation of Fractionalized Vortices and Vortex Lattices

    Full text link
    We investigate dynamic creation of fractionalized half-quantum vortices in Bose-Einstein condensates of sodium atoms. Our simulations show that both individual half-quantum vortices and vortex lattices can be created in rotating optical traps when additional pulsed magnetic trapping potentials are applied. We also find that a distinct periodically modulated spin-density-wave spatial structure is always embedded in square half-quantum vortex lattices; this structure can be conveniently probed by taking absorption images of ballistically expanding cold atoms in a Stern-Gerlach field.Comment: 4 pages, 3 figures; published versio

    A bright spot detection and analysis method for infrared photovoltaic panels based on image processing

    Get PDF
    The energy crisis and environmental problems have attracted global attention, thus the photovoltaic (PV) power generation technology comes to people’s mind. The application of unmanned aerial vehicle (UAV) inspection technology can overcome the disadvantages of large scale and high risk of this project. The application of unmanned aerial vehicle (UAV) infrared detection technology in PV power generation can not only improve work efficiency, but also have high economic benefits. This paper based on U-Net network and HSV space, proposes a method of PV infrared image segmentation and location detection of hot spots, which is used to detect and analyze the shielding of PV panels. Firstly, the main PV modules are automatically split from the different infrared image background based on U-Net. In order to quickly locate the defection location, the mask image is multiplied by the original image and then converted to HSV. The discriminant of bright spot features is introduced, and the discriminant mechanism is summarized according to the experiment, and the formation reason is analyzed. The experiment result shows that the method is not affected by the infrared image under the different background, provides data for the maintenance of power station and improves the detection accuracy. The accuracy rate of analyzing the causes of defects is 92.5%

    Transformation Thermotics and Extended Theories

    Get PDF
    This open access book describes the theory of transformation thermotics and its extended theories for the active control of macroscopic thermal phenomena of artificial systems, which is in sharp contrast to classical thermodynamics comprising the four thermodynamic laws for the passive description of macroscopic thermal phenomena of natural systems. This monograph consists of two parts, i.e., inside and outside metamaterials, and covers the basic concepts and mathematical methods, which are necessary to understand the thermal problems extensively investigated in physics, but also in other disciplines of engineering and materials. The analyses rely on models solved by analytical techniques accompanied by computer simulations and laboratory experiments. This monograph can not only be a bridge linking three first-class disciplines, i.e., physics, thermophysics, and materials science, but also contribute to interdisciplinary development
    • …
    corecore