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Chapter 1
Preface

1.1 Traditional Thermodynamics Versus Theoretical
Thermotics

What you do not know always determines what you know. Unfortunately, what you
know often hinders you from knowing what you do not know yet. In this sense,
it is valuable for inheritance and innovation to systematize the existing scattered
knowledge. We believe now is the time to present “theoretical thermotics” as a
new discipline with systematic knowledge constructed by transformation thermotics
and its extended theories. See Fig. 1.1. Here, transformation thermotics is known to
originate from transformation optics [7], but the latter always handles wave systems
rather than diffusion systems (that serve as a focus of transformation thermotics).

If you want to be a big tree, compare yourself with other big trees, rather than
grass. Let us compare “theoretical thermotics” with “traditional thermodynamics”.
As shown in Table1.1, theoretical thermotics distinctly differs from traditional ther-
modynamics. Certainly, as one of the most fundamental theoretical frameworks for
describing nature, traditional thermodynamics must also work for all the artificial
systems studied by theoretical thermotics. Nevertheless, theoretical thermotics has
its purposes, systems, and frameworks, thus distinguishing it from traditional ther-
modynamics (Table1.1).

Though the word “thermotics” is not commonly used, I choose it for the new dis-
cipline, “theoretical thermotics”. Here, “thermotics” can always be translated into
“heat transfer (heat transfer theory)” and sometimes into ”thermodynamics”. But,
the reason why I do not choose to use “theoretical heat transfer” is two-folded: I
hope to add new concepts (say, those from condensed matter physics, optics, statis-
tical physics, etc.) to “thermotics”, which goes beyond traditional heat transfer; I do
not hope the existing knowledge of conventional “heat transfer” affects the under-
standing of the connotation of “theoretical thermotics”. These two reasons also hold
for another name, “theoretical thermodynamics”. If a name can be easily followed
without confusion, work can be accomplished, one of Confucius’s sayings. Anyway,
the future name is up to others, but what we can do now is up to us.

© The Author(s) 2023
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Fig. 1.1 The new discipline of “theoretical thermotics” is constructed by the theory of transfor-
mation thermotics and its extended theories with different levels. All these theories are connected
with functions/properties/behaviors. For example, “theory of transformation thermotics for steady
state” [1, 2]=⇒ “thermal cloaking (Function 1)” [1, 2]⇐= “scattering cancellation (Extended The-
ory A)” [3, 4]=⇒ “thermal camouflage (Function 2)” [5]⇐= “effective medium theory (Extended
Theory B)” [6] =⇒ · · ·

Table 1.1 Traditional thermodynamics versus theoretical thermotics. Here, the phrase “passive
description” means that people cannot change the heat phenomena of natural systems but under-
stand them according to the four thermodynamic laws. In contrast, the phrase “active control”
represents that people can change the heat phenomena at will by designing artificial systems based
on transformation thermotics and its extended theories. These theories also make theoretical ther-
motics different from the existing heat transfer theory (which is much more familiar to engineering
thermophysicists than physicists). Adapted from Ref. [8]

Main purpose Key systems Theoretical framework

Traditional
thermodynamics

Passive description Natural systems The four laws of
thermodynamics

Theoretical thermotics Active control Artificial systems Transformation
thermotics and
extended theories

For transformation thermotics, the starting point of theoretical thermotics, its
foundations could be summarized as “four properties” in the following.

A. Invariance: Thermal equations have form invariance. Many thermal equations,
including those describing heat conduction, have the same form in different coordi-
nate systems;

B. Anisotropy: Thermophysical quantities can be anisotropic. The physical prop-
erties can be anisotropic, which are described by anisotropic thermophysical quan-
tities like thermal conductivity;

C. Inhomogeneity: Thermophysical quantities can be inhomogeneous. The phys-
ical properties can be non-uniformly distributed in space, which are described by
inhomogeneous thermophysical quantities like thermal conductivity;

D. Effectiveness: Thermophysical quantities have effective properties. The ther-
mophysical quantities described in B and C above can be equivalent to the composite
of isotropic homogeneous materials.

Based on the above A, we can deduce B and C, and the prior existence of B
and C also ensures the necessity of A’s existence. Therefore, A, B, and C lie in the
same column, supporting and guarding each other. More importantly, B and C make
the existence of D indispensable. Otherwise, the experiment cannot easily verify the
theoretical prediction based on A-C, thus blocking the engineering application.
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The four foundations (A-D) help construct the whole discipline of theoretical
thermotics by starting from transformation thermotics.

1.2 Theoretical Thermotics Meets Metamaterials: Inside
Versus Outside Metamaterials

Theoretical thermotics is interdisciplinary with three first-class disciplines, i.e.,
physics, engineering thermophysics, and materials science; see Fig. 1.2. On the other
hand, the mature discipline of metamaterials is also interdisciplinary with many
disciplines, say, optics, electromagnetics, acoustics, classical mechanics, quantum
mechanics, etc.When theoretical thermoticsmeetsmetamaterials, what will happen?
They give birth to a new direction, thermal metamaterials [9]; see Fig. 1.3. The first
monograph on thermal metamaterials was published in 2020 [10]. Thanks to Ref. [9],
the name “thermal metamaterials” was first used to cover the five works on thermal
cloaks for controlling thermal conduction [1, 2, 11–13]. The first monograph on ther-
mal cloaks was published in 2022 [14]. The connotation of thermal metamaterials
has been extended significantly from thermal conduction to convection and radiation.
As a result, so far, theoretical thermotics has been studied and developed from pure
science to technology and engineering; see Fig. 1.4. The biennial International Con-
ference on Thermodynamics and Thermal Metamaterials has been organized since
2020 to promote the development; see Fig. 1.5.

The key factor for treating an artificial structural material as a metamaterial is that
the construction unit should have a characteristic length. The concept of effective
media helps to understand the novel properties associated with metamaterials. For
example, the characteristic length of electromagnetic metamaterials is the incident
wavelength, that of thermal conduction metamaterials is the diffusion length, that
of thermal convection metamaterials is the migration length of fluids, and that of
thermal radiation metamaterials is the radiation wavelength.

Metamaterials can be classified in diverse ways: wave metamaterials versus dif-
fusion metamaterials, programmable metamaterials versus unprogrammable meta-
materials, bulk metamaterials versus metasurfaces, and so on. Figure1.3 displays
that theoretical thermotics can be classified as “inside metamaterials” and “outside
metamaterials”. Currently, the part of “inside metamaterials” has received much
attention [8, 10, 20–25]. In the meantime, the part of “outside metamaterials” is
rapidly developing as well [26–28].
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Fig. 1.2 Theoretical thermotics is interdisciplinary with three first-class disciplines, namely,
physics (thermodynamics and statistical physics), engineering thermophysics (heat transfer), and
materials science (material thermodynamics).Ahuge number of articles have appeared in the profes-
sional journals corresponding to these three disciplines (such as Physical Review Letters, Physical
Review E, Physical Review Applied, and Applied Physics Letters for physics; International Journal
of Heat and Mass Transfer for engineering thermophysics; and Advanced Materials for materi-
als science), besides those interdisciplinary journals (say, Science, Nature, and Proceedings of the
National Academy of Sciences of the United States of America)

Fig. 1.3 Theoretical
thermotics (an
interdisciplinary subject)
meets metamaterials (another
interdisciplinary subject),
yielding a new central branch
of thermal metamaterials.
Metamaterials have a
characteristic length larger or
much larger than the
construction unit
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Fig. 1.4 Theoretical
thermotics contains the
research on the whole chain
from science (from zero to
one) to technology (from
virtual to real) and
engineering (from useless to
useful). This book focuses
on the part of science. The
parts of technology and
engineering exist in
Ref. [15–19]

The content of this book mainly comes from the articles published by my group.
We add “Exercise and Solution” because we hope this book could be a monograph
for experts to read and a textbook for newcomers to practice (so that they could
engage in this new field as soon as possible). Incidentally, each chapter in the book
has its symbols to facilitate reading. In this sense, to read this book, the reader may
start with any chapter.

I am also grateful to my family members, especially my wife (Yan-Jiao Zhao)
and my two daughters (Ji-Yan Huang with the nickname of Qian-Qian and Ji-Yang
Huang with the nickname of Yue-Yue), for bringing me great happiness. Qian-Qian
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the residential area due to COVID-19 between April 1, 2022 and May 31, 2022.
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Fig. 1.5 Group photo: 2020 International Conference on Thermodynamics and Thermal Metama-
terials, held on August 7–9, 2020, in Zoom (Online)

When writing this preface, I refer to my previous book Ref. [10].
Last, we acknowledge financial support from the National Natural Science Foun-

dation of China under Grants No. 11725521 and No. 12035004 and the Science and
Technology Commission of Shanghai Municipality under Grant No. 20JC1414700.

Shanghai, China Ji-Ping Huang
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Chapter 2
Introduction

Abstract In this chapter, we present the background and organization of this book.

Keywords Theoretical thermotics · Characteristic lengths · Metamaterials and
beyond

2.1 Theoretical Thermotics

Theoretical thermotics originates from the theory of transformation thermotics
[1, 2]. With the artificial heat regulation development, the connotation of theoretical
thermotics has been greatly extended, not limited to those theories for designing
thermal cloaks, concentrators, and rotators. Therefore, theoretical thermotics is the
summarization of “transformation thermotics and extended theories”. For clarity,
we mainly divide theoretical thermotics into three levels according to the historical
development.

The first level (LV1) is those transformation-related theories for designing cloak-
ing, concentrating, rotating, etc. Since the theory of transformation thermotics was
proposed for controlling steady and passive heat conduction in 2008 [1, 2], extended
transformation theories have been developed successively from steady and passive
to transient and active heat conduction [3]. Then, temperature-dependent (nonlin-
ear) thermal conductivities were considered for developing nonlinear transformation
thermotics [4]. These coordinate transformations were all time-independent, mak-
ing it challenging to deal with time-dependent coordinate transformations. Thus,
spatiotemporal coordinate transformations were discussed [5]. Beyond conduction,
convection is also a primary heat transfer mode, so researchers developed a trans-
formation theory for convection control [6]. Nevertheless, it was still challenging to
guide convective velocities directly. Therefore, the Darcy law in porous media was
introduced to transform convection and ensure feasibility [7, 8]. Another convec-
tive model with creeping flows was also explored [9]. The last basic heat transfer
scheme is radiation, and researchers also proposed a transformation theory to reg-
ulate the radiation described by the Rosseland diffusion approximation [10]. With
these efforts, conduction, convection, and radiation can be unified in the transfor-

© The Author(s) 2023
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mation framework [11]. Besides, heat transfer may also be accompanied by other
physical processes, such as electric transport. Therefore, a transformation theory was
put forward to regulate thermal and electric fields simultaneously [12]. Researchers
further studied the coupling between thermal and electric fields, i.e., the thermo-
electric effect, and proposed a transformation theory [13]. Therefore, most thermal
phenomena can be manipulated by transformation theories.

The second level (LV2) is other theories for designing functions predicted by
the transformation theory. Although the transformation theory is powerful, it still
has some limitations. For example, the parameters for thermal cloaking should be
anisotropic, inhomogeneous, and even singular. Thus, other theories beyond the
transformation theory were proposed. We take thermal cloaking as an example. A
bilayer scheme was proposed [14–16] to remove anisotropic and inhomogeneous
parameters. Then, an active scheme was developed to remove all parametric require-
ments because only active temperature control was required [17]. Furthermore, a
dipole-based scheme was considered to simplify the active temperature control [18].
Besides these analytical theories, topology optimization is an indispensable method
that largely simplifies the design [19, 20]. These theories and schemes are distinctly
different from the transformation theory, but they are still applied to design functions
predicted by the transformation theory.

The third level (LV3) is other theories for designing functions not predicted by
the transformation theory. With the development of theoretical thermotics, many
phenomena and functions beyond the predictions of transformation thermotics were
revealed, such as the anti-parity-time symmetry in diffusive systems [21, 22], diffu-
sive geometric phases [23, 24], thermal wave nonreciprocity [25–29], thermal edge
states [30–34], and thermal skin effects [35, 36]. These emerging theories may guide
the future development of theoretical thermotics.

2.2 Characteristic Length

Compared with traditional thermodynamics (A in Fig. 2.1), theoretical thermotics
focuses on the active control of heat based on transformation thermotics and extended
theories (B in Fig. 2.1). Since theoretical thermotics also designs artificial structures
for heat regulation, what is the relation between theoretical thermotics and the emerg-
ing field of metamaterials? The answer is the characteristic length.

Metamaterials generally refer to those artificial structures with a structural unit
size (much) smaller than the characteristic length (C in Fig. 2.1). In this way, an
artificial structure has novel parameters that do not exist in nature or chemical com-
pounds according to effectivemedia, such as negative permittivities. Electromagnetic
metamaterials (C2 in Fig. 2.1) originate from the research on negative refractive
index [37–39]. Then, the metamaterial research was extended to other wave systems
(C3 in Fig. 2.1), such as acoustics [40, 41] and elastodynamics [42, 43]. In 2008,
transformation thermotics and thermal cloaking were proposed [1, 2], extending the
metamaterial physics from wave to diffusion systems (right part of C1 in Fig. 2.1).
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Fig. 2.1 Theoretical thermotics meets metamaterials. A: Focus on the passive description of heat
based on the four laws of thermodynamics. B: Focus on the active control of heat based on trans-
formation thermotics and extended theories. C: Artificial structures with characteristic lengths
have novel properties. C1: Diffusive systems. Right area: thermotics (thermal metamaterials or
metamaterial-based devices, which are interdisciplinary with physics, thermophysics, andmaterials
science); left area: other diffusions (particle/plasma diffusion, etc.). C2:Wave systems (electromag-
netic/optical waves). C3: Wave systems (acoustic/elastodynamic waves, etc.). C4: Systems other
than diffusion and wave systems

Therefore, thermal metamaterials are an interdisciplinary product of metamaterials
and theoretical thermotics [44, 45]. Certainly, characteristic lengths should be avail-
able to distinguish thermal metamaterials from other thermal materials. For heat
conduction, the characteristic length is the thermal diffusion length L = √

κt/ρC ,
where κ , t , ρ, and C are thermal conductivity, time, density, and heat capacity,
respectively. The characteristic length for thermal convection is the geometric length
of fluid migration. For thermal radiation, the characteristic length is the wavelength
of electromagnetic waves. Beyond heat transfer, metamaterials were also studied in
other diffusive systems, such as mass diffusion [46] and light diffusion [47] (left part
of C1 in Fig. 2.1). Besides, there are also metamaterials beyond wave and diffusion
(C4 in Fig. 2.1), such as origami metamaterials [48] and robotic metamaterials [49].
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2.3 Book Organization

We divide this book into two parts according to characteristic lengths, i.e., inside and
outside metamaterials. Those theories with a characteristic length (much) larger than
the structural unit size belong to Part I (inside metamaterials). The others belong to
Part II (outside metamaterials). See Fig. 2.2.

In Part I (inside metamaterials), we introduce fourteen theories, classified into
three levels for logical clarity. We start from the transformation theory, the foun-
dation of theoretical thermotics (LV1), for dealing with complex thermal materials
(Chap. 3) and thermoelectricmaterials (Chap. 4). Although the transformation theory
is powerful, the required complicated parameters make practical fabrications chal-
lenging. Therefore, we introduce other theories beyond the transformation theory
(i.e., effective medium theory) but still design functions predicted by the transfor-
mation theory (LV2), such as cloaks (Chap. 5–7), concentrators (Chap. 8), rotators
(Chap. 9), sensors (Chaps. 10–12), and metasurfaces (Chap. 13). Based on LV1 and
LV2, we develop the wavelike diffusion theory for designing functions not predicted
by the transformation theory (LV3), such as advectionlike behavior (Chap. 14), dif-
fusive Fizeau drag (Chap. 15), and thermal refraction effect (Chap. 16).

In Part II (outside metamaterials), we propose six theories, starting from the invis-
ibility function. Thermal invisibility can be realized with metamaterials designed
by the transformation theory or the effective medium theory, see Part I. A natu-
ral question is whether it can achieve thermal invisibility without metamaterials.
The first theory (active dipole theory, Chap. 17) in Part II answers this question by
demonstrating that thermal invisibility can be realized by an active dipole (with-
out metamaterials, LV2). Based on nonlinear thermal conductivity (Chap. 18) and
complex thermal conductivity (Chap. 19), we then develop theories for achieving
functions not predicted by the transformation theory (LV3). With these foundations,
we explore the topology-related approach for uncovering three-port thermal nonre-

Fig. 2.2 Book framework
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ciprocity (Chap. 20), thermal geometric phases (Chap. 21), and thermal edge states
(Chap. 22).

Finally, we summarize this book and make an outlook in Chap. 23.
The research paradigms of theoretical thermotics can be extended to other dif-

fusive systems. To provide more insights, we add an appendix to introduce other
diffusion systems, including particle diffusion (Appendix A) and plasma diffusion
(Appendix B).
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Chapter 3
Theory for Thermal Wave Control:
Transformation Complex Thermotics

Abstract In this chapter, we develop a transformation theory for controlling wave-
like temperature fields (called thermal waves herein) in conduction and advection.
We first unify these two basic heat transfer modes by coining a complex thermal
conductivity whose real and imaginary parts are related to conduction and advec-
tion. Consequently, the conduction-advection process supporting thermal waves is
described by a complex conduction equation, thus called complex thermotics. We
then propose the principle for transforming complex thermal conductivities. We
further design three metamaterials to control thermal waves with cloaking, concen-
trating, and rotating functions. Experimental suggestions are also provided based on
porous media.

Keywords Transformation complex thermotics · Thermal waves · Porous media

3.1 Opening Remarks

Conduction and advection are ubiquitous, with crucial parameters of thermal con-
ductivities and advection velocities, respectively. Therefore, these two heat transfer
modes are generally considered independent, challenging their simultaneous manip-
ulation. Recently, transformation theories have been proposed to control conduction
and advection simultaneously, yielding practical applications such as cloaking, con-
centrating, and rotating [1–3]. These theories apply to constant-temperature bound-
ary conditions but are not necessarily appropriate for periodic boundary conditions
supporting thermal waves.

To solve the problem, we resort to a complex thermal conductivity κ = σ + iτ ,
where σ and τ are two real numbers [4]. The κ can be well understood with the com-
plex plane shown in Fig. 3.1. We consider thermal waves with rightward advection
velocities. The temperature profiles in the right (σ > 0) and left (σ < 0) half-planes
have loss and gain of heat energy, respectively. The motion of the temperature pro-
files in the upper (τ > 0) and lower (τ < 0) half-planes is rightward and leftward,
respectively. Therefore, the conduction-advection process supporting thermal waves
can be described by a complex conduction equation, thus called complex thermotics

© The Author(s) 2023
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Fig. 3.1 Connotation of the
complex thermal
conductivity κ = σ + iτ .
Red curves denote thermal
waves. Advection velocities
are rightward. The arrow in
the center of each
temperature profile indicates
loss or gain. Adapted from
Ref. [6]

herein. In other words, advection can be regarded as a complex form of conduction.
Transforming complex materials was also realized in wave systems with a similar
idea [5], where gain/loss leads to non-Hermitian dielectrics.

We further study the complex conduction equation and propose the theory of trans-
formation complex thermotics, linking spatial transformations and material transfor-
mations. We first prove the form-invariance of the complex conduction equation
under coordinate transformations and derive the principle for transforming complex
thermal conductivities. The present theory further allows us to cloak, concentrate, and
rotate thermal waves as three model applications. Specifically, cloaking can hide an
obstacle without distorting the thermal waves in the background; concentrating can
enhance the density of thermal waves; rotating can control the direction of thermal
waves. We further provide experimental suggestions based on porous media whose
effective parameters can be calculated by weighted average.

3.2 Theoretical Foundation

Complex thermotics can be described by a complex conduction equation,

ρC
∂T

∂t
+ ∇ · (−κ∇T ) = 0, (3.1)

where ρ, C , κ , T , and t are density, heat capacity, complex thermal conductivity,
temperature, and time, respectively. The complex thermal conductivity κ can be
expressed as [4]

κ = σ + iτ = σ + i
ρCv · β

β2
, (3.2)

where v is advection velocity, and β is wave vector. By applying a wavelike temper-
ature field [7, 8] described by T = A0ei(β·r−ωt) + T0, we can derive the dispersion
relation of complex thermotics,
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ω = v · β − i
σβ2

ρC
, (3.3)

where A0, r , ω, and T0 are the amplitude, position vector, angular frequency, and
reference temperature of the wavelike temperature field, respectively. The wavelike
temperature field can also be called a thermal wave because it mathematically corre-
sponds to a plane wave. Note that thermal waves herein have a distinct mechanism
from those thermal-relaxation-related heat waves [9, 10]. Equation (3.2) is a mathe-
matical skill to unify conduction and advection. Due to the feature of thermal waves
(say, ∇T = iβT ), we can derive iτ · ∇T = −τβT which just corresponds to an
advection term.

We then prove that the complex conduction equation (Eq. (3.1)) is form-invariant
under the spatial transformation from a curvilinear space X to a physical space X ′.
For this purpose, we rewrite Eq. (3.1) as

ρC
∂T

∂t
+ ∇ · (−σ∇T ) + ∇ · (τβT ) = 0. (3.4)

We suppose u = τβ and write down the component form of Eq. (3.4) in the curvi-
linear space with a contravariant basis

(
g1, g2, g3

)
and contravariant components(

x1, x2, x3
)
,

√
gρC∂t T + ∂ j

(−√
gσ jk∂kT

)+ ∂ j

(√
gu j T

) = 0, (3.5)

where g is the determinant of the matrix g j · gk with (g1, g2, g3
)
being a covariant

basis, and j (or k) takes 1, 2 or 3. Equation (3.5) is expressed in the curvilinear space,
and thenwe rewrite it in the physical spacewith Cartesian coordinates

(
x1

′
, x2

′
, x3

′)
,

√
gρC∂t T + ∂ j ′

∂x j ′

∂x j

(
−√

gσ jk ∂xk
′

∂xk
∂k ′T

)
+ ∂ j ′

∂x j ′

∂x j

(√
gu j T

) = 0, (3.6)

where ∂x j ′/∂x j and ∂xk
′
/∂xk are the components of the Jacobian transformation

matrix J̃ , and
√
g = 1/ det J̃ . We turn the spatial transformation into the transfor-

mation of materials or vectors, so Eq. (3.6) becomes

ρC

det J̃
∂t T + ∂ j ′

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
∂x j ′

∂x j σ
jk ∂xk

′

∂xk

det J̃
∂k ′T

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ ∂ j ′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∂x j ′

∂x j u j

det J̃
T

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 0. (3.7)

The transformation rule can be derived,

(ρC)′ = ρC

det J̃
, (3.8a)
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σ ′ = J̃σ J̃ †

det J̃
, (3.8b)

u′ = J̃u

det J̃
, (3.8c)

where J̃ † represents the transpose of J̃ . Since u = τβ, Eq. (3.8c) becomes

(τβ)′ = J̃ (τβ)

det J̃
. (3.9)

We do not transform the wave vector, i.e., β ′ = β, so Eq. (3.9) turns into

τ ′ = J̃τ

det J̃
. (3.10)

Therefore, the principle for transforming complex thermal conductivities can be
summarized as

(ρC)′ = ρC

det J̃
, (3.11a)

σ ′ = J̃σ J̃ †

det J̃
, (3.11b)

τ ′ = J̃τ

det J̃
. (3.11c)

Equation (3.11) is the first key result, acting as the foundation of transformation
complex thermotics. Physically, Eqs. (3.11a) and (3.11b) agree with the result given
by the theory of transformation thermotics for conduction [11, 12]. A crucial point
is to show that Eq. (3.11c) does not violate physical laws either. For this purpose, we
substitute the expression of τ (Eq. (3.2)) into Eq. (3.11c), thus yielding

(
ρCv · β

β2

)′
=

J̃
(

ρCv·β
β2

)

det J̃
. (3.12)

With Eq. (3.11a) and β ′ = β, Eq. (3.12) can be reduced to

v′ = J̃v, (3.13)

which also agrees with the theory of transformation thermotics for advection [1–3].
Therefore, we may briefly summarize two conclusions: (I) complex thermotics indi-
cates that the real and imaginary parts of a complex thermal conductivity (Eq. (3.2))
are related to conduction (featuring dissipation) and advection (featuring propaga-
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tion), respectively; and (II) the governing equation of complex thermotics (Eq. (3.1))
is form-invariant under coordinate transformations.

3.3 Model Application

The form-invariance of the complex conduction equation (Eq. (3.1)) allows us to
cloak, concentrate, and rotate thermal waves. A schematic diagram of cloaking is
shown in Fig. 3.2a. The left and right ends are set with periodic boundary conditions,
say, TL = TR . The upper and lower boundaries are insulated. We consider the case
with v//β where the imaginary part of κ appears, as calculated by Eq. (3.2). We take
on the wave vector β = 2πm/W with m = 10, and the time period of the thermal
wave is t0 = 20 s according to Eq. (3.3). We set the initial wavelike temperature field
as T = 40 sin (βx) + 323 K (Fig. 3.2b). When there is an obstacle without motion in
the center, the thermal wave is distorted (Fig. 3.2c and d). Different from the schemes
with analytical design [13–15] and topological optimization [16–19], we apply the
present theory of transformation complex thermotics to design thermal cloaking.
The coordinate transformation can be expressed as r = ar ′ + b and θ = θ ′, where
(r, θ) denote cylindrical coordinates in the physical space, a = (r2 − r1) /r2, and
b = r1. Here, r1 and r2 are the inner and outer radii of the shell, respectively. The
Jacobian transformation matrix J̃ can be calculated as J̃ = diag [a, ar/ (r − b)].
We design the cloak according to Eq. (3.11). The initial wavelike temperature field
in the cloak turns into T = 40 sin {β [(r − b) x/ (ar)]} + 323 K (Fig. 3.2e). Here,
the wave vector β is not transformed indeed, and only the coordinate x becomes
(r − b) x/ (ar). The obstacle does not distort the thermal wave in the background,
so the cloaking effect is achieved (Fig. 3.2f and g). Since the dispersion relation
(Eq. (3.3)) indicates that the decay rate (-Im(ω)) is in direct proportion to thermal
conductivity, the temperature of the obstacle (with a high thermal conductivity of
120W m−1 K−1) decays quickly and becomes a constant. Meanwhile, the thermal
wave has energy loss due to the positive real part of κ , and propagates rightwards
along x axis due to the positive imaginary part of κ . After propagating for one period
(20 s), the thermal wave approximately gains a phase difference of 2π , thus going
back to the initial position (Fig. 3.2e and g).

With the similar method for cloaking, we can also design concentrating and
rotating. The transformation of concentrating is r = cr ′ for 0 < r ′ < rm , r = dr ′ +
f for rm < r ′ < r2, and θ = θ ′. Here, c = r1/rm , d = (r2 − r1) / (r2 − rm), f =
(r1 − rm) r2/ (r2 − rm), and rm is an intermediate radius between r1 and r2. The con-
centrating effect is determined by the parameter 1/c = rm/r1, whosemaximumvalue
is r2/r1. Therefore, increasing the value of rm can enhance the thermal gradient inside
the concentrator. We can derive the Jacobian matrix J̃ in the core as J̃ = diag [c, c],
and that for the shell as J̃ = diag [d, dr/ (r − f )]. The initial wavelike tempera-
ture field in the core turns into T = 40 sin [β (x/c)] + 323 K, and that in the shell
becomes T = 40 sin {β [(r − f ) x/ (dr)]} + 323 K (Fig. 3.3a). The thermal waves
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Fig. 3.2 a Schematic diagram of cloaking. b–d Simulations with an obstacle in the center. e–g
Simulations with an obstacle coated by a cloak. Background parameters:W = 20 cm, H = 10 cm,
ρ = 1000 kg/m3, C = 4200 J kg−1 K−1, σ = 0.6 W m−1 K−1, and v = 0.1 cm/s. The obstacle
is without motion, and has only a different parameter of σ = 120 W m−1 K−1 from background
parameters. Cloaking parameters: the product of density and heat capacity is ρC (r − b) /

(
a2r
)
; the

real part of the complex thermal conductivity is diag [(r − b) σ/r, rσ/ (r − b)]; and the velocity is
v [a cos θ, −ar sin θ/ (r − b)]† with r1 = 2.5 cm, r2 = 3.5 cm, a = 2/7, and b = 2.5 cm. Adapted
from Ref. [6]

at t = 10 s and t = 20 s are shown in Fig. 3.3b and c, respectively. The thermal wave
in the center is concentrated indeed.

The transformation of rotating is r = r ′, θ = θ ′ + θ0 for 0 < r ′ < r1, and θ =
θ ′ + h (r − r2) for r1 < r ′ < r2. Here, h = θ0/ (r1 − r2), and θ0 is rotating angle.
We can derive the Jacobian matrix in the core as J̃ = diag [1, 1], and that in the
shell as J̃ = [(1, 0) , (hr, 1)]. The initial wavelike temperature field in the core
turns into T = 40 sin [β (x cos θ0 + y sin θ0)] + 323 K, and that in the shell turns
into T = 40 sin {β {x cos [h (r − r2)] + y sin [h (r − r2)]}} + 323 K (Fig. 3.3d). The
thermal waves at t = 10 s and t = 20 s are shown in Fig. 3.3e and f, respectively. We
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Fig. 3.3 Simulations of a–c concentrating and d–f rotating. The system sizes (W , H , r1,
and r2) and background parameters (ρ, C , σ , and v) are the same as those for Fig. 3.2.
Core parameters in a–c: ρC/c2, σ , and cv. Shell parameters in a–c: ρC (r − f ) /

(
d2r
)
,

diag [(r − f ) σ/r, rσ/ (r − f )], and v [d cos θ, −dr sin θ/ (r − f )]† with rm = 3.2 cm, c =
25/32, d = 10/3, and f = −49/6 cm. Core parameters in d–f : ρC , σ , and v [cos θ0, sin θ0]†.
Shell parameters in d–f : ρC , σ

[
(1, hr) ,

(
hr, h2r2 + 1

)]
, and v [cos θ, hr cos θ − sin θ ]† with

θ0 = π/6 rad and h = −π/6 rad/cm. Adapted from Ref. [6]

can observe that the direction of thermal wave in the center is rotated by θ0 = π/6
anticlockwise.

Here, we only apply a single coordinate transformation to realize a single func-
tion. If one combines different coordinate transformations, it is possible to design
devices with functions of cloaking-rotating [20] or concentrating-rotating [21]. Cer-
tainly, model applications are not limited to the above three devices, and many other
applications can also be expected, such as thermal camouflage.

3.4 Experimental Suggestion

The transformation of τ (Eq. (3.11c)) is related to the transformation of v (Eq. (3.13)),
which is mathematically easy but experimentally difficult. Meanwhile, we should
transform the density and heat capacity of moving media, which is also experimen-
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Fig. 3.4 a Schematic diagram of cloaking in porous media. b–d Temperature profiles and e pres-
sure distribution with an obstacle located in the center. f–h Temperature profiles and i pressure
distribution with the same obstacle coated by a cloak. White arrows in e and i denote advec-
tion velocities. PL = 2 × 105 Pa and PR = 0 Pa. The fluid is still water with ρ f = 1000 kg/m3,
C f = 4200 J kg−1 K−1, σ f = 0.6 W m−1 K−1, and ξ = 10−3 Pa s. The background solid is stone
with parameters ρs = 4000 kg/m3, Cs = 840 J kg−1 K−1, σs = 2Wm−1 K−1, η = 10−12 m2, and
φ = 0.8. The obstacle has only different parameters of σ = 400Wm−1 K−1 and η = 2 × 10−10 m2

from the background solid. The parameters in the shell are transformed as Eq. (3.17). Adapted
from Ref. [6]
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tally difficult. Fortunately, many fluid models can help [22–31]. Here, we utilize
porous media [22] to proceed. Then, we should extend transformation complex ther-
motics from pure materials to composite materials. The porous medium is composed
of solid and fluid with solid porosity of φ. We denote the density and heat capacity of
the solid (or fluid) as ρs (or ρ f ) andCs (orC f ), respectively. The effective density (ρ)
and heat capacity (C) of the porous medium can be derived from the weighted aver-
age of the solid and fluid, say, ρC = φρ f C f + (1 − φ) ρsCs . Similar to Eq. (3.2),
the complex thermal conductivities of the solid and fluid can be expressed as

κs = σs + iτs = σs + i
ρsCsvs · β

β2
, (3.14a)

κ f = σ f + iτ f = σ f + i
ρ f C f v f · β

β2
, (3.14b)

where vs and v f are the velocities of the solid and fluid, respectively. The imaginary
part of Eq. (3.14a) generally vanishes (τs = 0)when the solid does notmove (vs = 0).
It is reasonable to handle the real parts of Eq. (3.14) with the method of weighted
average, thus yielding the real part of the effective complex thermal conductivity as
σ = φσ f + (1 − φ) σs [32]. The next question is how to handle the imaginary parts
of Eq. (3.14). We know that the imaginary part τ of the effective complex thermal
conductivity is related to propagation, which has vector property to some extent.
Therefore, it is also physical to use the method of weighted average to derive the
effective imaginary part, say, τ = φτ f + (1 − φ) τs . Therefore, the effective complex
thermal conductivity κ of the porous medium can be expressed as

κ = σ + iτ = φσ f + (1 − φ) σs + i
[
φτ f + (1 − φ) τs

] ≡ φκ f + (1 − φ) κs .

(3.15)
Equation (3.15) is the second key result, describing the effective complex thermal
conductivity of composite materials. By substituting Eq. (3.15) into Eq. (3.1), we
can obtain the dispersion relation in porous media,

ω = φρ f C f

ρC
v f · β + (1 − φ) ρsCs

ρC
vs · β − i

σβ2

ρC
. (3.16)

When φ = 1, the porous medium becomes pure fluid, and Eq. (3.16) is reduced to
Eq. (3.3) naturally.

With the understanding of Eq. (3.15), we can still use the result of Eq. (3.11),
but it is not enough. We should consider the Darcy law and mass conservation. The
Darcy law indicates that the origin of advection velocity is pressure difference, say,
v = − (η/ξ)∇P where η is permeability, ξ is dynamic viscosity, and P denotes
pressure. Since the pressure field is stable, density does not change with time and
mass conservation is satisfied naturally. With these two physical conditions, we can
obtain the transformation rule in porous media,
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(
ρ f C f

)′ = ρ f C f , (3.17a)

σ ′
f = σ f , (3.17b)

(ρsCs)
′ = (ρC)′ − φρ f C f

1 − φ
, (3.17c)

σ ′
s = σ ′ − φσ f

1 − φ
, (3.17d)

η′ = J̃η J̃ †

det J̃
, (3.17e)

where (ρC)′ and σ ′ are given by Eqs. (3.11a) and (3.11b), respectively. Equa-
tion (3.17) is the third key result, revealing the theory of transformation complex
thermotics in porous media. We only transform the parameters of solids and avoid
transforming advection velocities and moving fluids directly. Therefore, the physi-
cal problems for experiments have been solved, and the remaining problems are to
find practical materials with anisotropic and inhomogeneous thermal conductivities
and permeabilities, which have been widely studied based on multilayered struc-
tures [33–42].

Figure3.4a shows the schematic diagram of our experimental suggestion. We use
two modules: the heat transfer in porous media and the Darcy law. The left and right
boundaries are also set at high pressure (PL ) and low pressure (PR). We take the
wave vector β = 2πm/W with m = 10, and the time period of the thermal wave
is t0 = 24 s according to Eq. (3.16) with vs = 0. The initial wavelike temperature
field (Fig. 3.4b and f) are the same as those in Fig. 3.2b and e. If there does not exist
a cloak coating the obstacle, the thermal wave (Fig. 3.4c and d) and the pressure
field (Fig. 3.4e) are strongly distorted. In contrast, a cloak can avoid the distortion
of the thermal wave (Fig. 3.4g and h) and the pressure field (Fig. 3.4i). The thermal
wave in Fig. 3.4h also has energy loss because of the positive real part of κ . After
propagating for one period (24 s), the thermal wave in Fig. 3.4h approximately gains
a phase difference of 2π , thus being at the same position as Fig. 3.4f. We also pro-
vide experimental suggestions for concentrating and rotating, whose parameters are
designed according to Eq. (3.17). The simulation results are shown in Fig. 3.5a–d
and e–h, respectively. The concentrating and rotating effects are achieved indeed
with a porous media. Therefore, the predictions of Eqs. (3.15)–(3.17) are physical,
confirming the validity of transformation complex thermotics in compositematerials.

3.5 Conclusion

Wehave coined a complex thermal conductivityκ and a complex conduction equation
(say, complex thermotics) to unify conduction and advection. The real and imagi-
nary parts of κ correspond to conduction and advection, respectively. We have also
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Fig. 3.5 Simulations of a–d concentrating and e–g rotating in porous media. The system sizes
and background parameters are the same as those for Fig. 3.4. Other parameters are designed with
Eq. (3.17). Adapted from Ref. [6]

proved the form-invariance of the complex conduction equation under coordinate
transformations and derived the principle for transforming complex thermal conduc-
tivities. The current theory allows us to control thermal waves flexibly. Three practi-
cal devices have been designed with cloaking, concentrating, and rotating functions.
Experimental suggestions are also provided, with the method of weighted average
to derive the effective complex thermal conductivities of composite materials such
as porous media.
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3.6 Exercise and Solution

Exercise
1. Prove that a complex conduction equation can also describe the conduction-
advection process in porous media.
Solution
1. The conductive energy density E1 is

E1 = −σ∇T . (3.18)

The advection energy density induced by moving fluids E2 is

E2 = φρ f C f v f T, (3.19)

and that induced by moving solids E3 is

E3 = (1 − φ) ρsCsvsT . (3.20)

Therefore, the total energy E that flows into the closed surface � from time t1 to t2
is

E = −
t2∫

t1

�

�

n · (E1 + E2 + E3) dSdt = −
t2∫

t1

�
�

∇ · (E1 + E2 + E3) dVdt,

(3.21)
where � is the region enclosed by the surface �, n is unit normal vector, dS is the
surface element, and dV is the volume element.

On the other hand, the absorbed energy E ′ can also be derived from the thermo-
dynamic formula

E ′ =
�

�

[ρCT (t2) − ρCT (t1)] dV =
t2∫

t1

�

�

ρC

(
∂T

∂t

)
dVdt. (3.22)

According to the lawof energy conservation, theremust be E = E ′, andwe canderive
the energy equation of the conduction-convection process in a porous medium as

ρC
∂T

∂t
+ ∇ · [−σ∇T + φρ f C f v f T + (1 − φ) ρsCsvsT

] = 0. (3.23)

With the effective complex thermal conductivity of the porous media (Eq. (3.15)),
Eq. (3.23) can be reduced to

ρC
∂T

∂t
+ ∇ · (−κ∇T ) = 0. (3.24)
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Therefore, the conduction-advection process in porous media can be still described
by a complex conduction equation where ρC and κ are the weighted average of
solids and fluids.
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Chapter 4
Theory for Thermoelectric Effect
Control: Transformation Nonlinear
Thermoelectricity

Abstract Temperature-dependent (nonlinear) transformation thermotics provides
a powerful tool for designing multifunctional, switchable, or intelligent metama-
terials in diffusion systems. However, its extension to multiphysics remains stud-
ied, in which the temperature dependence of intrinsic parameters is ubiquitous.
Here, we theoretically establish a temperature-dependent transformation method
for controlling multiphysics. Taking thermoelectric transport as a typical case,
we prove the form invariance of its temperature-dependent governing equations
and formulate the corresponding transformation rules. Our finite-element simula-
tions demonstrate robust thermoelectric cloaking, concentrating, and rotating per-
formance in temperature-dependent backgrounds. We further design two practi-
cal applications with temperature-dependent transformation: an ambient-responsive
cloak-concentrator thermoelectric device that can switch between cloaking and con-
centrating; an improved thermoelectric cloak with nearly-thermostat performance
inside. Our theoretical frameworks and application designs may provide guidance
for efficiently controlling temperature-relatedmultiphysics and enlighten subsequent
intelligent multiphysical metamaterial research.

Keywords Transformation nonlinear thermoelectricity · Thermoelectric
coupling · Nonlinear parameters

4.1 Opening Remarks

Recent advances in metamaterials and metadevices for controlling diffusion systems
have witnessed a development tendency of adaptability, adjustability, and integra-
tion [1–5]. The nonlinear transformation thermotics [6–8], evolving from the linear
transformation theory [9–13], provides a definite method to exactly map the diffusive
single-field distribution to a required one in temperature-dependent backgrounds.
On the basis of it, metamaterial research for manipulating diffusive flows achieves
enhanced convertibility [14–17] and intellectualization [18–21].

However, in practical applications, it is important to consider how to manipulate
multiphysics, which is ubiquitous in nature, industry, and daily life. Until now, almost
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all efforts in controlling multiphysics have been confined to linear medium [22–30].
This approximation may not only deviate from practical situations to some extent
but also limit the advancement of manipulating multiple fields. Referring to thermo-
electric(TE) effects [31–33], temperature-dependent transport processes have been
investigated due to the electron-phonon couplingmechanism [34–36] or strong inter-
action in quantum-dot systems [37, 38]. At the macroscopic level, the nonlinearity
of material is often embodied in temperature-dependent thermal conductivities, elec-
trical conductivities, and Seeback coefficients [39], which may introduce better TE
performance beyond linear response to temperature or voltage bias [40]. In detail,
the thermal conductivity κ may have a power-law form T n (n is a real number) with
different experiential values of n for different conditions or materials, which induce
different electrical conductivities according to the Wiedemann-Franz law [41]. The
Seeback coefficient S is usually directly proportional to T for metals and some semi-
conductors [42]. Although nonlinear transformation thermotics can be extended to
decoupled multiphysics readily due to the form similarity of independent governing
equations, it needs to be further studied if the nonlinear transformation theory still
works in regulating coupled multiphysical fields like thermoelectricity.

Inspired by nonlinear transformation thermotics [6–8], we consider the
temperature-dependent TE transport where material properties and/or spatial trans-
formation operations are temperature dependent. In this way, functions of passive
devices may become flexible and automatically adapt to changes in environments.
Our study represents an example of applying the temperature-dependent transforma-
tion theory to design intelligent multiphysical metamaterials andmetadevices, which
can be generalized to other multiphysics.

4.2 Theoretical Foundation

We consider a nonlinear TE coupling transport process as a typical temperature-
dependent multiphysics case. First, the nonlinearity indicates the temperature depen-
dence of electrical conductivity,which has been adequately studied. The general form
of a temperature-dependent electrical conductivity tensor can be written as σ (T ). On
the other hand, according to the Wiedemann-Franz law [43], a considerable amount
of materials with electron domination in heat conduction will thus have temperature-
dependent thermal conductivity tensors κ(T ). In addition, a nonlinear Seebeck coef-
ficient tensor is given as S(T ) without loss of generality. When the temperature and
voltage biases are applied on the TE medium simultaneously, the coupled heat and
electrical currents will be induced by each other separately besides their respective
independent transport. Thus, the constitutive relations of electric current density J
and heat current density JQ can be described as [44, 45]

J = −σ (T )∇μ − σ (T )S(T )∇T,

JQ = −κ(T )∇T + T Str(T )J,
(4.1)
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where μ and T are position-related electrochemical potential and temperature, and
Str(T ) is the transpose of S(T ). Charge and heat flows are coupled by the Seebeck
coefficient S(T ). At the steady state with local equilibrium, the governing equations
of TE transport are expressed as [44, 45]

∇ · J = 0,

∇ · JQ = −∇μ · J .
(4.2)

In contrast with single physics, TE coupling transport leads to the generation of a
heat source term, namely, −∇μ · J , which can be interpreted as a Joule heating
result. With the Onsager reciprocal requirement [46], electrical and thermal conduc-
tivity tensors should be symmetric. Thus, we can determine that σ (T ) = σ tr(T ) and
κ(T ) = κ tr(T ). Substituting Eq. (4.1) into Eq. (4.2), the governing equations can be
rewritten as

∇ · [σ (T )∇μ + σ (T )S(T )∇T ] = 0, (4.3)

and

−∇ · [κ(T )∇T + T Str(T )σ (T )S(T )∇T + T Str(T )σ (T )∇μ]
= ∇μ · [σ (T )∇μ + σ (T )S(T )∇T ]. (4.4)

We are now in the position to prove that Eqs. (4.3) and (4.4) satisfy form invari-
ance under arbitrary coordinate transformation, so that the transformation theory is
still valid in the temperature-dependent TE transport process. In a curvilinear coordi-
nate system with a set of contravariant bases {gi , g j , gk}, a group of covariant bases
{gi , g j , gk}, and corresponding contravariant components (xi , y j , zk), the compo-
nent form of Eq. (4.3) can be expressed as

∂i [√gσ i j (T )∂ jμ] + ∂i [√gσ i j (T )Skj (T )∂kT ] = 0. (4.5)

where g is the determinant of the matrix with components gi j = gi · g j . And the
component form of Eq. (4.4) can be written as

∂ j [√gκ jk(T )∂kT + T
√
g(Str) ji (T )σ i j (T )Skj (T )∂kT + T

√
g(Str) ji (T )σ i j (T )∂ jμ]

= −√
g(∂ jμ)[σ i j (T )∂ jμ + σ i j (T )Skj (T )∂kT ].

(4.6)
where (Str) ji (T ) is the transpose of S j

i (T ). Equations (4.5) and (4.6) have the same
form under different coordinates. The only difference in diverse coordinate systems
is the coefficient g. Here, g is not limited to position dependence and can be writ-
ten as g(T ) if the coordinate transformation is temperature dependent. The theory
for temperature-dependent transformation TE fields allows executing temperature-
dependent coordinate transformations on temperature-dependent TE materials, and
these two kinds of nonlinearitywill be incorporated into transformed physical param-
eters.
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For the simplicity of derivation on transformation rules, we first demonstrate the
linear transformation. Now, consider a bijection f : r �→ r ′, which is smooth enough
from the pretransformed space to the transformed space in the three-dimensional
Euclidean space. Due to the diffeomorphism between the pretransformed space (vir-
tual space) with a chosen set of curvilinear coordinates {x, y, z} and the transformed
space (physical space)with another set of Cartesian coordinates {x ′, y′, z′}, Eqs. (4.3)
and (4.4) can be rewritten as

∇′ · [σ ′(T ′)∇′μ′ + σ ′(T ′)S′(T ′)∇T ′] = 0, (4.7)

and

−∇′ · [κ ′(T ′)∇′T ′ + T ′(S′)tr(T ′)σ ′(T ′)S′(T ′)∇′T ′ + T ′(S′)tr(T ′)σ ′(T ′)∇′μ′]
= ∇′μ′ · [σ ′(T ′)∇′μ′ + σ ′(T )S′(T ′)∇′T ′].

(4.8)
We can find that transformation rules given by Eqs. (4.3) and (4.4) are consistent with
Eqs. (4.7) and (4.8). The transformed κ ′(T ′), σ ′(T ′), and S′(T ′). can be expressed
as

κ ′(T ′(r ′)) = Aκ0(T ( f −1(r ′)))Atr

detA
(4.9)

σ ′(T ′(r ′)) = Aσ 0(T ( f −1(r ′)))Atr

detA
(4.10)

S′(T ′(r ′)) = A−trS(T ( f −1(r ′)))Atr. (4.11)

The linear transformation on temperature-dependent TE background requires tailor-
ing thermal conductivity, electrical conductivity, and Seebeck coefficient described
in Eqs. (4.9)–(4.11).

We then return to the theory of nonlinear TE transformation to perform a
temperature-dependent transformation on temperature-dependent TE backgrounds.
Here, a temperature-dependent transformation means that the transformed opera-
tions are temperature-related, so the corresponding Jacobian matrixes becomeA(T ).
We can see that the transformation rules of linear transformation can easily be gen-
eralized to nonlinear transformation by replacing r ′ with r ′(T ) and replacing A with
A(T ) in Eqs. (4.9)–(4.11).

4.3 Finite-Element Simulation

We now employ these rules to design TE metamaterials on temperature-dependent
backgrounds. Equation (4.10) implies that the Seebeck coefficient remains invariant
after coordinate transformation if the Seebeck coefficient before transformation is
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isotropic, it can be written as S′(T ) = S0(T ) = γ T (γ is constant). The temperature-
dependent electrical conductivity and thermal conductivity satisfy the transformation
rules in Eqs. (4.9) and (4.11). Here, we assign the background thermal conductivity
a trivial scalar expression κ0(T ) = α + βT n (α, β and n are constants). According
to the Wiedemann-Franz law κ/σ = LT (L is the Lorenz number) [43], the back-
ground electrical conductivity can be written as σ0(T ) = (αT−1 + βT n−1)/L . The
transformed material properties can then be expressed as

κ ′(T ) = A(α + βT n)Atr

detA
,

σ ′(T ) = A(α + βT n/(LT ))Atr

detA
,

S′(T ) = γ T .

(4.12)

Here,we consider cloaking, concentrating, and rotating functions in two-dimensional
nonlinear backgrounds. The TE cloak keeps the central region free from heat flows
and currents to maintain constant temperatures and electric potentials without dis-
turbing TE distributions outside, as shown in Fig. 4.1a.We can present the coordinate
transformation relationship of the cloak in polar coordinates (r, θ) as

r ′ = r(r2 − r1)/r2 + r1,

θ ′ = θ,
(4.13)

where r ∈ [0, r2] and r ′ ∈ [r1, r2]. The purpose of a TE concentrator is to collect
more currents and heat flows in the central region to increase the local temperature
gradient without disturbing the TE distribution outside, as shown in Fig. 4.1b. The
detailed coordinate transformation can be given as

r ′′ = r1r/rm (r < rm),

r ′′ = r(r2 − r1)/(r2 − rm) + r2(r1 − rm)/(r2 − rm) (rm < r < r2),
θ ′′ = θ,

(4.14)

where rm is the radius between r1 and r2. A TE rotator serves to rotate the currents
and heat flows with angle θ0 in the central circular region without disturbing the
TE distributions outside, as indicated in Fig. 4.1c. The corresponding coordinate
transformation can be described as

r ′′′ = r,
θ ′′′ = θ + θ0 (r < r1),
θ ′′′ = θ + θ0(r − r2)/(r1 − r2) (r1 < r < r2).

(4.15)

The Jacobian transformation matrix A can be expressed in polar coordinates as

A =
[

∂r∗/∂r ∂r∗/(r∂θ)

r∗∂θ∗/∂r r∗∂θ∗/(r∂θ)

]
, (4.16)
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Fig. 4.1 a–c Schematic graphs of a TE cloak, concentrator, and rotator located in the center of
a temperature-dependent background. Region I, II, and III represent the functional area, trans-
formation layer, and background, respectively. d–f and g–i are simulation results of temperature-
dependent and temperature-independent TE cloak, concentrator and rotator, separately. Background
size is 8 × 8 cm. Inner radius of the transformed layer is r1 = 1 cm and outer radius is r2 = 2 cm.
The virtual radius of concentrator is rm = 1.5 cm, and the rotation angle of rotator is θ0 = 120◦.
The background thermal conductivity of d–f is 100 + 10T 3 W/(m · K), electrical conductivity is
100/T + 10T 2 S/m, and Seebeck coefficient is S = 30T μV/K. The background thermal con-
ductivity of g–i is 1000 W/(m · K), electrical conductivity is 100 S/m, and Seebeck coefficient is
S = 200 μV/K. The left boundary is set as 1000 K and 0.01V, and the right boundary is set as
300K and 0V. Upper and lower boundaries are thermally and electrically insulated. In d–i, color
surfaces represent temperature distribution, black and blue arrows/lines denote thermal and electric
flows/isothermal and isopotential. Adapted from Ref. [47]

where r∗ = r ′, r ′′ or r ′′′ and θ∗ = θ ′, θ ′′ or θ ′′′. Substituting Eqs. (4.13)–(4.15) into
Eq. (4.16), we can obtain the corresponding Jacobian matrices of three metama-
terials. In combination with Eq. (4.12), the transformed thermal conductivity and
electrical conductivity of three metamaterials in the annulus region (r1 < r ′ < r2)
can be expressed as
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κ ′(T ) = (α + βT n) B∗,
σ ′(T ) = (α + βT n)/(LT ) B∗.

(4.17)

where B∗= B′, B′′, and B′′′ corresponding to TE cloaks, concentrators and rotators.
They can be written separately

B′ = diag[(r ′ − r1)/r
′, r ′/(r ′ − r1)],

B′′ = diag

[
(r2 − rm)r ′′ − (r1 − rm)r2

(r2 − rm)r ′′ ,
(r2 − rm)r ′′

(r2 − rm)r ′′ − (r1 − rm)r2

]
,

B′′′ =
([

1,
θ0r ′′′

r1 − r2

]
,

[
θ0r ′′′

r1 − r2
,

(
θ0r ′′′

r1 − r2

)2

+ 1

])
.

(4.18)

For TE cloaks, concentrators and rotators, the electrical conductivities and thermal
conductivities in the center circular region with radius r1 are the same as the back-
grounds, and they can be written as

κ∗(T ) = (α + βT n) diag[1, 1],
σ ∗(T ) = (α + βT n)/(LT ) diag[1, 1]. (4.19)

We then execute finite-element simulations of the designed temperature-
dependent and temperature-independent TE cloak, concentrator, and rotator with the
commercial software COMSOL Multiphysics. We use the steady TE-effect module
in the two-dimensional system to simulate the temperature and potential distributions
of coupled TE fields; the results are shown in the second and third panels of Fig. 4.1,
respectively. In Fig. 4.1d–i, temperature or potential distributions in backgrounds
are inhomogeneous under horizontal external thermal and electrical fields due to
the temperature-dependent parameters, but the cloaking, concentrating, or rotating
functionalities are still valid. To further verify the robustness of the proposed meta-
materials, we subject them to different temperature boundary conditions; see Fig. 4.2.
We retain the electrical boundary conditions and fix the right boundary at 300 K.
With increasing temperatures up to 1500Kat the left boundary, the nonlinearity effect
gradually emerges, which can be seen from the isothermal lines. However, cloaking,
concentrating, and rotating still function effectively. For clarity, the references with
pure backgrounds are also displayed for comparison. Furthermore, we plot the sim-
ulation data of the central lines horizontally crossing the center of metamaterials in
Fig. 4.3. The results are echoed well in region III (outside metamaterials), indicat-
ing no distortion in backgrounds. The relations between temperatures (or potentials)
and positions in region III are not linear but tend to be nonlinear with increasing
high-temperature boundary conditions. In particular, voltages at 0.06–0.08 m show
negative differentials due to the coupled TE effects.
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Fig. 4.2 Simulation results of the temperature-dependent TE cloak, concentrator, and rotator under
different temperature boundary conditions. The parameter settings are the same as those in Fig. 4.1.
The right boundaries are set at 300 K thermally, with electrical grounding. The left boundaries are
separately set at 700 K [a–d], 1100 K [e–h], 1500 K [i–l], and 0.01 V. Black and blue arrows
indicate magnitudes and directions of heat and electric flows, respectively. References in the first
column are bare backgrounds without any internal structures. Adapted from Ref. [47]

4.4 Model Application

A. Ambient-responsive TE cloak-concentrator. Based on the proposed
temperature-dependent transformationTEfield theory, we further design an ambient-
responsive TE cloak-concentrator device as a practical application. Due to the
temperature-dependent features, cloaking and concentrating functionalities func-
tion under different environmental temperature regions, resulting in a switchable
TE cloak-concentrator. Here, we skip the original constitutive parameters and only
consider the parameters after transformation operation. The emphasis of achieving
TE cloak-concentrator is to make transformed thermal conductivity and electrical
conductivity be corresponding to different functions under different temperatures.
Thus we consider temperature-related coordinate transformation to realize it. If we
carefully check the coordinate transformation relationship in Eqs. (4.13) and (4.14),
we can find that Eq. (4.14) has the same form as Eq. (4.13) when rm = 0. Thus, a
temperature-dependent function can be constructed by replacing rm in Eq. (4.14)with
r∗
m(T ), for which the coordinate transformation relationship corresponds to cloak at
r∗
m(T ) = 0 and concentrator at r∗

m(T ) = rm . Equation (4.13) can be rewritten as
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Fig. 4.3 Quantitative comparison between backgrounds assembled with metamaterials and bare
backgrounds. The data are extracted at center lines along the horizontal direction from the simulation
results in Fig. 4.2. Three panels denote the cloak, concentrator, and rotator separately by row. The
left and right columns are temperature and voltage data, respectively. Regions I, II, and III are the
corresponding regions in Fig. 4.1. Adapted from Ref. [47]

r∗
m(T ) = rm

1 + exp[η(T − TC)] . (4.20)

Here, TC is a critical temperature around which r∗
m(T ) can be distinguished by 0 or

rm , as schematically shown in Fig. 4.4a. η is a scaling coefficient for ensuring the
step change around TC . The coordinate transformation of the shell region can be
rewritten as
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Fig. 4.4 TE cloak-concentrator with different functions under different temperature regions. a The
curve of r∗

m(T )/rm with temperature, and TC = 300K, η = 2.5K−1 in this expression of Eq. (4.20).
b–c Simulation results of the TE cloak-concentrator. It exhibits concentration under the temperature
region 300–320 K and cloaking under the temperature region 340–360 K. The higher temperature
and voltage 0.01 V are set at the left boundaries, and the lower temperature and electrical grounding
are set at the right boundaries. d and e are the temperature and voltage curves of the center lines
extracted from simulation results in b and c. Regions I, II, and III are the corresponding regions in
Fig. 4.1. Adapted from Ref. [47]

r ′ = r
r2 − r1

r2 − r∗
m(T )

+ r2
r1 − r∗

m(T )

r2 − r∗
m(T )

,

θ ′ = θ.

(4.21)

where the transformed coordinates are temperature-dependent, which also meets the
requirements of nonlinear transformations. The expressions of transformed thermal
and electrical conductivities can be obtained by replacing rm in Eq. (4.18)with r∗

m(T ),
so expressions can be transformed into TE cloaks when the environment temperature
is higher than TC and into TE concentrators when the environment temperature is
lower than TC .

We present our results more intuitively by finite-element simulation. The simula-
tion results are shown in Fig. 4.4b and c, in accordance with the expected effects. The
device shows the concentrating effect within the temperature region of 300–320 K
and cloaking from 340–360 K. That is, it can automatically transfer the function
from TE cloaking (or concentrating) to TE concentrating (or cloaking) when the
temperature of the environment changes. This direct result of ambient-responsive
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TE parameters is impossible in linear transport processes. Additionally, we extract
the data of temperature and voltage on the central line horizontally crossing the cen-
ter in different temperature regions in Fig. 4.4d and e. Background temperature and
potential data in region III coincide between with- and without-device cases, indicat-
ing that the background is not influenced. Cloaking and concentrating features are
obvious in region I when comparing the slope with pure backgrounds.

The thermal conductivity and electrical conductivity of a TE cloak-concentrator
are anisotropic and can achieve abrupt change in different temperature ranges. It is
difficult for actual natural materials to meet this requirement. Shape memory alloy
may be a candidate to achieve the switch of function [6, 14] due to its sharp deform
with changing temperatures. Thus, We can employ composites of shape memory
alloy and TE materials on the transformation layer to realize the ambient-responsive
TE cloak-concentrator.
B. Improved TE cloak. An improved TE cloak that can maintain a nearly constant
temperature internally is designed. This is different from the existing TE cloak [29],
in which the temperature inside relies on the boundary conditions. Four individ-
ual components compose the cloak, which is placed in a temperature-dependent
background depicted as region III, as shown in Fig. 4.5a. A linear transformation is
executed to region II, where the fixed thermal and electrical conductivities follow
Eq. (4.17). In regions IV and V, the nonlinear transformation is achieved by two
symmetrical equations: Eq. (4.20) and

r∗
m(T ) = rm exp[η(T − TC)]

1 + exp[η(T − TC)] . (4.22)

It is clear that Eqs. (4.20) and (4.22) exhibit opposite behaviors around TC . We
obtain expressions of transformed thermal and electrical conductivities by substitut-
ing them into Eq. (4.19). This operation maymake the internal temperature approach
TC [14, 16]. The temperature and voltage distributions of this cloak are shown
in Fig. 4.5d and f. We obtain simultaneous near-thermostat performance inside the
cloak, while the distributions of temperature and potential remain unchanged out-
side the cloak. For comparison, we also demonstrate the conventional TE cloaks
under the same boundary conditions in Fig. 4.5c and e. Furthermore, for quantita-
tive verification, we extract temperature data of center lines from simulation results;
see Fig. 4.5b. In region I, the temperature tends to TC , marked as a yellow dashed
line. Under changed high or low boundary temperatures, the designed cloak exhibits
robustness in that the internal temperatures deviate to TC , compared with conven-
tional cloaks indicated by solid lines in Fig. 4.5b. In addition, in region III, good fit-
ting of conventional and improved cloaks is visually concluded. Thus, the designed
cloak can improve the thermostat performance internally without loss of concealing
functionalities.
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Fig. 4.5 Improved thermoelectric cloak. a Constituent structure. c and e show the temperature
and potential distributions of a conventional TE cloak, respectively. d and f show the temperature
and potential distributions of the improved TE cloak with near-thermostat functionality inside. The
temperature 400K and voltage 0.01 V are set at the left boundaries, and the temperature 300K
and electrical grounding are set at the right boundaries. b denotes temperature curves of the center
lines extracted from the conventional cloak and improved cloaks. Different colors indicate different
temperature conditions. Adapted from Ref. [47]

4.5 Discussion

We have verified that the form invariance of temperature-dependent TE governing
equations remains valid under a spatial coordinate transformation. The temperature-
dependent transformation emphasizes the transformationoperation, andbackgrounds
candependon temperature simultaneously, usually leading to temperature-dependent
design parameters. Recent studies in pyroelectricity [39–42] have shown that tem-
perature dependence of TE materials is ubiquitous, especially on small scales, due
to the corresponding large bias of temperature or voltage. From this perspective, the
proposed temperature-dependent transformation multiphysics generally applies to
controlling TE fields with naturally existing materials.

As two representative applications of temperature-dependent TE transformation
theory, ambient-responsive TE cloak-concentrator devices and improved TE cloaks
are constructed by executing nonlinear transformation operations in nonlinear back-
grounds. For the former, switching between cloaking and concentrating can be
achieved under different ambient temperature regions. The devices can avoid ther-
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mal or electrical damage caused by high ambient temperatures, and heat and electric
flows can be used effectively under low temperatures. For the latter, the desired tem-
perature TC can be approximately achieved inside the cloak. The thermostat effects
of improved TE cloaks are not rigorous due to the intrinsic limits of transformed
layers. That is, the zero thermal or electrical conductivities can be reached only at
r1, which limits physical spaces with respect to capturing specific temperatures [14,
16]. However, the simulation results show obvious improvement in internal tem-
perature preservation compared with conventional cloaks. Although another solid
scheme may resort to the bilayer design [14, 16], here we verify that the transformed
layers may also play the role of temperature trapper, which may be of benefit in some
situations where the transformation method is employed.

4.6 Conclusion

In summary, the transformation theory on the nonlinearmultiphysical backgrounds is
established, so linear and nonlinear transformations can be performed on the back-
ground. Three nonlinear metamaterials with functions of cloaking, concentrating,
and rotating are demonstrated, confirming the theory. For practical applications,
two temperature-responsive multiphysical devices are designed whose functionali-
ties exceed those of their linear analogies. Our theory and design can be extended
from thermoelectricity to other fields of multiphysics such as thermo-optics or ther-
momagnetics. For example, enhancement of magnetic field on a metal-coated super-
conductor thermomagnetic system will generate Joule heating sources [48]. The
governing equation of the thermomagnetic effect in the superconductor satisfies the
form invariance under a coordinate transformation. Thus, the transformation theory
can be used to control such a thermomagnetic field. Various multiphysical intelli-
gent metamaterials can be expected, whichmay facilitate multiple flow guidance and
benefit the development of self-adaptation in metamaterial design.

4.7 Exercise and Solution

Exercise

1. The ambient-responsive thermoelectric cloak-concentrator designed with
temperature-dependent transformation thermoelectricity can realize functional
switching at different ambient temperatures. How to realize the functional switch
of cloak and concentrator through a coordinate transformation? Please derive the
transformed material parameters.
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Solution

1. Temperature-dependent transformation thermoelectricity requires that the back-
ground material parameters or the coordinate transformations are temperature-
dependent. The temperature-dependent background material parameters can help
heat transfer, and the temperature-dependent coordinate transformation can realize
function switching. Here, we use both temperature-dependent background mate-
rial parameters and coordinate transformations. The transformed material properties
based on temperature-dependent transformation thermoelectricity can be expressed
as

κ ′(T ) = A(α + βT )Atr

detA
,

σ ′(T ) = A(β/L + α/LT )Atr

detA
,

S′ = S0.

(4.23)

The Jacobian transformation matrix A in polar coordinates can be expressed as

A =
[

∂r∗/∂r ∂r∗/(r∂θ)

r∗∂θ∗/∂r r∗∂θ∗/(r∂θ)

]
, (4.24)

Therefore, to obtain the transformed material parameters, the coordinate transfor-
mation must be obtained first. Consider the virtual radius of the concentrator to be
temperature dependent, it can be written as

r∗
m(T ) = rm

1 + expβ(T−TC )
. (4.25)

Here, TC is a critical temperature around which the coordinate transformation is
cloak or concentrator, and β is a scaling coefficient. The coordinate transformation
relationship corresponds to cloak at r∗

m(T ) = 0 and concentrator at r∗
m(T ) = rm . The

coordinate transformation of concentrator can be rewritten as

r ′ = r
r2 − r1

r2 − r∗
m(T )

+ r2
r1 − r∗

m(T )

r2 − r∗
m(T )

,

θ ′ = θ.

(4.26)

Substitute Eq. (4.26) into Eqs. (4.24) and (4.23), the expressions of transformation
electrical conductivity and thermal conductivity in polar coordinates can be expressed
as
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κ ′(T ) = (α + βT )

⎡
⎢⎢⎣

(r2 − r∗
m(T ))r ′ − (r1 − r∗

m(T )r2
(r2 − r∗

m(T ))r ′ 0

0
(r2 − r∗

m(T ))r ′

(r2 − r∗
m(T ))r ′ − (r1 − r∗

m(T ))r2

⎤
⎥⎥⎦ ,

σ ′(T ) = α + βT

LT

⎡
⎢⎢⎣

(r2 − r∗
m(T ))r ′ − (r1 − r∗

m(T ))r2
(r2 − r∗

m(T ))r ′ 0

0
(r2 − r∗

m(T ))r ′

(r2 − r∗
m(T ))r ′ − (r1 − r∗

m(T ))r2

⎤
⎥⎥⎦ .

(4.27)

Equation (4.27) is transformed to transformation parameters of the thermoelectric
cloak when the environment temperature is higher than TC , and to transformation
parameters of the thermoelectric concentrator when the environment temperature
is lower than TC . Thus, we use Eq. (4.27) to realize the function switching under
different ambient temperatures.
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Chapter 5
Theory for Zero-Index Conductive
Cloaks: Constant-Temperature Scheme

Abstract In this chapter,we propose an exact approach to an effectively infinite ther-
mal conductivity with a constant-temperature boundary condition, which an external
thermostatic sink can easily realize. Since (effectively) infinite thermal conductiv-
ity corresponds to zero refractive indexes in photonics, it has direct applications in
designing zero-index thermal metamaterials. Therefore, we experimentally demon-
strate zero-index thermal cloaks, which can work in highly conductive backgrounds
with simple structures. These results provide insights into thermal management with
effectively infinite thermal conductivities.

Keywords Effectively infinite thermal conductivity · Constant-temperature
boundary conditions · Zero-index thermal cloaks

5.1 Opening Remarks

Thermal conductivity plays a crucial role in heat transfer, and extreme (zero and
infinite) thermal conductivities are always a research focus due to their excellent
properties. For low thermal conductivities, a recent study reported that the thermal
conductivity of ceramic aerogel could be as low as 0.0024 W m−1 K−1 [1]. For high
thermal conductivities, there is still a long way ahead. Althoughmanymaterials have
high thermal conductivity, such as boron nitride with 600W m−1 K−1 [2], carbon
nanotube with 2300 W m−1 K−1 [3], and graphene with 5300 W m−1 K−1 [4], they
are still far from infinite thermal conductivities.

A recent study reported that the effective thermal conductivity of moving fluids
could approximately tend to infinity [5]. Such an effectively infinite thermal con-
ductivity requires the velocity of moving fluids to be also infinite, which cannot be
exactly realized. To go further, we propose an exact approach to effectively infinite
thermal conductivities with simple structures. By applying a constant-temperature
boundary condition to an object with a finite thermal conductivity, the object can
effectively have infinite thermal conductivity. Meanwhile, an external thermostatic
sink can easily realize the constant-temperature boundary condition, which is bene-
ficial for practical applications.

© The Author(s) 2023
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Since (effectively) infinite thermal conductivities are in analogue of zero refractive
indexes in photonics [6–11], they can be used to design zero-index thermal metama-
terials. We take thermal cloaking [12–21] as an example, which can be realized by
transformation thermotics [12, 13] or scattering cancellation [15–17]. Here, we use
infinite thermal conductivity to realize zero-index thermal cloaks, which can work in
highly conductive backgrounds with simple structures. Specifically, if the previous
bilayer scheme [15–17] is applied to a highly conductive background (such as copper,
400W m−1 K−1), the thermal conductivity of the inner shell is zero, and that of the
outer shell should be larger than 400W m−1 K−1. However, few common materials
have thermal conductivities higher than 400W m−1 K−1 [5]. Although some rare
materials like diamond have high thermal conductivities, the cost and difficulty of
practical applications also increase. In contrast, if the zero-index scheme is applied,
the core with a constant-temperature boundary condition can effectively have infinite
thermal conductivity. Therefore, the thermal conductivity of the outer shell can be
smaller than 400W m−1 K−1, and many common materials such as aluminum can
be applied. Therefore, the zero-index scheme is free from the thermal conductivities
of backgrounds.

5.2 Thermal Zero Index Connotation

The Fourier law describes thermal conduction, namely J = −κ∇T , where J is the
heat flux, κ is the thermal conductivity, and T denotes temperature. To understand
the temperature field effect of infinite thermal conductivity (i.e., zero-index thermal
conductivity), we put a two-dimensional elliptical particle (with thermal conductivity
κp = ∞, actually set as 1010 W m−1 K−1) in the background (with thermal conduc-
tivity κb) and apply a horizontal thermal field K 0. Consequently, the isotherms are
all repelled, and the black arrows (denoting the directions of heat fluxes) are always
perpendicular to the exterior boundary of the particle (Fig. 5.1a). The particle is
isothermal, and a brief proof is as follows. We denote the temperature distribution of
the particle as Tp. By solving the Laplace equation ∇ · (−κ∇T ) = 0, we can derive
Tp as

Tp = −κb

L p1κp + (
1 − L p1

)
κb

K0x1 + T0, (5.1)

where K0 = |K 0|, T0 is the reference temperature, and (x1, x2, x3) denote the Carte-
sian coordinates. L p1 is the shape factor of the particle along x1 axis, which will be
discussed later. Equation (5.1) indicates that whatever value L p1 takes on, if κp = ∞,
Tp is always a constant T0. Physically, since heat fluxes (J = −κ∇T ) do not diverge,
a direct conclusion from κ = ∞ is ∇T = 0. In other words, a finite thermal con-
ductivity with a constant-temperature boundary condition is equivalent to an infinite
thermal conductivity. For comparison, we reset κp to a finite value (κp < ∞, actually
set as 0.026 W m−1 K−1) and apply a constant-temperature boundary condition on
the boundary of the particle (Fig. 5.1b). As a result, the temperature profile and direc-
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Fig. 5.1 aTemperature profilewith an elliptical particle (κp = ∞, actually set as 1010 Wm−1 K−1)
embedded in the background (κb = 400Wm−1 K−1). bTemperature profile with a common particle
(κp < ∞, actually set as 0.026 W m−1 K−1) and a constant-temperature boundary condition with
temperature (Max+Min)/2 embedded in the same background. Here, Max and Min denote the
temperatures of the left and right boundaries, respectively. Rainbow surfaces denote temperature
distributions, and white lines represent isotherms. c Schematic diagram of the zero-index thermal
cloak. A constant-temperature boundary condition is applied to the core boundary, so the core has
an effectively infinite thermal conductivity. Adapted from Ref. [22]

tions of heat fluxes are the same as those in Fig. 5.1(a), thus achieving an effectively
infinite thermal conductivity with a constant-temperature boundary condition. Note
that such an equivalence is only exact for temperature distributions.

5.3 Zero-Index Thermal Cloak

Zero-index metamaterials have been widely explored to manipulate electromagnetic
waves due to their excellent properties [6–11]. We know that the directions of heat
fluxes are always perpendicular to the exterior boundary of the particlewith an (effec-
tively) infinite thermal conductivity (Fig. 5.1a and b). This phenomenon follows zero
refractive indexes in photonics, where electromagnetic waves travel outward verti-
cally from materials with zero refractive indexes. Therefore, (effectively) infinite
thermal conductivities can be directly used to design zero-index thermal metamate-
rials.

Zero-index thermal cloaks are a typical example of zero-index thermal metama-
terials, which can be realized by introducing thermal convection [5]. Such a scheme
requires the velocity of moving fluids to be infinite, which cannot be exactly realized,
thus called near-zero-index thermal cloaks. In contrast, the present approach can real-
ize exact-zero-index thermal cloaks with simple structures because only an external
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thermostatic sink is required to realize a constant-temperature boundary condition.
In a word, thermal zero-index parameters indicate that thermal conductivities are
(effectively) infinite. We apply a constant-temperature boundary condition on the
core to realize an effectively infinite thermal conductivity, so the present thermal
cloaks are also called zero-index thermal cloaks.

Zero-index thermal cloaks are essentially a core-shell structure (Fig. 5.1c). We
denote the thermal conductivities of the core and shell as κc and κs , respectively. The
subscript c (or s) represents the core (or shell) throughout this chapter. For generality,
we consider an ellipsoidal case in three dimensions. The semi axes of the core and
shell along xi axis (i = 1, 2, 3) are denoted as rci and rsi , respectively. The effective
thermal conductivity of such a core-shell structure (denoted as κe) is anisotropic, and
the component along xi axis (denoted as κei ) can be calculated by

κei = κs
Lciκc + (1 − Lci ) κs + f (1 − Lsi ) (κc − κs)

Lciκc + (1 − Lci ) κs − f Lsi (κc − κs)
, (5.2)

where f = rc1rc2rc3/ (rs1rs2rs3) is core fraction. Lci and Lsi are, respectively, the
shape factors of the core and shell along xi axis, which can be calculated by

Lwi = rw1rw2rw3

2

∞∫

0

du
(
u + r2wi

)√(
u + r2w1

) (
u + r2w2

) (
u + r2w3

) , (5.3)

where the subscript w can take c or s, representing the shape factor of the core or
shell. Note that only when the core-shell structure is concentric or confocal, can
Eq. (5.2) predict the effective thermal conductivities exactly.

When a constant-temperature boundary condition is applied, the thermal conduc-
tivity of the core turns to infinity, namely κc = ∞. Then, Eq. (5.2) becomes

κei = κs
Lci + f (1 − Lsi )

Lci − f Lsi
. (5.4)

Equation (5.4) can also be applied to two dimensions as long as we take rw3 = ∞
and f = rc1rc2/ (rs1rs2). Then, Eq. (5.3) can be reduced to Lw1 = rw2/ (rw1 + rw2),
Lw2 = rw1/ (rw1 + rw2), and Lw3 = 0.As an intrinsic property, Lw1 + Lw2 + Lw3 =
1 is always valid no matter in two or three dimensions.

5.4 Finite-Element Simulation

We perform simulations with COMSOL Multiphysics to confirm these theoreti-
cal analyses. Without loss of generality, we discuss two two-dimensional cases,
including a circular one and an elliptical one. Figure5.2a and b show the circu-
lar case where the thermal conductivities of the core and shell are κc = 0.026 and
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Fig. 5.2 Simulations of zero-index thermal cloak. The system size is 20 × 20 cm2. The ther-
mal conductivities of the core and shell are κc = 0.026 and κs = 203 W m−1 K−1, respec-
tively. The thermal conductivities of the background in a–b and c–f are κb = 400 and κb =
diag (358, 270) W m−1 K−1, respectively. The inner and outer radii of the shell in a and b are
rc1 = rc2 = 4 and rs1 = rs2 = 7 cm, respectively. The inner and outer semiaxes of the elliptical
shell in c–f are rc1 = 4, rc2 = 2, rs1 = 7, and rs2 = 6 cm, respectively. The left and right columns
show the temperature profiles without and with a constant-temperature boundary condition, respec-
tively. The constant-temperature boundary condition is set at 298K. The high and low temperatures
are set at 313 and 283K, respectively. The other boundaries are insulated. Adapted from Ref. [22]
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κs = 203 W m−1 K−1, respectively. The thermal conductivity of the background is
set as κb = κe = 400Wm−1 K−1 which is derived from Eq. (5.4). When a constant-
temperature boundary condition is not applied, the isotherms are contracted due
to the smaller effective thermal conductivity of the core-shell structure (Fig. 5.2a).
However, if we apply a constant temperature boundary condition to the boundary
of the core, thermal cloaking can be achieved because the core has an effectively
infinite thermal conductivity (Fig. 5.2b).

We further discuss the elliptical case with the same thermal conductivities of
the core-shell structure, namely κc = 0.026 and κs = 203 W m−1 K−1. Unlike the
circular case, the effective thermal conductivity of the elliptical core-shell struc-
ture is anisotropic. Therefore, we set the thermal conductivity of the background as
(expressed in the Cartesian coordinates) κb = κe = diag (358, 270) W m−1 K−1,
which is also derived from Eq. (5.4). In the presence of a horizontal thermal field, the
smaller effective thermal conductivity of the core-shell structuremakes the isotherms
contracted (Fig. 5.2c), whereas a constant-temperature boundary condition helps us
achieve thermal cloaking (Fig. 5.2d). The results are similar if the system is in the
presence of a vertical thermal field (Fig. 5.2e and f).

5.5 Laboratory Experiment

For experimental demonstration, we fabricate six samples to confirm the six simula-
tions in Fig. 5.2.We use integrated fabrication technology, indicating that the samples
have noweld joints. The three sampleswithout a constant-temperature boundary con-
dition are presented in Fig. 5.3a, c, and e. Air holes are drilled on the copper plate to
realize the designed thermal conductivities of the shell andbackground.Another three
samples with a constant-temperature boundary condition are presented in Fig. 5.3b,
d, and f. By immersing the central hollow cylinders in an external thermostatic
sink with medium temperature, a constant-temperature boundary condition can be
obtained, and effectively infinite thermal conductivity is achieved. Compared with
other active schemes [23–25], our scheme does not require complicated temperature
settings. These six samples’ upper and lower surfaces are covered with transparent
and foamed plastic to reduce environmental interferences. The sample photos of
Fig. 5.3b, d, and f with top view are presented in Fig. 5.3g–i, respectively.

Then, we use the Flir E60 infrared camera to detect temperature distributions. The
measured results corresponding to the six samples in Fig. 5.3 are presented in the
left two columns of Fig. 5.4. We also perform finite-element simulations according
to these six samples, and corresponding results are shown in the third and fourth
columns of Fig. 5.4. For quantitative analyses, we plot the temperature distributions
at x1 = −8 cm for the first two rows and x2 = −8 cm for the last row (the origin is in
the center of each simulation). The experiments and simulations agree well with each
other (Fig. 5.4m–o), thus confirming the feasibility of realizing zero-index thermal
cloaks with effectively infinite thermal conductivities.
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Fig. 5.3 Schematic diagrams of six samples and experimental setup. The thermal conductivities of
air and copper are 0.026 and 400W m−1 K−1, respectively. The size of each sample is 20 × 20 ×
4 cm3 with a copper thickness of 2mm. The central air hole in a and b has a radius of 4cm, and that
in c–f has semiaxes of rc1 = 4 and rc2 = 2 cm. The effective shell radius in a and b is 7 cm, and the
effective shell semiaxes in c–f are rs1 = 7 and rs2 = 6 cm. The air holes in the shell regions in a–f
have the same radius of 1.6mm, thus making the effective thermal conductivity of the shells to be
203W m−1 K−1. The air holes in the background regions in c–f have a major semi axis of 2.9mm
and a minor one of 0.8mm, thus making the effective thermal conductivity of the backgrounds to
be diag (358, 270) W m−1 K−1. The distance between air holes in the shell region is 5mm, and
that in the background region is 10mm. The temperatures of the hot, medium and cold sources are
set at 313, 298, and 283K, respectively. g–i Sample photos of b, d, and f, respectively. Adapted
from Ref. [22]

The cloaking effect is also robust under more complicated conditions such as
different directions of external fields, point heat sources, and three dimensions. Fur-
thermore, thermal cloaking can be extended to other functions such as thermal cam-
ouflaging. Nevertheless, the scheme is applicable for only stable states because the
temperature of a constant-temperature boundary condition is fixed.

5.6 Conclusion

We have shown that an effectively infinite thermal conductivity can be precisely
achieved by applying a constant-temperature boundary condition to a common
material. Meanwhile, an external thermostatic sink can easily realize the constant-
temperature boundary condition. The current approach has direct applications in
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Fig. 5.4 Measured results (left two columns) and simulated results (the third and fourth columns)
of the six samples in Fig. 5.3. Dashed lines are plotted for the convenience of comparison. (m) and
(n) show the temperature distributions at x1 = −8 cm (the origin is in the center of each simulation),
and (o) shows the temperature distributions at x2 = −8 cm. Each line corresponds to a figure shown
in the legend. Adapted from Ref. [22]

designing zero-index thermal cloaks, which can work in highly conductive back-
grounds with simple structures. These features, such as accuracy and simplicity,
benefit practical applications. This work applies a constant-temperature boundary
condition to realize effectively infinite thermal conductivity, which is expected to
design more zero-index thermal metamaterials.

5.7 Exercise and Solution

Exercise

1. Derive Eq. (5.2).

Solution

1. Suppose the semiaxes of the core and shell along xi to be rci and rsi , respectively.
The conversion between the Cartesian coordinates and ellipsoidal (or elliptical) coor-
dinates can be expressed as

∑

i

x2i
ρ j + r2ci

= 1, (5.5)
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with j = 1, 2 for two dimensions and j = 1, 2, 3 for three dimensions. ρ1
(
> −r2ci

)

represents the boundary of an ellipse or an ellipsoid. For example, ρ1 = ρc (= 0) and
ρ1 = ρs can represent the inner and outer boundaries of the shell, respectively. In the
presence of a thermal field along xi , the heat conduction equation can be expressed
as

∂

∂ρ1

(
g (ρ1)

∂T

∂ρ1

)
+ g (ρ1)

ρ1 + r2ci

∂T

∂ρ1
= 0, (5.6)

with g (ρ1) = ∏

i

(
ρ1 + r2ci

)1/2
. Accordingly, the temperatures of the core Tci , shell

Tsi , and matrix Tsi can be expressed as

Tci = Aci xi , (5.7a)

Tsi = (Asi + Bsiφi (ρ1)) xi , (5.7b)

Tmi = (Ami + Bmiφi (ρ1)) xi , (5.7c)

with φi (ρ1) =
∫ ρ1

ρc

((
ρ1 + r2ci

)
g (ρ1)

)−1
dρ1. Aci , Asi , Bsi , and Bmi are determined

by the following boundary conditions,

Tci (ρ1 = ρc) = Tsi (ρ1 = ρc) , (5.8a)

Tmi (ρ1 = ρs) = Tsi (ρ1 = ρs) , (5.8b)

κc
∂Tci
∂ρ1

(ρ1 = ρc) = κs
∂Tsi
∂ρ1

(ρ1 = ρc) , (5.8c)

κm
∂Tmi

∂ρ1
(ρ1 = ρs) = κs

∂Tsi
∂ρ1

(ρ1 = ρs) . (5.8d)

We also need the following two mathematical skills,

∂xi
∂ρ1

= xi
2

(
ρ1 + r2ci

) , (5.9a)

∂

∂ρ1
(φi (ρ1) xi ) = xi

2
(
ρ1 + r2ci

)φi (ρ1) + xi(
ρ1 + r2ci

)
g (ρ1)

= xi
2

(
ρ1 + r2ci

)
(

φi (ρ1) + 2

g (ρ1)

)
. (5.9b)

Based on Eqs. (5.7) and (5.9), Eq. (5.8) can be written as

Aci = Asi + Bsiφi (ρc) , (5.10a)

Ami + Bmiφi (ρs) = Asi + Bsiφi (ρs) , (5.10b)

κc Aci = κs

(
Asi + Bsiφi (ρc) + 2Bsi

g (ρc)

)
, (5.10c)
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κm

(
Ami + Bmiφi (ρs) + 2Bmi

g (ρs)

)
= κs

(
Asi + Bsiφi (ρs) + 2Bsi

g (ρs)

)
. (5.10d)

To further simplify φi (ρc) and φi (ρs), we define the shape factors of the core and
shell along xi as Lci and Lsi , respectively. They can be written as

Lci = g (ρc)

2

∞∫

ρc

dρ1(
ρ1 + r2ci

)
g (ρ1)

, (5.11a)

Lsi = g (ρs)

2

∞∫

ρs

dρ1(
ρ1 + r2ci

)
g (ρ1)

, (5.11b)

with g (ρc) = ∏

i
rci , g (ρs) = ∏

i
rsi , and

∑

i
Lci = ∑

i
Lsi = 1. For two dimensions,

the shape factors can be further reduced to

Lc1 = rc2
rc1 + rc2

, (5.12a)

Lc2 = rc1
rc1 + rc2

, (5.12b)

Ls1 = rs2
rs1 + rs2

, (5.12c)

Ls2 = rs1
rs1 + rs2

. (5.12d)

Based on Eq. (5.11), we can derive

φi (ρc) =
ρc∫

ρc

dρ1(
ρ1 + r2ci

)
g (ρ1)

= 0, (5.13a)

φi (ρs) =
⎛

⎝
∞∫

ρc

−
∞∫

ρs

⎞

⎠ dρ1(
ρ1 + r2ci

)
g (ρ1)

= 2Lci

g (ρc)
− 2Lsi

g (ρs)
. (5.13b)

With Eq. (5.10), we can derive Aci , Asi , Bsi , and Bmi . By setting Bmi = 0, we can
further derive the effective thermal conductivity of the core-shell structure,

κe = κm = κs
Lciκc + (1 − Lci ) κs + (1 − Lsi ) (κc − κs) f

Lciκc + (1 − Lci ) κs − Lsi (κc − κs) f
, (5.14)

with f = g (ρc) /g (ρs) = ∏

i
rci/rsi , indicating area fraction for two dimensions and

volume fraction for three dimensions.
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Chapter 6
Theory for Hele-Shaw Convective
Cloaks: Bilayer Scheme

Abstract Thermal convection is one of the three basic heat transfer mechanisms,
profoundly influencing the natural environment, social production, and daily life.
However, the high complexity of governing equation, which describes the coupling
of heat and mass transfer, makes it challenging to manipulate thermal convection
at will in both theory and experiment. Here, we consider the heat transfer in Hele-
Shaw cells, a widely-used model of Stokes flow between two parallel plates with a
small gap, and apply the scattering-cancellation technology to construct convective
thermal materials with bilayer structures and homogeneous isotropic materials. By
tailoring thermal conductivity and viscosity, we demonstrate cloaking devices that
can simultaneously hide obstacles from heat and fluid motion and verify their robust-
ness under various thermal-convection environments by numerical simulations. Our
results show that about 80%of the temperature and pressure disturbances in the back-
ground caused by obstacles can be eliminated by the cloak. The developed approach
can be extended to control other convection-diffusion systems or multiphysics pro-
cesses. The results pave a promising path for designing various metadevices such as
concentrators or sensors.

Keywords Hele-Shaw flows · Convective cloaks · Bilayer scheme

6.1 Opening Remarks

Metamaterials [1] (andmetadevices [2]), usuallymade of artificially-structured com-
posites, have been a powerful tool tomanipulate physical fields inmany realms [1–4],
and provide functions beyond naturally-occurring materials. One typical method-
ology to design metamaterials is the transformation optics [5] and its counter-
parts in other physical fields [3]. However, the requirement for inhomogeneous and
anisotropic parameters makes it difficult to fabricate devices designed by transforma-
tion optics. To overcome this bottleneck, scattering-cancellation technology (SCT)
has beendeveloped and successfully used in electromagnetism [6] andother fields [7].
Generally speaking, SCTcan realize a similar function to transformationoptics,while
it only needs bilayer or monolayer structures and homogeneous isotropic bulk mate-
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rials. SCT is sometimes called ‘solving the equation directly’ sometimes. The main
procedure of this method is inversely finding the coefficients (material parameters) of
the equation according to the required solution with analytical techniques. One type
of equation that SCT often deals with is the Laplacian-type equation, which is just a
Laplace equation in a homogeneous isotropic medium. Laplacian-type equations can
describe the magnetic scalar potential in static magnetic fields [8], the temperature or
electrostatic potential in heat or electrical conduction [9–14], or the liquid pressure
in a potential flow [15, 16]. Based on them, various bilayer or monolayer metama-
terials have been realized in the mentioned scenarios and independent multiphysics
[17–20].

However, although thermal convection is one of the primarymodes of heat transfer
and plays an essential role in nature and human society, effective techniques like SCT
for manipulating it are still lacking. This dilemma may result from the complexity
of its multiphysical governing equations. In detail, convective heat flux contains not
only an advection term due to the movement of fluid medium but also a conductive
term in the nonisothermal flow. Therefore, the governing equations consist of the
conduction-advection heat equations, the law of continuity for fluid motion, and the
Navier-Stokes equations, which make it challenging to apply transformation optics
or SCT, especially the Navier-Stokes equation. As a result, although thermal meta-
materials [21, 22] have been developed for more than a decade and show potential
in practical applications such as thermal management of electronic devices, thermal
camouflage imaging, and radiative cooling [23–25], the progress of metamaterials
in thermal convection seems insufficient.

Current advances in convective thermal metamaterials mainly benefit from choos-
ing an appropriate simplified model of the Navier-Stokes equations. For example,
Darcy’s law describes the creeping flow or Stokes flow (Reynolds number Re� 1) in
porousmedia [26]. By engineering the permeability of porousmedia, somefluid-flow
metamaterials have been designed [27, 28], and this technique has been combined
with the tailoring method of thermal conductivity to design convective thermal meta-
materials [29–33]. In theory, convective thermal metamaterials can control heat flux
and flow field simultaneously [29, 30]. However, due to the limited practical means
to tailor the permeability, reports on experimentally realizing such fluid-flow or con-
vective metamaterials are still scarce. More recently, another hydrodynamic model
has been used to control fluid motion, i.e., the Stokes flow inside two parallel plates,
and a series of experimental works have been reported [34–37]. The gap between
two plates is much smaller than the characteristic length of the other two spatial
dimensions, so the model is also called the Hele-Shaw flow or Hele-Shaw cell [38].
As an extension of the Poiseuille flow [39], the Hele-Shaw flow is quite a fundamen-
tal model in many fields like viscous fingering [40], microfluidics [41], parametric
resonance [42], and flow-induced choking [43]. The fluid pressure in the Hele-Shaw
cell also satisfies a Laplacian-type equation [44], and SCT has been employed to
construct a monolayer fluid-flow cloak in the cell [15].

Here, we develop SCT to control thermal convection in a Hele-Shaw cell and
employ it to seek suitable thermal conductivity and viscosity of artificial structures.
By surrounding an area with two layers of homogeneous isotropic material, we
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can get the desired temperature and pressure distribution (and thus heat flow and
velocity distribution) inside and outside these two layers. Unlike previous works on
SCT, which dealt with single or decoupled fields, we investigate how to apply SCT
to a set of coupled equations and simultaneously regulate multiphysical fields. As an
application, we design a bilayer convective (thermo-hydrodynamic) cloak that can
prevent obstacles from simultaneously disturbing the external thermal andflowfields.
We show how the respective cloaking conditions of heat conduction and fluid motion
are combined and successfully work together in thermal convection. Our design is
further verified by numerical simulation under various convective environments,
showing tough robustness.

6.2 Governing Equation

Given that heat transfers within a Hele-Shaw cell, in which the fluid demonstrates
a creeping flow. The governing equations of this model contain the heat transfer
equation [45]

∇ · (−κ∇T + ρCPT v
) = 0, (6.1)

the law of continuity for fluid motion

∇ · (ρv) = 0, (6.2)

and the Hele-Shaw equation [44]

v = − h2

12μ
∇P, (6.3)

which is a simplification of the Navier-Stokes equation. Here, T is the temperature
and v is the velocity of fluid motion. κ , ρ, CP and μ are the thermal conductivity,
density, specific heat at constant pressure and the dynamic viscosity of the fluid,
respectively. In addition, h is the depth of the Hele-Shaw cell and P is the fluid
pressure. Strictly speaking, Eq. (6.3) gives the average velocity v(x, y) along the
z-axis if the plates of cells are put on the x-y plane, so we can treat the three-
dimensional (3D) model as a two-dimensional (2D) one. Applying the divergence
operator on Eq. (6.3) and comparing it with Eq. (6.2), we can see

∇ ·
(

ρh2

12μ
∇P

)
= 0. (6.4)

In a region where ρ,μ and h are all constants (or the ratio ρh2/μ keeps the same),
Eq. (6.4) is just a Laplace’s equation, and thus the Hele-Shaw flow is a classical
potential flow like theDarcy flow in the porousmedia. On the other hand, substituting
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Eq. (6.3) into Eq. (6.1) to eliminate the velocity term, the heat transfer equation can
be written as

∇ ·
(

κ∇T + ρCPh2T

12μ
∇P

)
= 0. (6.5)

When the velocity is zero everywhere, Eq. (6.5) is also a Laplacian-type equation
known as the Fourier’s law of heat conduction. As mentioned above, various bilayer
metamaterials have been realized in pure heat conduction or potential flows. We aim
to obtain the material parameters to realize similar functions as conduction under the
convective environment.

6.3 Bilayer Scheme and Scattering-Cancellation
Technology

Now we consider the case where both the thermal bias and the pressure bias are
applied on the x direction (see the heat sources and pressures applied in Fig. 6.1;
other boundary conditions will be discussed with simulation validation in Part C of
the Supporting Information), and assume that

∇P = f (r)∇T (6.6)

in the whole space. Moreover, by doing a variable substitution ϕ(r) = f (r) ρCPh2

12μκ
,

Eq. (6.5) can be rewritten as

∇ · (κ (∇T + ϕ (r) T∇T )) = 0. (6.7)

Fig. 6.1 Schematic design for a bilayer convective cloak in a Hele-Shaw cell. a The side view of
the cell. b The top view of this quasi-two-dimensional model (in the x-y plane). Adapted from
Ref. [46]
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If ϕ is a constant in each domain, we can write the heat transfer equation with a
compact form as

∇ ·
(

κ

(
∇

(
T + 1

2
ϕT 2

)))
= ∇ · (κ∇�) = 0, (6.8)

where � = T + 1

2
ϕT 2. This trick (similar to the Kirchhoff transformation in non-

linear heat conduction [47] which has been used in designing nonlinear thermal
metamaterials [48]) makes the governing equation conform to the form of Laplace’s
equation if κ is also a constant. In the framework of bilayer metamaterials, we use
subscript 1, 2, 3, and b to represent the central functional area inside the device, the
inner layer, the outer layer, and the background outside the device, respectively (see
Fig. 6.1b). The radius from inside to outside (corresponding to core, inner and outer
layers in Fig. 6.1a) is R1, R2 and R3.

SCT can be generalized as an inverse analytical calculation of possible material
parameters in each region according to the desired physical field distribution in cer-
tain regions.However,whetherwewant tomodulate temperature or pressure distribu-
tion in a thermal convection environment, these two variables (T and p) do not appear
directly in the Laplace-like Eq. (6.8), but instead, another variable� that is a key dif-
ference between coupled multiphysics and single physics. Fortunately, under certain
conditions (see the derivation details in Part A of the Supporting Information), bilayer
devices such as invisibility cloaks can be realized by simultaneouslymodulating ther-
mal conductivity and viscosity. This cloakwork in both thermal and hydromechanical
fields. Belowwewill deduce the designing parameters of such a cloak.

6.4 Convective Cloak Condition

As generally defined in metamaterials, cloaking can realize invisibility [5]. It means
the scattering signals from an obstacle can be eliminated by a specific device sur-
rounding it (named Criterion I which requires Tb(r; r > R3) = TRef(r; r > R3) in
heat transfer) and the flux cannot flow into the obstacle (named Criterion II which
requires c = 0). For Laplacian-type governing equations with diffusion nature, scat-
tering signals mean distortion of potential (such as temperature, fluid pressure
and electrostatic potential) distribution in the background. Since Eq. (6.8) and the
Fourier’s law have the same form for � and T , we can expect that the thermal
conductivity for a thermal cloak in convection is also similar to its counterpart in
conduction. Of course, as mentioned before, we need to note that the independent
variables and boundary conditions of these two equations are different. Therefore,
the physical meanings of the corresponding conclusions are not exactly the same,
unless there is no advection. In heat conduction, the condition for Criterion I using
the general anisotropic monolayer structure has already been solved out [49], and its
version for the isotropic bilayer scheme is
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κ1 = D1 + D2 + D3 + D4

D1 − D2 − D3 + D4
κ2, (6.9)

where Dn (n = 1, 2, 3, 4) is given by

D1 = − (κ2 + κ3) (κ3 + κb) R
2
1, (6.10a)

D2 = − (−κ2 + κ3) (κ3 + κb) R
2
2, (6.10b)

D3 = (κ2 + κ3) (κ3 − κb) R
2
3, (6.10c)

D4 = (−κ2 + κ3)(κ3 − κb)R
2
1R

2
3/R

2
2 . (6.10d)

In addition, previous works on preventing heat flux from entering into the cloak
usually require that the inner layer is absolutely insulated, meaning that κ2 = 0 [9–
11]. In this case, κ1 can take arbitrary real values, so the denominator in Eq. (6.9)
must be zero, which can result in the familiar relationship [11]

κ3 = R2
3 + R2

2

R2
3 − R2

2

κb. (6.11)

We must emphasize that, by now, Eq. (6.11) can only be seen as the condition
for shielding scattering signals of � in thermal convection. Thermal conductivity
engineering alone is not enough to achieve a cloak (for �) in convection, as our
assumption on f or ϕ requires a certain viscosity distribution. From the condition
that ϕ is a constant (see Part A of the Supporting Information), we should have

μ2 = ∞, μ−1
3 = R2

3 + R2
2

R2
3 − R2

2

μ−1
b . (6.12)

It is interesting that Eq. (6.12) is exactly the condition for a bilayer fluid-flow
cloak [15, 16].

So far, we actuallymake a cloak for the potential� and pressure P .We should still
verify the two criterions for T . First, from �b = �Ref , Pb = PRef and the fact that
the materials in reference and background are the same, we can obtain a differential
equation for Tb − TRef as

∇ (Tb − TRef) = (TRef − Tb)
ρbC P

b h
2
b

12μbκb
∇Pb. (6.13)

In a homogeneous medium, ∇PRef is a uniform field along the x axis, so there
are two general solutions for Eq. (6.13), namely Tb − TRef ≡ 0 and Tb − TRef ∼
exp

(
−∇x Pb

ρbC P
b h

2
b

12μbκb

)
. Since Tb − TRef must vanish on the left and right boundaries,

the only possible solution is the trivial one, so Criterion I is met. Similarly, it can
be deduced from ∇�1 = 0 and ∇P1 = 0 that ∇T1 equals zero. In conclusion, by
tailoring thermal conductivity and viscosity based on Eqs. (6.11) and (6.12), the aim



6.5 Finite-Element Simulation 71

objects can be hidden in heat and fluid fields simultaneously within the artificial
structures.

In our derivation, we do not give the assumption of whether the obstacle is a
solid object or not. Under ideal conditions, the obstacle (and the inner layer) cannot
move, so this concern does not matter. A perfect cloak (κ2 = 0 and μ2 = ∞) does
not care about the material inside since the inner layer isolates internal and external
interactions. An interesting argument is that if the material inside the cloak has an
extremely low conductivity (κ1 → 0) and high viscosity (μ1 → ∞), Criterion II is
met. Otherwise, an imperfect inner layer (with small and positive κ2 and 1/μ2) can
be regarded as approximately insulated and immobile as long as

μ3

μ2
� 1,

μb

μ2
� 1,

κ2

κ3
� 1,

κ2

κb
� 1. (6.14)

In particular, when the inner layer and the central area are occupied by the same
material, the bilayer cloak degenerates to a monolayer cloak.

6.5 Finite-Element Simulation

Now we verify our theoretical design by numerical simulation with the help of com-
mercial finite-element software Comsol Multiphysics. As depicted in Fig. 6.1, the
depth of 2D cell model is an extra parameter in the creeping flow module. In fact,
besides the law of continuity, the governing equation of the Hele-Shaw flow or shal-
low channel approximation in ComsolMultiphysics is∇ p − ∇ · (

μ
(∇v + ∇vT

)) +
12μ

h2
v = 0.When h → 0, this equation is reduced to Eq. (6.4). An alternativemethod

is using the mathematics module to establish and solve Eq. (6.4). For the background
material, we use water as a reference and set κb = 0.6 W m−1 K−1, μb = 10−3 Pa s,
ρb = 1000 kg m−3 and CP

b = 5000 J kg−1 K−1. The depth of the cell is set as
h = 2 × 10−6 m, and the horizontal section (the x-y plane) is a squarewith side length
equal to 2 × 10−4 m. The radius of the central region, inner layer and outer layer
are respectively R1 = 0.25 × 10−4 m, R2 = 0.4 × 10−4 m, and R3 = 0.5 × 10−4 m.
In addition, the depth of the cell, the specific heat, and the density are set the same
everywhere for the uniform product ρCPh2. The applied temperature bias and pres-
sure difference are 10K and 500Pa, respectively. The hot source (303.15K) and the
fluid inlet are set on the left boundary of the whole system, while the cold source
(293.15K) and the fluid outlet are both on the right side. We apply thermal insu-
lation and non-slip conditions on the upper and bottom boundaries. If we do not
consider the boundary layer, based on Eq. (6.3), the flow speed in the reference
is 8.3 × 10−3 m/s. Using 2hb as the characteristic linear dimension, the Reynolds
number for the reference is 1.7 × 10−4, which is consistent with the creeping flow
hypothesis. In practice, we cannot achieve infinite thermal conductivity and zero
viscosity for the cloak. Nevertheless, based on Eq. (6.14), we can set the inner layer
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Fig. 6.2 Simulation results of a convective cloak and its contrast. a1–a3 show the temperature
distribution of the cloak, reference, and the case without a cloak, respectively, with twenty white
isotherms. b1–b3 illustrate the corresponding pressure distributions, also with twenty white isobars.
c or d compares the temperature or pressure particularly in a chosen line segment y = 0 with
data taken from a1–b3. The gray regions with different shades represent the bilayer structure
(−0.5 × 10−4 m < x < −0.25 × 10−4 m and 0.25 × 10−4 m < x < 0.5 × 10−4 m) or the central
obstacle (−0.25 × 10−4 m < x < 0.25 × 10−4 m) of the cloak. Adapted from Ref. [46]

approximately non-conductive and motionless with κ2 = 6 × 10−4 W m−1 K−1 and
μ2 = 100 Pa s. The parameters of the outer layer are κ3 = 2.73 W m−1 K−1 and
μ3 = 2.20 × 10−4 Pa s. Inside the convective cloak, we take κ1 = 2.4 W m−1 K−1

and μ1 = 0.01 Pa s for the fluid material obstacle.
The simulation results of steady temperature and pressure performances are shown

in Fig. 6.2a1–b3. Besides the cloak, ‘Reference’ represents the bare scenario with
neither the cloak nor the obstacle, while ‘Without cloak’ scenario means putting only
the obstacle into ‘Reference.’ According to isotherms and isobars, the temperature
and pressure distributions of the convective cloak in the background are the same as
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the reference. The temperature and pressure inside the cloak are visually invariant
in space. As a comparison, the obstacle distorts isotherms and isobars. In particular,
for intuitive comparison, we detect the data from the line segment y = 0 (−10−4 m
< x < 10−4 m) in Fig. 6.2a1–b3 and plot them in c and d for the temperature and
pressure, respectively. In both c and d, the blue dashed line (‘Cloak’) and black solid
line (‘Reference’) match well in the background. Inside the cloak, the temperature
and pressure patterns for the cloak show plateaus, which indicates the heat flux
is almost zero, and the obstacle region approximately demonstrates no fluid flow.
Further, we can define a ratio measuring the extent to which the disturbance of the
external background by the obstacle is eliminated. The average absolute value of the
temperature difference in the background area between the cloak and the reference
is 0.016K. Its counterpart between the reference and the case without a cloak is
0.095K. So, 82% (≈1 − 0.016/0.095) of the temperature disturbance generated by
the obstacle can be eliminated. The similar ratio for pressure can also be calculated as
77%. If we replace the fluid material obstacle with a solid one, the cloaking function
for heat transfer and fluid flow still works well, although the fluid pressure inside
the cloak is absent for a solid. Also, to make a perfect bilayer cloak with extreme
parameters in numerical simulation, we can set the thermal insulation condition and
the non-slip condition on the boundaries of the inner layer. However, we should
notice the thermal and hydrodynamic fields in the central area (if fluids still occupy
it) cannot be determined without giving extra information, although the background
region would not be disturbed.

In Fig. 6.3, we show the heat flux density and velocity distributions for all the
three convective devices and the reference. The advective heat flux density vector is
defined as ρCP(T − TAmb)v, where the ambient temperature TAmb is 293.15K. From
a–d, it can be verified that the heat and mass fluxes are blocked in the inner layer and
the obstacle, and the fluxes outside the bilayer structure are the same as the reference.
In addition, we can find Reynolds number in the background for the cloak is Re ≈
2.07 × 10−3 if we use R3 as the characteristic scale. It’s known that the boundary
layer can play an important role in thermal convection. Since the non-slip condition is
applied on the upper and bottom boundaries (i.e., y = ±10−4 m), the velocity should
be zero, so we plot the flux data taken from the line segment x = 0 (−10−4 m< y <

10−4 m) in Fig. 6.3e and f. We can see the velocity increases or decreases sharply
near x = −0.5 × 10−4 m or x = 0.5 × 10−4 m in Fig. 6.3d, which corresponds to the
laminar boundary layer. Also, the heat flux exhibits sharp changes near the boundary,
but to a lesser extent than the change in velocity. This feature can be explained by
the Péclet number Pe = Re×Pr (Pr is the Prandtl number). For the reference, Pe
≈ 0.7, so the conductive heat transport and the advective one are comparable in
magnitude. Then, the advective heat flux demonstrating an obvious boundary layer
plus the relatively uniform conductive heat flow results in the patterns in Fig. 6.3f.
The Prandtl number is fixed for the same fluid material, so the Reynolds number
affects the boundary layer. At the same time, according to our previous work [30],
a larger Reynolds number also leads to a change in the temperature distribution
pattern the isotherm area is not uniform. So we observe the cloaking performance
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Fig. 6.3 Simulation results of heat flux density (a and b) and velocity distributions (c and d) for
the cloak and the reference. The contour maps show the magnitude of heat flow or velocity vectors.
The black arrows indicate the vector direction and the lengths of them also represent the vector size.
e or f compares the heat flux density or speed particularly in a chosen line segment (x = 0) with
data taken from a–d. Adapted from Ref. [46]

under different pressure differences in Part B of the Supporting Information and find
our design works well.

We perform a three-dimensional (3D) simulation using the same material and
structure parameters to mimic a more realistic working environment. Here, the shal-
low channel term 12μv/h2 added in the 2D Navier-Stokes equations is not needed.
The inertia term is also included in the governing equations so we actually use the
full 3D incompressible Navier-Stokes equations∇ p − ∇ · (μ (∇v + ∇vT

)) + ρ(v ·
∇)v = 0. The simulation results are shown in Fig. 6.4. Here, because the velocity on
the surface z = ±h/2 is zero, we should notice that the temperature or pressure dis-
tribution on the surface (mainly referring to the planes z = ±h/2) is different from
that on the central plane z = 0, and it is the latter that is of interest in 2D simulations.
From Fig. 6.4, we can see that both the distributions on the surface and the cut plane
show good cloaking effects in a low-speed flow environment.

6.6 Discussion

By now, the coupling between thermal field and fluid movement is unidirectional. In
other words, only the velocity would influence the temperature distribution because
we have not considered the thermal response of fluid properties like density and vis-
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Fig. 6.4 Simulation results using 3D Navier-Stokes equations. a1 and b1 illustrate the temperature
and pressure distributions of the surface, respectively. b1 and b2 show the distributions of the central
x-y plane (z = 0.) Adapted from Ref. [46]

cosity,whichmight be important in a nonisothermal flow.Takingwater as theworking
medium as we have done in his article, the density change is insignificant compared
to viscosity under the applied thermal bias [50]. The dynamic viscosity of water can
be expressed as a function of temperature with three parameters: μ = 10A+ B

T−C Pa
s, where A = −4.5318, B = 220.57 K, and C = 149.39 K [51]. Taking T = 20 ◦C,
we can see μ ≈ 1 × 10−3 Pa s, which is just the value we have used for the back-
ground material in simulation. When �T = 10 K, the thermal response of μb still
has little influence on the temperature or pressure distributions no matter whether
we assume μ1, μ2 and μ3 change with temperature of the same magnitude or still
let them temperature-independent. When the thermal bias increases, for example, to
50K, and the four viscosities involved have the same temperature dependence, the
functions like cloaking, sensing, and concentrating should not fail. Still, the pres-
sure distribution will demonstrate uneven isobars. This variable viscosity (in fact,
its reciprocal) behaves like a nonlinear thermal conductivity in bilayer conductive
metadevices [48] (we can do a power series expansion to 1/μ and get the polyno-
mial form of temperature just like the nonlinear thermal conductivity often used in
research). On the other hand, the viscous dissipation term can also be neglected in
the framework of creeping flows, compared with the convective heat transfer. The
discussion above might help to improve the feasibility of our design in potential
practical applications.
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Another important question is how to make κ and μ tunable in fluid materials.
One idea is adding some inclusions or suspensions (like nanoparticles and even
active matter) into the medium [52–54]. However, we must prevent the inclusions
from moving from one domain to another and changing the spatial distribution of
κ and μ. In some recent researches [34–36], solid pillars were put into the cell and
fixed, which can enhance the effective viscosity of the solid-fluid structure. If viewed
from another angle, this technique reduces the cell depth to zero without changing
the viscosity of fluids. This technique also changes the thermal conductivity, specific
heat, and density in the solid domain and thus influences the corresponding effective
properties of the composites. So, the situation can be more complicated, involving
tuning κ , μ, ρ, CP , and even h. In this way, an effective medium theory considering
heat transfer and fluid flow is needed to design suitable structures inversely. In Part
D of the Supporting Information, we give a 3D cloak structure with only one fluid
material by changing the depth of the outer layer and putting pillars in it. Although
the parameter estimation is empirically given and relatively rough, our design does
exhibit some invisibility effect.

6.7 Conclusion

In summary, through scattering-cancellation technology, we have established a
framework to design bilayer convectivemetamaterials in aHele-Shawcell.We extend
this approach to deal with coupled multiphysics. By engineering thermal conductiv-
ity and viscosity, we proposed a convective cloak that can realize thermal invisibility
and hydrodynamic stealth at the same time. We also discuss the implications of the
Reynolds number and directions of applied thermal bias and driving pressures, and
the design shows robustness under different convective circumstances. Although we
only consider circular layers surrounding a round-shape area, our design can be gen-
eralized to other geometries based on the existing and future research on Laplacian
bilayer metamaterials, e.g., the elliptical structures [12, 48]. The material parame-
ters needed in our design for each layer and the central area are homogeneous and
isotropic, which could be achieved by sold-fluid composites. The related effective
medium theory or inverse design technique remains developed. Our study might pro-
vide a promising method for feasible and flexible control of multiphysics processes.

6.8 Supporting Information

Part A: SCT Details for Thermal Convection
For the model shown in Fig. 6.1, the general solution of �i (i = 1, 2, 3, and b) in the
2D scenario with the circular symmetry can be expressed as
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�i = (Ai0 + Bi0 ln r)(αi0 + βi0θ) (6.15)

+
∞∑

m=1

(Aimr
m + Bimr

−m) (αim sin(mθ) + βim cos(mθ))

with polar coordinates (r, θ). By finding the right coefficients Aim, Bim, αim and
βim based on the required manipulation function and certain boundary conditions,
we can first obtain the inverse solution of thermal conductivities κi to realize the
manipulation of�.Whether the required function can be realized for the temperature
still needs some debates. Different from the familiar boundary conditions at infinity
like ∇x T (r = ∞) ∼ ex (ex is the unit vector along the x axis), here we should use
∇x�(r = ∞) ∼ ex instead, and thus the temperature of a homogeneous medium
could not vary linearly along the x axis. The degree of such non-uniformity depends
on the value of ϕT , and the advection part behaves just like a nonlinear thermal
conductivity. In addition, to guarantee ϕ is a constant in the whole system (thus T
cannot be a multivalued function on the boundary of two domains), we must require

fi (r)
ρiC P

i h
2
i

μiκi
= f j (r)

ρ jC P
j h

2
j

μ jκ j
≡ C, i or j = 1, 2, 3, b. (6.16)

Here C is a constant. Further, we can assume f, ρ,CP and h are also constants in
the whole space and obtain

1

μ1κ1
= 1

μ2κ2
= 1

μ3κ3
= 1

μbκb
≡ C ′, (6.17)

where C ′ is another constant. In other words, we should tailor μ to realize a con-
vective metamaterial besides thermal conductivity engineering. It should be noted
that Eq. (6.17) also gives the condition for a bilayer fluid-flow metamaterial, if we
only consider Eqs. (6.2) and (6.3). We also need to neglect the difference between
thermal insulation (the heat flow perpendicular to the boundary is zero) and non-slip
(the velocity at the solid boundary is zero) boundary conditions. If the boundary
layer is not significant, this neglect can be reasonable. For example, after calculating
the thermal conductivity to avoid disturbing the distribution of � in the background,
we can obtain the viscosity not to disturb P . Based on Eq. (6.4), tuning the ratio
ρh2/μ is a more general strategy to make fluid-flow metamaterials. For simplicity,
we only consider changing the conductivity and viscosity in the theory part. In this
way, f is assumed to be a constant, and we must emphasize this is an approximation.
When advection exits, f cannot be a strict constant, e.g., in a homogeneous medium.
Nevertheless, we can keep this assumption and check how much the variable f will
influence the performance of our design in the numerical simulation part.

In particular, for a convective cloak, we can find the assumption described by
Eq. (6.16) can be relaxed by only requiring that it is valid in the background and
outer layer. The zero conductivity and infinite viscosity in the inner layer have been
enough to make Eq. (6.5) automatically satisfied in the inner layer and the obstacle.
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Fig. 6.5 Simulation results under different Reynolds numbers. a1 and a2 give the temperature
distributions of the cloak and reference, respectively, when the pressure difference applied is 102 Pa.
Similarly, b1 and b2 give those under a 103 Pa pressure difference, while c1 and c2 give those under
a 104 Pa pressure difference. Adapted from Ref. [46]

As a result, we do not let μ1/μb = κb/κ1 or μ2/μb = κb/κ2 for the numerical sim-
ulations. What’s more, since the boundary layers in Fig. 6.3 are quite thin, it will not
undermine our assumption Eq. (6.16), i.e., the coefficient f (r) in Eq. (6.6) should
be a constant since the density, specific heat and cell depth are all kept invariant.

Part B: Performance with Different Reynolds Numbers
It is important to verify our conclusions under different Reynolds numbers (or Péclet
numbers). Comparedwith pure conduction (Re= 0), a large Re can cause an obvious
change in the temperature patterns, which means f is not strictly a constant even for
the reference. Nevertheless, we can still test the performance of the cloak designed
above.Here,we do threemore simulationswhen�P takes 102 Pa, 103 Pa, and 104 Pa,
respectively, and show the results of the cloak and reference in Fig. 6.5. Since the
patterns of pressure distributions should not be changed under theHele-Shaw regime,
we only illustrate the temperature distributions here.

In Fig. 6.5a1 and a2, the pressure difference is 102 Pa, and the isotherms of the
reference are almost evenly distributed. In (b1) and (b2), the pressure difference is
103 Pa, and the isotherms of the reference show a distinctly uneven distribution. The
conductive flux can be neglected when the advective heat transfer is further enlarged
in (c1) and (d1). Then the isotherms would be crowded on the side of the cold source
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(although we did not draw these overly dense isotherms), and the flow is isothermal
almost everywhere. Thus the temperature gradient is close to zero except near the
cold source. Anyway, we can see the cloaking effect is robust, and the assumption of
creeping flow is still valid in the Hele-Shaw cell. Here, the temperature disturbance
caused by the obstacle is eliminated by 95%, 81%, and 79%, respectively, for the
three columns in Fig. 6.5. The cloaking ratio increases with the contribution of con-
ductive heat transfer because our assumption that f is a constant is fulfilled when
advection is absent.

Part C: Performance with Non-parallel Thermal and Pressure Biases
Nowwe turn to another aspect and consider the two applied biases are not in the same
direction. Under this assumption, the relationship described by Eq. (6.6) should be
revised. In general, we can decompose ∇P into two components which are parallel
(∇P‖) and perpendicular (∇P⊥) to ∇T respectively, writing ∇P = P‖ + P⊥, and
obtain

∇ ·
(

ρCPh2T

12μ
∇P

)
= ρCPh2T

12μ
∇T · ∇P‖. (6.18)

f (r) is now defined by ∇P‖ = f (r)∇T and equal to (∇P · ∇T )/(∇T · ∇T ). A
special case is when the applied temperature difference and pressure difference are
perpendicular to each other. In this case, we expect the patterns of temperature and
pressure distributions approximately have a symmetry under rotating 90◦. Then, f
should be almost a constant (zero) [29] and we can apply SCT again and get the same
parameters for the convective cloak.

To test our design, we let the pressure bias take 500Pa along the y axis while
the thermal bias is still kept at 10K along the x axis. In Fig. 6.6a–d, we give the
simulation results of the temperature and pressure distributions for both the cloak
and the reference. The isotherms and isobars show the cloaking effect is achieved.
More specifically, Fig. 6.6e and f are on a horizontal and a vertical line segments. We
can also calculate the percentage of disturbances that are removed in this situation.
The ratio for pressure deviation should be the same as its counterpart under parallel
applied thermal and pressure biases. The ratio for temperature deviation is a little bit
different, taking 79%.

Part D: Three-dimensional Convective Cloak
Here we propose a three-dimensional (3D) structure (see Fig. 6.7) to realize a con-
vective cloak and use only one fluid material. The gray region in Fig. 6.7 illustrates
the fluid domain. For simplicity, the inner layer of the cloak is provided as a solid
thermal insulation material, so the structure is a monolayer one. Also, we can see
that the outer layer has a larger depth than the background, which allows the fluid to
have a smaller viscosity. Moreover, the larger depth of the fluid domain can enlarge
the effective thermal conductivity due to a larger heat transfer cross-section. How-
ever, the increase in effective thermal conductivity caused by the depth alone does
not exactly make the outer layer meet the conditions for a thermal cloak. More pre-
cisely, the thermal conductivity of the outer layer needs to be further improved. We
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Fig. 6.6 a and b (or c and d) illustrate the temperature (or pressure) distribution of a convective
cloak and the referencewhen the applied thermal bias and the pressure bias are vertical. In particular,
e and f compare the temperature and pressure with data detected from the line y = 0 and line x = 0,
respectively. Adapted from Ref. [46]

Fig. 6.7 Schematic diagram of the structure of the 3D convective cloak. The gray area represents
the fluid domain and is symmetric concerning the central plane z = 0 (The center of the entire
structure is the origin). a A 3D view. b A top view of x-y plane. We can see pillars (drawn as white
small rounds in the enlarged image surrounded by a red box) placed in the deeper layer. The pillars
form four radially equally spaced rings and exhibit a 4◦ rotational symmetry. c A view of y-z plane.
Adapted from Ref. [46]
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Fig. 6.8 Simulation results
of the 3D convective cloak. a
The temperature distribution
of the surface. b The pressure
distribution of the surface.
Adapted from Ref. [46]

here combine the two methods used in the references [15, 34]. The outer layer is
deeper than required for a normal fluid cloak in Ref. [15], and the too low viscosity
is compensated by putting pillars [34] (see the black dots placed in the outer layer in
Fig. 6.7a and b) to realize to fluid cloak again. Then, we can tune the thermal con-
ductivity (and the heat capacity) of the pillars to meet the conditions for a convective
cloak. The exact parameters of the pillars (volume fraction, thermal conductivity, and
the heat capacity) are not easy to be solved through the existing effective medium
theory.

As a rough estimation, we still use the same background material (water) and take

the depth of the outer layer as

√
R2
3 + R2

2

R2
3 − R2

2

≈ 2.13 times the background (the ratio is

R2
3 + R2

2

R2
3 − R2

2

in Ref. [15] for a fluid cloak). In addition, four rings of cylindrical pillars

are placed in the outer layer, and each ring consists of 90 pillars with a radius of√
f p(R2

3 − R2
2)

N
. Here N = 360 is the total number of pillars, and f p is the volume

fraction of the pillars compared to the outer layer, which takes 0.32% in the follow-
ing simulation. The material occupying the pillars can be air, soft matter, or solids.
Here we set its thermal conductivity to be 40W m−1 K−1, its density to be 1000 kg
m−3, and its specific heat to be 5000 J kg−1 K−1, which some mixture might achieve
(e.g., copper and polydimethylsiloxane [55]). The simulation results are shown in
Fig. 6.8. From the perspective of practical detection, here we give the temperature
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and pressure distribution of the surface. Although the cloaking effect is not perfect,
compared with the case without a cloak (for example, see Fig. 6.2a3 and b3), we can
see the bending of isotherms and isobars in the background region is alleviated to a
certain extent. The parameters (including the volume fraction, geometry and thermal
properties of the pillars, and the depth of the cloak layer) can be further optimized
through analytical techniques and numerical methods.

Part E: Simulation Convergence Analysis
Sincewe adopt the finite elementmethod tomodel thermal convection, a convergence
analysis is necessary for reliability. We can get more accurate and convincing calcu-
lation results with the refinement of meshes. For example, we use five different sets
of meshes, numbered 1 to 5, to execute independent simulations for the designed
thermal cloak in Fig. 6.2. The size parameters of each set are shown in Table6.1.
Three groups of data at the positions (x = ±0.5 mm and x = 0) are extracted to
compare the results produced by different grids. Bigger mesh numbers correspond
to more elements, and ‘Mesh 4’ is the actual mesh used in Fig. 6.2.

We plot the temperature and pressure data read from x = −0.5 mm, x = 0 and
x = 0.5 mm in Fig. 6.9. ‘Mesh 4’ is illustrated with solid lines, while its counterparts
using other meshes are drawn in dashed lines with different colors. First, we observe
Fig. 6.9a1, b1 and c1, demonstrating temperature comparisons. The latter two sets
of mesh (numbered 4 and 5) produce smoother data lines than the first three sets
(numbered 1, 2, and 3). In addition, the difference between ‘Mesh 4’ and ‘Mesh 5’
is very small, so the plots almost coincide, meaning that the simulation results of the
temperature have converged to good accuracy. The same conclusions can be obtained
for the pressure data in Fig. 6.9a2, b2 and c2. Therefore, the results using ‘Mesh 4’
in the previous simulations are credible.

Table 6.1 Mesh parameters. Five categories of meshes are adopted in modeling convective cloaks
for convergence analysis. Adapted from Ref. [46]

Max
element size
(m)

Min
element size
(m)

Total nodes Nodes in
x =
−0.5 mm

Nodes in
x = 0

Nodes in
x = 0.5 mm

Mesh 1 7 × 10−6 2 × 10−7 7060 124 113 123

Mesh 2 5.6 × 10−6 8 × 10−8 8305 138 126 138

Mesh 3 2.6 × 10−6 3 × 10−8 13155 213 202 210

Mesh 4 1.34 ×
10−6

4 × 10−9 31754 337 351 342

Mesh 5 6.34 ×
10−7

2 × 10−9 138141 672 710 674
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Fig. 6.9 Simulation results of the convective cloak using different meshes. a1 and a2 show the
temperature and pressure data on x = −5 × 10−4 m. b1 and b2 show the corresponding data on
x = 0, while c1 and c2 show those on x = 5 × 10−4 m. Adapted from Ref. [46]

6.9 Exercise and Solution

Exercise

1. Derive Eq. (6.9) in detail.

Solution

1. See Ref. [49].
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Chapter 7
Theory for Coupled Thermoelectric
Metamaterials: Bilayer Scheme

Abstract In this chapter, we theoretically design bilayer thermoelectric metamate-
rials based on the generalized scattering-cancellationmethod. By solving the govern-
ing equations directly, we formulate the specific parameter requirements for desired
functionalities beyond existing single-field or decoupled multi-field Laplacian meta-
materials. Unlike the recently reported transformation thermoelectric flows, bilayer
schemes do not require inhomogeneity and anisotropy in constitutive materials.
Finite-element simulations confirm the analytical results and show robustness under
various exterior conditions. Feasible experimental design with naturally occurring
materials is also proposed for further proof-of-principle verification. Our theoretical
method may be extended to other coupled multiphysical systems such as thermo-
optics, thermomagnetics, and optomechanics.

Keywords Thermoelectric coupling · Bilayer scheme · Multiphysical field

7.1 Opening Remarks

Metamaterials have shown superior control ability beyond naturally occurring mate-
rials in both wave [1–9] and diffusion [10–18] systems. The transformation the-
ory [1–4, 10, 11] and scattering-cancellation method [8, 9, 12–14], as two common
approaches for manipulating physical fields, have achieved great success in artificial
structure design. In particular, the latter is based on solving steady-state governing
equations directly under given boundary conditions, leading to isotropic and homo-
geneous design parameters. However, if multiple fields act on an individual system,
for example, there exist heat and electric fluxes simultaneously [19–21], the gov-
erning equations are hard to handle because of the newly-introduced coupling terms
induced by thermoelectric (TE) effects. Appropriate theoretical methods need to be
developed for designing such multiphysical metamaterials.

Early research on tailoring TE fields focused on the decoupled cases, which
means that heat and current flows transfer independently without interaction [22–
26]. This simplified hypothesis facilitates the generalization of transformation theory
or scattering-cancellation method from extensively-studied single physics to multi-
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physics. Nevertheless, it usually deviates from actual situations because the coupling
terms are omitted. Recently, transformed TE metamaterials were reported [27, 28],
which extended the transformation theory from controlling a single field to coupled
TE field. The form invariance of TE governing equations under coordinate transfor-
mation remains valid, and corresponding transformation rules on physical param-
eters are deduced. However, inhomogeneous and anisotropic TE materials are still
required, just as their counterparts in single physics.Although some laminar-structure
schemes with natural TE materials are proposed for mimicking the predicated TE
parameters [27–30], experimental realization remains lacking due to the complexity
of manufacture and availability of materials. Considering the challenges mentioned
above, the scattering-cancellation method, which facilitates manufacture with sim-
plified structures and homogeneous isotropic materials, could be a feasible route to
practical implementation in TE control.

We propose a bilayer scheme based on the scattering-cancellation method for
manipulating TE fields with naturally occurring TE materials. By introducing a gen-
eralized auxiliary potential, we construct Laplacian-form governing equations. We
then derive the required thermal conductivity, electrical conductivity, and the See-
back coefficient for achieving cloaking, concentrating, and sensing functionalities.
Finite-element simulations confirm our theoretical design and show the robustness
of the proposed bilayer design under various conditions. Compared with the transfor-
mation TE theory, anisotropy and inhomogeneity are no longer necessities, making
the manufacturing more convenient. The theoretical results and device behaviors can
be naturally extended to other coupled multiphysics.

7.2 Theoretical Foundation

Let us consider a steady TE transport process where physical parameters are scalar
at each local position. That is, the isotropy of TE materials is stipulated. In such an
isotropic system, the governing equations can be described by [21]

j = −σ∇μ − σ S∇T, (7.1)

∇ · j = 0, (7.2)

q = −κ∇T + T S j , (7.3)

∇ · q = −∇μ · j , (7.4)

where q and j are thermal and electric flows respectively, T and μ refer to tem-
perature and electric potentials, and κ and σ denote to scalar thermal and electrical
conductivities. S is Seebeck coefficient for coupling heat and current flows.We define
U as an auxiliary generalized potential, which is expressed as
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U = μ + T S. (7.5)

Combining Eqs. (7.1)–(7.5), two identical relations about U can be obtained as

σ∇2U = 0 (7.6)

and
κ∇2T = σ∇U · ∇U. (7.7)

Note that Eq. (7.6) has a Laplacian form, so it is possible to map the field distribution
of U by tailoring σ in a bilayer structure with a similar method employed in single-
physics cases [12, 13]. Then we resort to remolding Eq. (7.7) for detecting the
direction relation between ∇T and ∇U . The Poisson equation Eq. (7.7) has the
solution consisting of two parts. One is the general solution of its corresponding
Laplace equation

κ∇2T = 0. (7.8)

The other is the particular solution. We can see the identical relation

κ∇T = σU∇U (7.9)

should always be valid to make Eq. (7.7) be satisfied. This can be deduced by taking
the divergence of Eq. (7.9) in both sides as

κ∇2T = σ∇(U∇U ) = σ(∇U · ∇U +U∇2U ) = σ∇U · ∇U. (7.10)

Then we can conclude that ∇T is always parallel to ∇U in its particular solution.
Nowwe are in the position to discuss the relation between∇T and∇U in the general
solution. T will thus be manipulated like U . Combining Eqs. (7.6) and (7.8), which
are both Laplace equations, we can get the following conditions to make∇T parallel
to ∇U . Condition I is

S = S0, (7.11)

indicating that S keeps invariant in the whole space. Condition II is

σ = Cκ, (7.12)

whereC is a constant for keeping σ and κ proportional in the whole space. Condition
III relies on boundary condition settings. It means that external thermal and electrical
fields should be parallel for ensuring homodromous∇U and∇T at each point. These
three conditions enable us to map T distribution by tailoring U , which is described
by a Laplacian-form governing equation. Then, we can define f (r), a coordinate-
dependent scalar function, to denote the relationship between ∇U and ∇T as

∇U = f (r)∇T . (7.13)
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Next, we will handle the electrical potentialμ. Note that S is constant, by combining
Eqs. (7.5) and (7.13) together, we can obtain

∇μ = ( f (r) − S)∇T . (7.14)

Evidently, ∇μ is also parallel to ∇T and ∇U . So once Eqs. (7.11) and (7.12) are
satisfied simultaneously, and the boundary temperature and potential fields are par-
allel, we can manipulate TE flows. Since bilayer is the most simplified structure for
realizing specific functionalities such as cloaking, concentrating, and sensing with
isotropic materials in a single field [12, 32, 33], we design TE cloaking, invisible
sensing, and concentrating devices with bilayer configurations for verification. More
layers will achieve the same effects but cannot improve the behaviors, which has
been discussed sufficiently in many single-field metamaterial research.

Wedesign three different functionalities in a size-fixed bilayer structurewith back-
ground thermal conductivity κb and electrical conductivity σb, as shown in Fig. 7.1.
For simplification without loss of generality, we only consider two-dimensional
cases, which can readily be transferred to three-dimensional systems. According
to the deductions above, the parameter requirements, i.e., Eqs. (7.11) and (7.12),
should be satisfied simultaneously. And some additional conditions for realizing dif-
ferent functions are required. We set σ0, σ1, σ2 as respective electrical conductivities
from the center to the outer layer. Same definitions are employed for κ0, κ1, κ2.
Detailed parameter settings are as follows.

For cloaking [12], which prevents TE flows from running into the center without
distorting the ambient temperature and potential distributions outside, as shown in
Fig. 7.1b, the additional conditions for the inner layer should be

σ1 ≈ 0, (7.15)

which make the inner layer a nearly-perfect thermal/electrical insulation material.
And the outer layer should be

σ2 = σb(r2
2 + r1

2)/(r2
2 − r1

2), (7.16a)

guarantying no distortion of ambient temperature and potential outside.
For invisible sensing [32], which maintains the original temperature and potential

in both center and background regions for obtaining accurate sensor effects, as shown
in Fig. 7.1c, the additional conditions are found as

σ1 =
[
σ0A3 − σb A1 +

√
(σ0 − σb)

(
σ0A2

2 − σb A2
1

)]
/A5, (7.17a)

σ2 =
[
σ0A2 − σb A4 −

√
(σ0 − σb)

(
σ0A2

2 − σb A2
1

)]
/A6, (7.17b)
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Fig. 7.1 a Schematic diagram of bilayer TE metamaterials. The core is marked as region III with
electrical conductivity σ0 and thermal conductivity κ0. The inner layer is marked as region II with
σ1 and κ1. The outer layer is marked as region I with σ2 and κ2. The background in gray has σb and
κb. The electrical conductivity, thermal conductivity, and Seeback coefficient S are homogeneous
isotropic scalars in each region. The Cartesian coordinate (x-y) is built on designed metamaterials
with the overlapping origin and center point. b Illustration of a TE cloak. c Illustration of a TE
invisible sensor. d Illustration of a TE concentrator. Red and blue lines represent heat and electrical
fluxes, respectively, in b–d. Adapted from Ref. [31]

where

A1 = r20 (r
2
1 + r22 ) + r21 (r

2
1 − 3r22 ), (7.18a)

A2 = r20 (3r
2
1 − r22 ) − r21 (r

2
1 + r22 ), (7.18b)

A3 = r20 (2r
2
0 − r21 − r22 ) + r21 (r

2
1 − r22 ), (7.18c)

A4 = r21 (r
2
0 − r21 ) + r22 (r

2
0 + r21 − 2r22 ), (7.18d)

A5 = 2(r20 − r21 )(r
2
0 − r22 ), (7.18e)

A6 = 2(r20 − r22 )(r
2
1 − r22 ). (7.18f)

κ1 and κ2 follow the formally-similar parameter requirements as σ1 and σ2. It is noted
that two sets of parameters are available in sensing design within a fixed geometry
structure. We arbitrarily adopt one of them here.
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Fig. 7.2 Simulation results of the TE cloak under parallel external thermal and electrical fields.
Isothermal or isopotential lines are marked in white. a Temperature distribution of the matrix plus
cloak. b Temperature distribution of the pure matrix. c Temperature distribution of the bare pertur-
bation. d Temperature difference distribution between a and b. e Potential distribution of the matrix
with a cloak. f Potential distribution of the pure matrix as a reference. g Potential distribution of the
bare perturbation. h Potential difference distribution between d and e. i Quantitative temperature
comparison between a and b at the chosen line, which crosses the origin along the x axis. j Quan-
titative potential comparison between d and e at the chosen line, which crosses the origin along
the x axis. Different regions (I, II, and III) are indicated in i and j, corresponding to the model in
Fig. 7.1a. Backgrounds are outside region I. Adapted from Ref. [31]

For concentrating [33], which can enhance the gradients of temperature and poten-
tial in the center without distorting the ambient ones, as shown in Fig. 7.1d, the
additional condition for σ0, σ1, and σ2 can be written as

σ0 = [r22r20 (σ2 − σ1) (σ2 − σb) /r21 − r20 (σ1 + σ2) (σb + σ2)

+ r21 (σ1 − σ2) (σb + σ2) + r22 (σ1 + σ2) (σ2 − σb)]σ1/

[r22r20 (σ2 − σ1) (σ2 − σb) /r21 − r20 (σ1 + σ2) (σb + σ2)

+ r21 (σ2 − σ1) (σb + σ2) − r22 (σ1 + σ2) (σ2 − σb)],

(7.19)

which is obtained by solving the Laplacian equation and then set the coefficient of the
nonlinear term of the ambient potential zero. Similar forms of the relation between
κ0, κ1, and κ2 are also requested. Given that all the required conditions are met, the
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Fig. 7.3 Simulation results of the TE invisible sensor under parallel thermal and electrical boundary
conditions. All figure arrangements are the same as Fig. 7.2 except the functionality of the central
device. Adapted from Ref. [31]

ratio of the temperature/potential gradient in the center to the temperature/potential
gradient in the background, which can describe the efficiency of concentrating, can
be tailored by changing the dimensions and conductivities of the layers. So far,
we have listed three sets of parameters for achieving three functionalities in TE
transport. It is noted that the rationality of generalization from single physics to
coupled multiphysics is established on the basis that Eqs. (7.11) and (7.12) should
be satisfied simultaneously.

7.3 Finite-Element Simulation

We perform finite-element simulations with the commercial software COMSOL
Multiphysics to confirm the proposed theoretical models. A two-dimensional bilayer
structure of r0 = 0.02 m, r1 = 0.025 m, and r2 = 0.03 m is employed. The bilayer
structure is embedded at the center of a matrix, whose length is 0.11 m, as shown in
Fig. 7.1a. To demonstrate the functionalities of the cloak, invisible sensor, and con-
centrator, we obtain three sets of thermal conductivity, electrical conductivity, and
Seebeck coefficient for each case, as listed inTable7.1. For boundary conditions, tem-
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Table 7.1 Simulation parameter settings of TE cloaking, invisible sensing and concentrating. For
simplicity, Seebeck coefficient is set as 1 in all regions. (This value is much larger than common
materials, which will induce stong coupling effects between heat and electricity.) Adapted from
Ref. [31]

Cloak Invisible sensor Concentrator

Thermal conductivity (W/(m·K))
κ0 50 50 0.21

κ1 0.01 378.5 10

κ2 554.54 58.5 277

κb 100 100 50

Electrical conductivity (S/m)

σ0 50 50 0.21

σ1 0.01 378.5 10

σ2 554.54 58.5 277

σb 100 100 50

Seebeck coefficient (V/m)

S 1 1 1

perature and potential gradients should be parallel. So we set boundary conditions as
follows. The temperatures of the left and right boundaries are 273.15K and 333.15K.
The potentials of the left and right boundaries are 0V and 50V. Upper and lower
boundaries are thermally and electrically insulated. To show the effectiveness and
accuracy of these three metamaterials, we also compare them with bare-perturbation
and pure-background results. We perform simulations of these references under the
same boundary conditions and plot the temperature and potential distribution of
metamaterials and references. Differences in temperature and potential distribution
illustrate the changes in temperature and potential between the metamaterials and
pure backgrounds. These simulation results of cloak, concentrator and invisible sen-
sor are demonstrated in Figs. 7.2, 7.3 and 7.4.

As shown in Figs. 7.2d and h, 7.3d and h, 7.4d and h, both the temperature and
potential differences in backgrounds are nearly zero, which means none of these
three metamaterials have distorted the ambient temperatures or potentials. This is
also confirmed by the overlapping parts of the curves in Figs. 7.2i and j, 7.3i and
j, 7.4i and j. As contrast, in Fig. 7.2c and g, 7.3c and g, 7.4c and g, the ambient
temperatures and potentials are manifestly distorted by the bare perturbations. For
the cloak, we can see in Fig. 7.2a and e or i and j, the temperature and potential
gradients at the center are nearly zero, which means that thermal and electric flows
are prevented from running into the center. For the sensor, which refers to the core
region coated by the bilayer structure in Fig. 7.3a and e, it can be intuitively seen
that the core temperature and potential are consistent before and after the sensor is
embedded. In Fig. 7.3i and j, the curves of metamaterials and references fit well at the
core and ambient regions. Therefore, we may safely say that the sensor can measure
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Fig. 7.4 Simulation results of the TE concentrator under parallel thermal and electrical boundary
conditions. All figure arrangements are the same as Fig. 7.2 except the functionality of the central
device. Adapted from Ref. [31]

the ambient temperature and potential without introducing any distortion. For the
concentrator, Fig. 7.4a and e show that both the temperature and potential gradients
in the core are greater than the ambient. From Fig. 7.4i and j, we can see more clearly
that along the x-axis, the temperature and potential gradients are enhanced at the
center.

To verify that only under the condition ∇T is parallel to ∇μ can our design
be exactly effective, we perform two simulations for the cloak when ∇T is not
parallel to ∇μ, see Fig. 7.5. We set the upper and lower boundary temperatures
in the upper two panels as 273.15K and 333.15K and potentials as 0V and 50V,
respectively. In the lower two panels, a linear point heat source with the power
of 6 × 106 W m−3 K−1 is applied at the left-bottom corner of the matrix, whose
position is (−0.049, −0.049) cm. The neighbor sides of the source are insulated,
and the temperature of the remaining two sides is kept at 300K. The results are
shown in Fig. 7.5. Along the x axis, the difference between the ambient temperature
(potential) of the pure matrix and the matrix with a cloak has some minor gaps. The
designed schemes are not strictly accurate under nonparallel external fields. But it
can still be regarded as a well approximated result based on the curves in Fig. 7.5c,
f, i, and l, showing great accordance at background regions. The robustness of our
design makes it adaptive under multiple complicated conditions.



96 7 Theory for Coupled Thermoelectric Metamaterials: Bilayer Scheme

Fig. 7.5 a–f Simulation results of the TE cloak under the perpendicular boundary temperature and
potential fields. Isothermal or isopotential lines are marked in white. a Temperature distribution of
the matrix plus cloak. b Temperature distribution of the pure matrix. c Quantitative temperature
comparison between a (cloak) and b (reference) at the chosen line, which crosses the origin along
the x axis. d Potential distribution of the matrix with a cloak. e Potential distribution of the pure
matrix. f Quantitative potential comparison between d (cloak) and e (reference) at the chosen line,
which crosses the origin along the x axis. Different regions (I, II, and III) are indicated in g and h,
corresponding to the model in Fig. 7.1a. g–l Simulation results of the TE cloak under the y-direction
external potential fields and point heat sources at the left-bottom corner. Adapted from Ref. [31]

7.4 Discussion

Although actual materials may not perfectly meet the requirements put forward in
our theory, we further verify that it is possible that practical realization to an approxi-
mate extent can be achieved.Many TEmaterials, such as ionic-conductingmaterials,
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can yield a large variety of TE characteristics due to various mechanisms and tuning
methods such as changing the doping ratio [34] or humidity [35]. Therefore, this pro-
vides the physical possibility for searching for available materials. Compared with
transformation optics requiring extremely anisotropic and inhomogeneous proper-
ties, though the proposed scattering cancellation methodology cannot achieve some
effects such as rotating, our scheme will yield isotropic and homogeneous param-
eters to achieve the same effects of cloaking, concentrating, and sensing. Once we
have suitable TE materials, the bilayer design will make it easier to manufacture
corresponding metamaterials. Another issue is that the role of contact resistance,
especially the thermal contact resistance (TCR), may affect the practical results [36].
TCR arises due to limited contact areas at the interface and lattice mismatch at the
boundaries of different materials. According to the acoustic mismatch or diffusive
mismatch model, the latter is usually too slight to be considered at the macroscale.
In most reported macroscale experiments, the former is usually eliminated by “solid
plus soft matter” structures. Even without such structures, the experimental results
of a decoupled TE sensor, based on common metals, are in accord with the theory,
ignoring the contact resistance [25].

7.5 Conclusion

In conclusion, we have built a scattering-cancellation method for manipulating cou-
pled TE transport and designed three representative devices with bilayer schemes.
Considering that TE governing equations are no longer Laplacian forms, additional
constraint conditions are required beyond single-field cases. Our deduced require-
ments of constant Seebeck coefficient and proportional thermal/electrical conduc-
tivities echo with the results of the transformation TE method [27, 28] under homo-
geneous isotropic background conditions. And we further point out that the external
TE distribution will not be affected only by applying parallel external thermal and
electrical fields on the devices. However, simulation results also verify the robust-
ness of our design under other boundary conditions, which can broaden the practical
application range. Our work may provide hints for manipulating coupled multiphys-
ical fields beyond single-physics Laplacian transport, which doubtlessly simplifies
the requirements on materials and structures of existing transformation metamateri-
als. Moreover, since TE effects are widely utilized in practical applications, ranging
from generating electric power from waste heat to solid-state-based cooling down,
our work may help facilitate device preparation and raise energy conversion effi-
ciency.
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7.6 Exercise and Solution

Exercise

1. Derive the clear relations about U , including boundary conditions and parameter
requirements.

Solution

1. The introduction of auxiliary generalized potential U and the analyses on corre-
sponding boundary condition settings are provided. First, we considerU in a certain
domain. Combing Eqs. (7.1) and (7.2), we can obtain

∇ · σ∇(μ + ST ) = 0. (7.20)

Considering Eq. (7.5), we can write

∇ · σ∇U = 0. (7.21)

Substituting Eq. (7.4) into Eq. (7.3), we have

− κ∇2T + S∇T · j + ST∇ · j = −∇μ · j . (7.22)

According to Eq. (7.1), that is ∇ · j = 0, Eq. (7.22) can be simplified as

κ∇2T = (∇μ + S∇T ) · j . (7.23)

Substituting Eqs. (7.2) and (7.5) into Eq. (7.23), we can thus obtain another equation
about U as

κ∇2T = σ∇U · ∇U. (7.24)

Now let us discuss the boundary condition settings of U . Apparently, U is a
combination of T and μ. For T and μ, the boundary behaviors are already known as

Ti = Ti+1, (7.25a)

κi
∂Ti
∂r

= κi+1
∂Ti+1

∂r
, (7.25b)

μi = μi+1, (7.25c)

σi
∂μi

∂r
= σi+1

∂μi+1

∂r
, (7.25d)

where i and i + 1 denote two adjacent domains. BecauseU satisfies Laplace equation
Eq. (7.6), to makeU be manipulated by tailoring σ in a way similar to that proposed
by Ref. [12], similar boundary behaviors will also be required
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Ui = Ui+1, (7.26a)

σi
∂Ui

∂r
= σi+1

∂Ui+1

∂r
. (7.26b)

According to Eq. (7.5), we can rewrite Eq. (7.26) as

μi + Si Ti = μi+1 + Si+1Ti+1, (7.27a)

σi
∂μi

∂r
+ σi Si

∂Ti
∂r

= σi+1
∂μi+1

∂r
+ σi+1Si+1

∂Ti+1

∂r
. (7.27b)

Substituting Eqs. (7.25a), (7.25c) into (7.27a), we have

Si = Si+1, (7.28)

from which the conclusion that S should keep invariant in all domains can be easily
deduced. Meanwhile, Eq. (7.27b) can be rewritten as

σi
∂μi

∂r
+ σi Si

κi

κi∂Ti
∂r

= σi+1
∂μi+1

∂r
+ σi+1Si+1

κi+1

κi+1∂Ti+1

∂r
. (7.29)

Hence substituting Eqs. (7.25b), (7.25d) into (7.27b), we have

σi Si
κi

= σi+1Si+1

κi+1
. (7.30)

Making use of the Eq. (7.28), we can eventually obtain

σi

κi
= σi+1

κi+1
, (7.31)

from which a generalized conclusion that σ and κ are proportional between different
domains, i.e., condition II or Eq. (7.13), can be easily deduced. For condition III,
since ∇T and ∇μ should be parallel where there are sources or boundary temper-
atures/potentials, it is obvious that the sources or boundary temperatures/potentials
should appear in pairs.
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Chapter 8
Theory for Enhanced Thermal
Concentrators: Thermal Conductivity
Coupling

Abstract In this chapter, we propose the theory of conductivity coupling to solve
the problem that the concentrating efficiency of a thermal concentrator is restricted
by its geometric configuration.We first discuss amonolayer schemewith an isotropic
thermal conductivity, which can break the upper limit but is still restricted by the
geometric structure. We further explore another degree of freedom by considering
the monolayer schemewith an anisotropic thermal conductivity or adding the second
shell with an isotropic thermal conductivity, thereby freeing the concentrating effi-
ciency from the geometric configuration. Finite-element simulations are performed to
confirm the theoretical predictions, and experimental suggestions are also provided
to improve feasibility. These results may have potential applications for thermal
camouflage and provide insights into other diffusive systems such as static magnetic
fields and DC fields for achieving similar behaviors.

Keywords Thermal concentrating efficiency · Thermal conductivity coupling ·
Apparently negative thermal conductivity

8.1 Opening Remarks

The theory of transformation thermotics [1, 2] has promoted an advanced control
of heat transfer based on thermal metamaterials [3, 4]. As a representative example,
a thermal concentrator [5–24] can increase its interior temperature gradient without
distorting its exterior one. So far, many schemes have been proposed to design ther-
mal concentrators. The initial explorations are based on the theory of transformation
thermotics [5–14] which is a bridge linking space transformations andmaterial trans-
formations. Therefore, the effect of thermal concentrating can be achieved by coating
a region (i.e., the core) with a designed shell (i.e., the thermal concentrator). This
scheme has three features: (I) the thermal conductivities inside and outside the shell
are identical; (II) the shell has an anisotropic thermal conductivity that is commonly
realized by a layered structure [15–19]; and (III) both temperature gradient and heat
flux are enhanced in the core. An alternative scheme is based on the effectivemedium
theory [20–22] with also three features: (I) the thermal conductivity inside the shell
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should be smaller than that outside the shell; (II) the shell requires only a homoge-
neous and isotropic thermal conductivity; and (III) temperature gradient increases
but heat flux decreases in the core. Recently, topology optimization has also become
a powerful tool for designing thermal concentrators [23, 24], which largely reduces
the requirements for materials and structures [25–28].

Despite varieties of schemes, the concentrating efficiency of a thermal concentra-
tor, commonly reflected in the ratio of its interior to exterior temperature gradients,
has an upper limit. Specifically, when a circular concentrator with inner radius rc
and outer radius rs is designed, the upper limit for the concentrating efficiency is
η = rs/rc [5–24], indicating that the isotherms in the shell are completely com-
pressed to the core. To reach the upper limit, the theory of transformation thermotics
requires a shell with an extremely anisotropic thermal conductivity [29–32], and the
effective medium theory needs to fabricate a core with a near-zero thermal conduc-
tivity [20–22]. However, breaking the upper limit for concentration efficiency is still
challenging.

To solve the problem, we investigate a monolayer scheme and two extended
schemes with the coupling of thermal conductivities. These three schemes feature
the simultaneous concentrating of heat flux and temperature gradientwith only homo-
geneous materials. More importantly, they contribute to much higher efficiency
than existing schemes. Nevertheless, apparent negative thermal conductivities are
required, which can be effectively realized with external heat energy and have been
applied to design thermal metamaterials [33–36].

8.2 Monolayer Scheme with Isotropic Thermal
Conductivity

We first discuss a monolayer scheme in the Cartesian coordinate system xi (i =
1, 2, 3 for three dimensions and i = 1, 2 for two dimensions). A confocal core-
shell structure is embedded in a background (Fig. 8.1a). The semi-axis of the core
(or shell) along the xi axis is denoted as rci (or rsi ). The thermal conductivities of the
core, shell, and background are denoted as κc, κs , and κb, respectively. The conversion
between the Cartesian coordinates xi and elliptical (or ellipsoidal) coordinates ρ j is

∑

i

x2i
ρ j + r2ci

= 1, (8.1)

with parameters of j = 1, 2, 3 for three dimensions and j = 1, 2 for two dimen-
sions. The coordinate ρ1

(
> −r2ci

)
denotes an elliptical (or ellipsoidal) boundary. For

example, the inner and outer boundaries of the shell can be denoted as ρ1 = ρc (= 0)
and ρ1 = ρs , respectively. In the presence of a uniform thermal field along the xi
axis, thermal conduction equation can be expressed in the elliptical (or ellipsoidal)
coordinate system as [38]
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Fig. 8.1 a Monolayer scheme with an isotropic thermal conductivity. b Concentrating efficiency
η as a function of geometric configuration rs1/rc1. Lines and points denote theoretical results and
simulation results, respectively. Adapted from Ref. [37]

∂

∂ρ1

[
g (ρ1)

∂T

∂ρ1

]
+ g (ρ1)

ρ1 + r2ci

∂T

∂ρ1
= 0, (8.2)

with a definition of g (ρ1) = ∏
i

(
ρ1 + r2ci

)1/2
. For three dimensions, 4πg (ρ1) /3 rep-

resents the volume of an ellipsoid. For two dimensions, πg (ρ1) denotes the area of
an ellipse. The temperature distributions along the xi axis in the core Tci , shell Tsi ,
and background Tbi can be expressed as [38]

⎧
⎪⎨

⎪⎩

Tci = Aci xi ,

Tsi = [Asi + Bsiφi (ρ1)] xi ,

Tbi = [Abi + Bbiφi (ρ1)] xi ,

(8.3)

with a definition of φi (ρ1) = ∫ ρ1

ρc

[(
ρ1 + r2ci

)
g (ρ1)

]−1
dρ1. Aci , Asi , Bsi , and Bbi

can be determined by the continuities of temperature and normal heat flux. Since the
temperature distribution in the background should be undistorted, we take Bbi = 0
and then obtain

κb = Lciκc + (1 − Lci ) κs + (1 − Lsi ) (κc − κs) f

Lciκc + (1 − Lci ) κs − Lsi (κc − κs) f
κs, (8.4)

with a definition of f = g (ρc) /g (ρs) = ∏
i
rci/rsi . The shape factor Lc1 (or Ls1)

reflects the flattening degree of the ellipse, and the larger the shape factor is, the more
flattening the ellipse is.

Then, the concentrating efficiency of a thermal concentrator can then be defined
as the ratio of its interior and exterior temperature gradients (taking Bbi = 0),

η = ∇Tci
∇Tbi

= Aci

Abi
= κs

Lciκc + (1 − Lci ) κs − Lsi (κc − κs) f
. (8.5)
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For a two-dimensional circular case with Lci = Lsi = 1/2, Eq. (8.5) can be reduced
to

η = 2κs
κc + κs − (κc − κs) f

. (8.6)

For a three-dimensional spherical case with Lci = Lsi = 1/3, Eq. (8.5) can be
reduced to

η = 3κs
κc + 2κs − (κc − κs) f

. (8.7)

We also consider the same thermal conductivities inside and outside the shell and
then obtain two coupling conditions to satisfy κc = κb,

κs = κc, (8.8)

− 1 − Lci − (1 − Lsi ) f

Lci − Lsi f
κs = κc. (8.9)

Equation (8.8) leads to a trivial case with κc = κs = κb and η = 1. However, if we
apply the coupling condition described by Eq. (8.9), the concentrating efficiency
largely increases,

η = f −1 =
∏

i

rsi/rci . (8.10)

Clearly, the concentrating efficiency exceeds the upper limit for existing thermal
concentrators η = rs1/rc1, and a smaller Lc1 yields a larger η (Fig. 8.1b). However,
the geometric configuration still restricts the concentrating efficiency, so we further
consider the following two schemes by adding another degree of freedom.

8.3 Monolayer Scheme with Anisotropic Thermal
Conductivity

We further consider a shell with an anisotropic thermal conductivity. Since it is
not convenient to unify two and three dimensions, we discuss them independently.
Nevertheless, the conclusion of three dimensions is similar to that of two dimensions.
We first discuss a two-dimensional circular shell with inner and outer radii of rc
and rs , respectively (Fig. 8.2a). Thermal conduction equation can be written in the
cylindrical coordinate system (r, θ) as [29]

1

r

∂

∂r

(
rκsrr

∂T

∂r

)
+ 1

r

∂

∂θ

(
κsθθ

∂T

r∂θ

)
= 0, (8.11)

where κsrr and κsθθ are the radial and tangential thermal conductivities of the shell,
respectively. The temperature distributions of the core Tc, shell Ts , and background
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Fig. 8.2 a Monolayer scheme with an anisotropic thermal conductivity. b κsθθ /κc and η as a
function of κsrr/κc when rs/rc = 2. Lines and points denote theoretical results and simulation
results, respectively. Adapted from Ref. [37]

Tb can be written as [29]

⎧
⎪⎨

⎪⎩

Tc = Acr cos θ,

Ts = (
Asr

ds1 + Bsr
ds2

)
cos θ,

Tb = (
Abr + Bbr

−1
)
cos θ,

(8.12)

with definitions of ds1 = √
κsθθ /κsrr and ds2 = −√

κsθθ /κsrr . Ac, As , Bs , and Bb are
four constants to be determined by the boundary conditions. By taking Bb = 0, we
can further derive

κb = ds1 (κc − ds2κsrr ) − ds2 (κc − ds1κsrr ) f (ds1−ds2)/2

κc − ds2κsrr − (κc − ds1κsrr ) f (ds1−ds2)/2
κsrr , (8.13)

with a definition of f = r2c /r
2
s . We also define the concentrating efficiency as

η = Ac

Ab
= (ds1 − ds2) κsrr f (ds1−1)/2

κc − ds2κsrr − (κc − ds1κsrr ) f (ds1−ds2)/2
. (8.14)

For an isotropic case with ds1 = −ds2 = 1, Eq. (8.14) can be simplified as

η = 2κsrr
κc + κsrr − (κc − κsrr ) f

, (8.15)

which has the same form as Eq. (8.6) in Sect. 8.2.
We also obtain two coupling conditions for κc = κb,

ds1κsrr = κc, (8.16)

ds2κsrr = κc. (8.17)
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Equations (8.16) and (8.17) can be unified as

κsrrκsθθ = κ2
c , (8.18)

which is plotted with the dotted line in Fig. 8.2b.
When the thermal conductivities of the core and shell satisfy Eq. (8.18), Eq. (8.14)

becomes
η = f −(1−κc/κsrr )/2 = (rs/rc)

1−κc/κsrr , (8.19)

which is plotted with the dashed-dotted line in Fig. 8.2b. Obviously, the minimum
value η → 0 appears when κsrr/κc → 0+, and the maximum value η → ∞ appears
when κsrr/κc → 0−. Moreover, we can observe η → rs/rc when κsrr/κc → ±∞,
which is just the upper limit for existing concentrating efficiency (see the solid
line in Fig. 8.2b). If the thermal conductivity of the shell is isotropic and nontrivial
κsrr/κc = 1/ds2 = −1, the concentrating efficiency also exceeds the upper limit and
becomes η = r2s /r

2
c , which is in accordance with the two-dimensional conclusion

in Sect. 8.2. Therefore, the concentrating efficiency can exceed the upper limit and
even approach infinity when κsrr/κc → 0−.

8.4 Bilayer Scheme with Isotropic Thermal Conductivity

We then consider the second shell whose isotropic thermal conductivity and semi-
axis along the xi axis are denoted as κt and rti , respectively (Fig. 8.3a). With the
conclusion of the monolayer scheme (Eq. (8.4)), the effective thermal conductivity
of the core and the first shell κcs can be calculated by

Fig. 8.3 a Bilayer scheme with isotropic thermal conductivities. b κs/κc and η as a function of
κt/κc when rs1/rc1 = 1.2, rt1/rc1 = 1.4, and Lc1 = 1/3. Lines and points denote theoretical results
and simulation results, respectively. Adapted from Ref. [37]
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κcs = Lciκc + (1 − Lci ) κs + (1 − Lsi ) (κc − κs) f

Lciκc + (1 − Lci ) κs − Lsi (κc − κs) f
κs . (8.20)

We then treat the core and the first shell as an effective core with an effective thermal
conductivity of κcs , so we can further derive

κb = Lsiκcs + (1 − Lsi ) κt + (1 − Lti ) (κcs − κt ) p

Lsiκcs + (1 − Lsi ) κt − Lti (κcs − κt ) p
κt , (8.21)

with a definition of p = g (ρs) /g (ρt ) = ∏
i
rsi/rti . ρt denotes the outer boundary of

the second shell. Lti is the shape factor of the second shell along the xi axis,

Lti = g (ρt )

2

∞∫

ρt

[(
ρ1 + r2ci

)
g (ρ1)

]−1
dρ1. (8.22)

We can also express the concentrating efficiency as

η = Aci

Abi
= κsκt

λ1 + λ2 + λ3
, (8.23)

where λ1, λ2, and λ3 take the form of

⎧
⎨

⎩

λ1 = [Lciκc + (1 − Lci ) κs] [Lsiκs + (1 − Lsi ) κt − Lti (κs − κt ) p] ,
λ2 = −Lti (κc − κs) [(1 − Lsi ) κs + Lsiκt ] f p,
λ3 = Lsi (1 − Lsi ) (κc − κs) (κs − κt ) f.

(8.24)

As amore general model, the bilayer scheme can also be reduced to themonolayer
scheme inSect. 8.2 at twocertain conditions.Whenκc = κs , Eq. (8.23) canbe reduced
to

η = κt

Lsiκs + (1 − Lsi ) κt − Lti (κs − κt ) p
. (8.25)

When κs = κt , Eq. (8.23) becomes

η = κt

Lciκc + (1 − Lci ) κt − Lti (κc − κt ) f p
. (8.26)

Obviously, Eqs. (8.25) and (8.26) have similar forms as Eq. (8.5) in Sect. 8.2.
We can also derive two coupling conditions for κc = κb,

M (κs, κt ) = κc, (8.27)

N (κs, κt ) = κc. (8.28)
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M and N are two analytical functions. Therefore, one κt corresponds to two κs for
satisfying κc = κb, i.e., κs = m (κt ) being a continuous function (see the dotted line
in the upper inset of Fig. 8.3b) and κs = n (κt ) being a quasi-hyperbolic function (see
the dotted line in the lower inset of Fig. 8.3b). We do not express the concrete forms
of m and n because they are too complicated.

When Eq. (8.27) is satisfied, the upper limit of η = rt1/rc1 can be broken, but the
concentrating efficiency can still not tend to infinity (see the dashed-dotted line in
the upper inset of Fig. 8.3b). Moreover, Eq. (8.27) contains two special cases that can
be reduced to the conclusion in Sect. 8.2. One features a concentrating efficiency of
η = f −1 with the same thermal conductivities of the second shell and core,

− 1 − Lci − (1 − Lsi ) f

Lci − Lsi f
κs = κt = κc. (8.29)

The other features a concentrating efficiency of η = p−1 with the same thermal
conductivities of the first shell and core,

κs = −1 − Lsi − (1 − Lti ) p

Lsi − Lti p
κt = κc. (8.30)

Fortunately, Eq. (8.28) can lead to an infinite efficiency. κt/κc → 0− and κt/κc →
0+, respectively, yield η → ∞ and η → −∞, and the thermal conductivity of the
first shell satisfies

− 1 − Lci − (1 − Lsi ) f

Lci + (1 − Lsi ) f
κs ≈ κc. (8.31)

Meanwhile, κt/κc → ∓∞ can also lead to η → ±∞, and the thermal conductivity
of the first shell satisfies

− 1 − Lci + Lsi f

Lci − Lsi f
κs ≈ κc. (8.32)

Moreover, Eq. (8.28) also contains a special case that can be reduced to the
conclusion in Sect. 8.2. That is, the concentrating efficiency of η = ( f p)−1 occurs
when the two shells have the same thermal conductivities,

κc = −1 − Lci − (1 − Lti ) f p

Lci − Lti f p
κs = −1 − Lci − (1 − Lti ) f p

Lci − Lti f p
κt . (8.33)

There is another case for η = ( f p)−1 if the thermal conductivities of the two shells
satisfy

κc = −1 − Lci − (1 − Lsi ) f

Lci − Lsi f
κs = −1 − Lsi − (1 − Lti ) p

Lsi − Lti p
κt . (8.34)
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Conductivity coupling occurs layer by layer in this case. The core is coupled with
the first shell described by Eq. (8.9). Then, they are treated as an effective core with
an effective thermal conductivity of κc. The effective core is then coupled with the
second shell described by the similar form of Eq. (8.9).

Another unique feature of Eq. (8.28) is the concentrating efficiency of η < 0when
the thermal conductivity of the second shell satisfies

κt >
1 − Lsi + Lti p

1 − Lsi − (1 − Lti ) p
κc, (8.35)

or

0 < κt <
Lsi − Lti p

Lsi + (1 − Lti ) p
κc, (8.36)

indicating that the temperature gradient in the core changes its direction.
Then we can draw a brief conclusion for these three schemes. The monolayer

scheme with an isotropic thermal conductivity can break the upper limit but is still
restricted by its geometric configuration. To be free from geometric configurations,
we further consider the monolayer scheme with an anisotropic thermal conductivity
and the bilayer scheme with isotropic thermal conductivities. For the former, the
efficiency can tend to infinity with κsrr/κc → 0−. For the latter, the efficiency can
also reach infinity when κt/κc → 0− or κt/κc → −∞. Moreover, the latter features
η < 0 if the coupling condition is appropriately chosen.

8.5 Finite-Element Simulation

We also perform finite-element simulations to confirm the theories with COMSOL
Multiphysics. From a practical perspective, although interfacial thermal resistance
exists widely, its effect at the macroscopic scale is not dominant, so it is reasonable
to ignore it. Without loss of generality, we consider a two-dimensional case with size
10 × 10 cm2 and set the core and background thermal conductivities as 1Wm−1 K−1.
The left boundaries are set at 313K, the right boundaries are set at 273K, and the
upper and lower boundaries are adiabatic. To compare the concentrating efficiency
of different thermal concentrators, we introduce a dimensionless temperature of
T ∗ = 100(T − T0)/T0 and a dimensionless position of x∗ = x/w, where T0 and w

denote the central temperature and half-length of the system, respectively.
Thermal concentrating aims to increase the temperature gradient in the core with-

out distorting that in the background. In order to confirm Eqs. (8.5), (8.8), and (8.9)
and demonstrate the expected case shown in Fig. 8.1, we design three structures with
different shape factors, and the corresponding results are presented in Figs. 8.4a–c.
The temperature profiles outside the shells are undistorted as if there were no core-
shell structures in the center. Meanwhile, the isotherms in the cores are concentrated
as expected. According to the Fourier law J = −κ∇T , heat fluxes are also enhanced
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Fig. 8.4 a–c Simulations of the monolayer scheme with an isotropic thermal conductivity. d T ∗
as a function of x∗. Parameters: a Lc1 = 0.4 and κs/κc = −0.58; b Lc1 = 0.5 and κs/κc = −1; c
Lc1 = 0.6 and κs/κc = −1.87; and a–c rs1/rc1 = 1.5 and κc = κb. Adapted from Ref. [37]

in the cores due to the larger temperature gradients. The dimensionless temperatures
are plotted as a function of dimensionless position in Fig. 8.4d.

By considering the monolayer scheme with an anisotropic thermal conductivity,
we confirm the theoretical prediction of Eqs. (8.14) and (8.17). Then, we design three
structures with different thermal conductivities of the shells (Fig. 8.5a–c). Similar to
Fig. 8.4, the temperature profiles in Fig. 8.5a–c prove the effect of thermal concentrat-
ing.Also,we draw the temperature distribution of the thermal concentrator (Fig. 8.5d)
designed by transformation theory for comparison. Figure8.5e displays the temper-
ature distribution along the central horizontal axis. As presented in Fig. 8.2b, the
temperature gradient in the core increases with the increment of κsrr/κc, leading to
the improvement of concentrating efficiency. Thus, we can control κsrr/κc → 0− for
an extreme concentrating efficiency.

For the bilayer scheme with isotropic thermal conductivities, two coupling con-
ditions (Eqs. (8.27) and (8.28)) are available. Similar to the structures in Figs. 8.4
and 8.5, those in Fig. 8.6 also ensure that isotherms outside the shells are straight and
those in the cores are denser, thereby realizing the effect of thermal concentrating.
With the coupling condition of Eq. (8.27), the efficiency changes continuously with
κt/κc (Fig. 8.3b).We further design a structure to display the concentrating efficiency
when κt/κc → 0− (Fig. 8.6a). The coupling condition of Eq. (8.28) can lead to an
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Fig. 8.5 a–c Simulations of themonolayer schemewith an anisotropic thermal conductivity.dTem-
perature distribution of the existing schemebased on transformation theory close to the upper limit of
concentrating efficiency. e T ∗ as a function of x∗. Parameters: a κsrr/κc = −0.5; b κsrr/κc = −1; c
κsrr/κc = −2; d κsrr/κc = (r + 100)/r ; and a–d rs/rc = 2 and κc = κb. Adapted from Ref. [37]

infinite efficiency. That is, η → +∞ when κt/κc → 0− (Fig. 8.6b) or κt/κc → −∞
(Fig. 8.6c), and η → −∞ for κt/κc → 0+ (Fig. 8.6d) or κt/κc → +∞ (Fig. 8.6e). As
shown in Fig. 8.6f, the effect of thermal concentrating can be quantitatively observed.

8.6 Experimental Suggestion

The coupling conditions require apparent negative thermal conductivities [33–36],
which cannot happen spontaneously in experiments. To achieve the equivalent effect,
we can resort to external heat sources (Fig. 8.7a).According to the thermal uniqueness
theorem [39, 40], as long as we realize the same boundary temperature distributions
by adding external heat sources at the inner and outer boundaries of the shell, we can
obtain the same temperature profiles. Since the central temperature gradient and heat
flux in Fig. 8.7c are almost the same as those in Fig. 8.7b, we prove that an apparent
negative thermal conductivity can be effectively achieved using external heat sources.
Then we design a structure as a feasible experimental suggestion (Fig. 8.7d). We
add a series of point heat sources at the inner and outer boundaries of the shell
(Fig. 8.7d). The precise temperatures are presented inTables8.1 and 8.2,which can be
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Fig. 8.6 a–e Simulations of the bilayer scheme with isotropic thermal conductivities. f T ∗ as a
function of x∗. Parameters: a κs/κc = 0.0826 and κt/κc = −0.05; b κs/κc = −1.14 and κt/κc =
−0.05; c κs/κc = −0.175 and κt/κc = −10; d κs/κc = −0.122 and κt/κc = 15; e κs/κc = −2.83
and κt/κc = 0.05; and a–e rs1/rc1 = 1.2, rt1/rc1 = 1.4, Lc1 = 1/3, and κc = κb. Adapted from
Ref. [37]

Table 8.1 Temperatures of point heat sources at the outer boundary of the shell in Fig. 8.7d.
Adapted from Ref. [37]

Source Temp. (K) Source Temp. (K)

1 293.00 13 293.00

2 290.24 14 295.76

3 287.68 15 298.32

4 285.45 16 300.55

5 283.78 17 302.22

6 282.69 18 303.30

7 282.30 19 303.70

8 282.69 20 303.30

9 283.78 21 302.22

10 285.45 22 300.55

11 287.68 23 298.32

12 290.24 24 295.76
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Fig. 8.7 Experimental suggestions. a Schematic diagram for realizing apparent negative conductiv-
ity. bWithout temperature control. c Continuous temperature control. d Discrete point heat sources
whose temperatures are shown in Tables8.1 and 8.2. The core and background in d are a brass
plate (109W m−1 K−1) drilled with 2116 air circles with a radius of 0.1cm. The shell is drilled
with 282 air ellipses with a major (or minor) semi-axis of 0.35cm (or 0.02cm). Other parameters: b
and d κs = diag(23, 92) W m−1 K−1; c κs = diag(−23, −92) W m−1 K−1; and b–d rc = 1 cm,
rs = 2 cm, κc = κb = 46 W m−1 K−1. The black lines and blue arrows in b–d denote isotherms
and heat fluxes, respectively. Adapted from Ref. [37]

experimentally controlled by adjusting the voltages of heaters and coolers according
to Eqs. (1) and (2) in Ref. [39]. The required thermal conductivity can be realized
by punching air holes on a brass plate (109W m−1 K−1), whose left and right edges
are put into hot (313K) and cold (273K) sinks, respectively. To achieve the thermal
conductivities of the core and background in Fig. 8.7b, 2116 air circles are drilled on
the brass, leading to an effective thermal conductivity of 46W m−1 K−1 (calculated
by Eq. (11) in Ref. [41]). The shell region is composed of 282 air ellipses, leading
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Table 8.2 Temperatures of point heat sources at the inner boundary of the shell in Fig. 8.7d.
Adapted from Ref. [37]

Source Temp. (K) Source Temp. (K)

1 293.00 13 293.00

2 281.96 14 304.04

3 271.67 15 314.33

4 259.83 16 323.17

5 256.05 17 329.95

6 251.79 18 334.21

7 250.34 19 335.67

8 251.79 20 334.21

9 256.05 21 329.95

10 259.83 22 323.17

11 271.67 23 314.33

12 281.96 24 304.04

to an effective thermal conductivity of diag(23, 92) W m−1 K−1 (calculated by
Eq. (11) in Ref. [41]). By comparing the temperature distributions in Fig. 8.7b–d,
we can confirm that the scheme in Fig. 8.7d can realize the effect of Fig. 8.7b in
experiments.

8.7 Conclusion

We break the upper limit for the concentrating efficiency of existing thermal con-
centrators by coupling thermal conductivities. We first explore a monolayer scheme
with an isotropic thermal conductivity, which can break the upper limit but is still
restrictedby its geometric configuration.Then,weconsider a shellwith an anisotropic
thermal conductivity or add the second shell with an isotropic thermal conductivity
as another degree of freedom, which renders the concentrating efficiency free from
geometric configurations. Apparent negative thermal conductivities are required in
these three schemes, which can be effectively realized by external energy or ther-
moelectric materials. Since negative permeability [42–44] and negative electric con-
ductivity [45] have been, respectively, revealed in static magnetic fields and DC
fields, it is promising to extend our results to these diffusive fields due to the similar
equation forms (i.e., the Laplace equation). Moreover, the present theory is appli-
cable not only for thermal concentrators with η > 1 but also for thermal invisible
sensors with η = 1 [46, 47] and thermal cloaks with η = 0 (perfect cloaking) or
η < 1 (imperfect cloaking) [48, 49]. A typical feature for concentrating, sensing, or
cloaking is the undistorted background temperature distribution, so these schemes
may provide insights into thermal camouflage [50] for misleading infrared detec-



8.8 Exercise and Solution 117

tion. It is also promising to extend the related mechanisms towards multi-function
and micro/nano-scale.

8.8 Exercise and Solution

Exercise

1. Prove that the three-dimensional case in Sect. 8.3 is similar to two dimensions.

Solution

1. The tensorial thermal conductivity of the shell can be expressed in the spheri-
cal coordinate system (r, θ, φ) as κ s = diag

(
κsrr , κsθθ , κsφφ

)
. For simplicity, we

assume a axial symmetry with κsθθ = κsφφ . Therefore, thermal conduction is inde-
pendent of φ, which is dominated by

1

r2
∂

∂r

(
r2κsrr

∂T

∂r

)
+ 1

r sin θ

∂

∂θ

(
sin θκsθθ

∂T

r∂θ

)
= 0. (8.37)

The temperature distributions in the core Tc , shell Ts , and background Tb can be
written as ⎧

⎪⎨

⎪⎩

Tc = Acr cos θ,

Ts = (
Asr

hs1 + Bsr
hs2

)
cos θ,

Tb = (
Abr + Bbr

−2
)
cos θ,

(8.38)

with definitions of hs1 = (−1 + √
1 + 8κsθθ /κsrr

)
/2 and hs2 = (−1 − √

1 + 8κsθθ /κsrr
)
/2.

By substituting Eq. (8.38) into the boundary conditions, we can obtain

⎧
⎪⎪⎨

⎪⎪⎩

Acrc = Asrhs1c + Bsrhs2c ,

Asrhs1s + Bsrhs2s = Abrs + Bbr−2
s ,

κc Ac = κsrr
(
hs1Asrhs1−1

c + hs2Bsrhs2−1
c

)
,

κsrr
(
hs1Asrhs1−1

s + hs2Bsrhs2−1
s

) = κb
(
Ab − 2Bbr−3

s

)
.

(8.39)

We can calculate Ac, As , Bs , and Bb with Eq. (8.39). By taking Bb = 0, we can
further derive

κb = hs1 (κc − hs2κsrr ) − hs2 (κc − hs1κsrr ) f (hs1−hs2)/3

κc − hs2κsrr − (κc − hs1κsrr ) f (hs1−hs2)/3
κsrr , (8.40)



118 8 Theory for Enhanced Thermal Concentrators: Thermal Conductivity Coupling

with a definition of f = r3c /r
3
s . The concentrating efficiency is

η = Ac

Ab
= (hs1 − hs2) κsrr f (hs1−1)/3

κc − hs2κsrr − (κc − hs1κsrr ) f (hs1−hs2)/3
. (8.41)

For an isotropic case with hs1 = 1 and hs2 = −2, Eq. (8.14) can be simplified as

η = 3κsrr
κc + 2κsrr − (κc − κsrr ) f

, (8.42)

which has the same form as Eq. (8.7) in Sect. 8.2.
We can also derive two coupling conditions for κc = κb,

hs1κsrr = κc, (8.43)

hs2κsrr = κc. (8.44)

Equations (8.43) and (8.44) can also be unified as

2κsrrκsθθ − κcκsrr = κ2
c . (8.45)

When Eq. (8.45) is satisfied, Eq. (8.41) can be reduced to

η = f −(1−κc/κsrr )/3 = (rs/rc)
1−κc/κsrr , (8.46)

which has the same form as two dimensions (Eq. (8.19)). Therefore, the minimum
value η → 0 occurs with κsrr/κc → 0+, and the maximum value η → ∞ occurs
with κsrr/κc → 0−. Moreover, we can find η → rs/rc when κsrr/κc → ±∞. If we
consider an isotropic and nontrivial shell with κsrr/κc = 1/hs2 = −1/2, the concen-
trating efficiency becomes η = r3s /r

3
c , which is also similar to the two-dimensional

conclusion in Sect. 8.3.
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Chapter 9
Theory for Chameleonlike Thermal
Rotators: Extremely Anisotropic
Conductivity

Abstract In this chapter, we propose a mechanism for intelligent thermal regulation
based on transformation-invariant metamaterials, which possess highly anisotropic
thermal conductivities. As an application, we design intelligent thermal rotators that
can guide heat flux directionwith different environmental parameters. Since the adap-
tive behavior is similar to chameleons, the present rotators are called chameleonlike
rotators.We further performfinite-element simulations and laboratory experiments to
validate the scheme and demonstrate the chameleonlike behavior. These results have
potential applications for implementing adaptive and adjustable thermal metamate-
rials. Similar behaviors can also be expected in other fields, such as hydrodynamics.

Keywords Thermal rotators · Transformation invariance · Extreme anisotropy

9.1 Opening Remarks

Transformation thermotics [1, 2] provides a fundamental and powerful method to
control heat flux at will. Initial explorations mainly focused on thermal conduction,
andmany functions were proposed, such as cloaking, concentrating, and rotating [3].
For the sake of practical applications, convection [4–6] and radiation [7, 8] have also
been considered to develop corresponding transformation theories.

Although transformation-thermotics-based metamaterials have achieved great
success, the lack of intelligence remains a problem. Specifically, the key equation
of transformation thermotics is κ ′ = JκJτ / det J, where κ ′ is transformed thermal
conductivity, κ is environmental thermal conductivity, J is the Jacobian matrix, and
τ denotes transpose [1, 2]. The transformed parameter

(
κ ′) is crucially dependent on

the environmental parameter (κ). In other words, once the environmental parameter
changes, the transformed parameter should change accordingly, making the original
design fail in the new environment. This limitation is fatal because one device applies
to only one environment. Similar problems also exist in thefields of electromagnetism
and thermal radiation, and some inspiring studies [9, 10] gave insights.

To improve intelligence, we propose a mechanism based on thermal
transformation-invariant metamaterials [11, 12], whose thermal conductivities are

© The Author(s) 2023
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highly anisotropic [13–15], i.e., 0W m−1 K−1 in one direction and ∞ W m−1 K−1

in the other. Transformation-invariant (i.e., highly anisotropic) metamaterials have
aroused broad interest in various fields, such as electromagnetism [16, 17] and acous-
tics [18, 19]. For a two-dimensional case, highly anisotropic thermal conductivities
have adaptive responses to environmental changes [20, 21], just like chameleons.We
perform coordinate transformations based on transformation-invariant metamateri-
als, which can keep the chameleonlike behavior. Therefore, the designed devices have
adaptive responses to environmental changes.We take thermal rotators [22–26] as an
example, which can guide heat flux direction. Existing designs only apply to a partic-
ular environment, which cannot cope with environmental changes. Here, we propose
the concept of thermal chameleonlike rotators. Going beyond a normal isotropic shell
with near-zero thermal conductivity (Fig. 9.1a), we start the rotation transformation
from a transformation-invariant shell (Fig. 9.1b). In this way, the designed rotator can
work in different environments (Fig. 9.1c and d), thus called a chameleonlike rotator.
The environment denotes the regions except for the rotator, and the environmental
parameter refers to its thermal conductivity.

9.2 Chameleonlike Behavior Origin

We consider a passive and stable conduction process in two dimensions, which is
governed by the Fourier law,

∇ · (−κ · ∇T ) = 0. (9.1)

The whole system is divided into three regions, i.e., core, shell, and background, with
tensorial thermal conductivities of κ1 = κ1 I , κ2 = diag (κrr, κθθ ), and κ3 = κ3 I ,
respectively. We treat the core and background as the environment, and suppose
their thermal conductivities to be the same, i.e., κ1 = κ3. κ2 is expressed in cylin-
drical coordinates (r, θ). By solving the Laplace equation, the effective thermal
conductivity of the core and shell κe can be expressed as

κe = κrr
n1 (κ1 − n2κrr ) − n2 (κ1 − n1κrr ) p(n1−n2)/2

κ1 − n2κrr − (κ1 − n1κrr ) p(n1−n2)/2
, (9.2)

where n1, 2 = ±√
κθθ/κrr and p = (R1/R2)

2. R1 and R2 are the inner and outer
radii of the shell, respectively. The thermal conductivity of a transformation-invariant
metamaterial is

κ2 =
(∞ 0
0 0

)
. (9.3)
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Fig. 9.1 Schematic diagram of the thermal chameleonlike rotator. a Isotropic shell with near-zero
thermal conductivity. b Transformation-invariant shell with near-zero thermal conductivity in the
tangential direction and near-infinite thermal conductivity in the radial direction. c and d Thermal
chameleonlike rotator working in different environments. Lines with arrows indicate heat flow. The
environmental thermal conductivities of c and d are κ1 and κ2, respectively. Adapted fromRef. [27]

The substitution of Eq. (9.3) into Eq. (9.2) yields

κe ≈ κ1, (9.4)

which means that the effective thermal conductivity of the core-shell structure
can adaptively change with the environment. In other words, two-dimensional
transformation-invariant metamaterials (Eq. (9.3)) have a chameleonlike behavior
(Eq. (9.4)). We then consider an arbitrary two-dimensional coordinate transforma-
tion,

r ′ = R (r, θ) , (9.5a)

θ ′ = �(r, θ) , (9.5b)
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where
(
r ′, θ ′) are physical coordinates and (r, θ) are virtual coordinates. We can

express the Jacobian matrix J as

J =

⎛

⎜⎜⎜
⎝

∂r ′

∂r

∂r ′

r∂θ

r ′∂θ ′

∂r

r ′∂θ ′

r∂θ

⎞

⎟⎟⎟
⎠

. (9.6)

The transformed thermal conductivity is

κ ′
2 = Jκ2Jτ

det J
, (9.7)

which can be expressed in detail as

κ ′
2 = 1

det J

⎛

⎜
⎜
⎝

κrr

(
∂r ′

∂r

)2

+ κθθ

(
∂r ′

r∂θ

)2

κrr

(
∂r ′

∂r

)(
r ′∂θ ′

∂r

)
+ κθθ

(
∂r ′

r∂θ

)(
r ′∂θ ′

r∂θ

)

κrr

(
∂r ′

∂r

) (
r ′∂θ ′

∂r

)
+ κθθ

(
∂r ′

r∂θ

) (
r ′∂θ ′

r∂θ

)
κrr

(
r ′∂θ ′

∂r

)2

+ κθθ

(
r ′∂θ ′

r∂θ

)2

⎞

⎟
⎟
⎠ . (9.8)

With Eq. (9.3), the eigenvalues of Eq. (9.8) are

λ1 = κrr

det J

[(
∂r ′

∂r

)2

+
(
r ′∂θ ′

∂r

)2
]

, (9.9a)

λ2 ≈ κθθ

det J
. (9.9b)

Due to κrr = ∞ and κθθ = 0, Eq. (9.9) can be further reduced to

λ1 = ∞, (9.10a)

λ2 = 0. (9.10b)

An arbitrary coordinate transformation does not change the eigenvalues.
We then design a thermal chameleonlike rotator with transformation-invariant

metamaterials. The coordinate transformation of rotating can be expressed as

r ′ = r, (9.11a)

θ ′ = θ + θ0 (r < R1) , (9.11b)

θ ′ = θ + θ0 (R2 − r) / (R2 − R1) (R1 < r < R2) , (9.11c)

where θ0 is rotation angle. With Eqs. (9.6) and (9.7), we can derive the thermal
conductivity of the rotator as
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κ ′
2 =

⎛

⎜⎜
⎝

κrr κrr
r ′θ0

R2 − R1

κrr
r ′θ0

R2 − R1
κrr

(
r ′θ0

R2 − R1

)2

+ κθθ

⎞

⎟⎟
⎠ , (9.12)

which is the key parameter for a thermal chameleonlike rotator as long as κ2 satisfies
Eq. (9.3).

9.3 Finite-Element Simulation

To verify the scheme, we first perform simulations with COMSOLMultiphysics. The
system is the same as Fig. 9.1c. We compare the difference between a chameleonlike
rotator and a normal rotator (Fig. 9.2). Before performing the rotation transforma-
tion, the thermal conductivities for the chameleonlike rotator and normal rotator are
diag

(
106, 10−3

)
and 100W m−1 K−1, respectively. The radial thermal conductivity

of the transformation-invariant metamaterial should be much larger than the environ-
mental thermal conductivity (at least two orders of magnitude), or the chameleonlike
rotator may fail. We then change the environmental thermal conductivity from 10
to 1000 W m−1 K−1, and the chameleonlike rotator can always work, i.e., rotat-
ing heat flux without distorting the environmental temperature profile (Fig. 9.2a–c).

Fig. 9.2 Simulation results of a–c chameleonlike rotator and d–f normal rotator. White lines
represent isotherms, and the values in each simulation are the corresponding thermal conductivities.
The system size is 1 × 1m2.The outer and inner diameters of the shell are 0.3 and 0.6m, respectively.
Adapted from Ref. [27]
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Therefore, the simulation results confirm the chameleonlike property. However, the
normal rotator fails.When the environmental thermal conductivity is 100Wm−1 K−1,
it behaves like a traditional rotator (Fig. 9.2e). When the environment changes, the
temperature profile is distorted (Fig. 9.2d and f). Therefore, the normal rotator has
no response to environmental changes.

9.4 Laboratory Experiment

For experimental verification, it is not easy to find a material in nature that satisfies
Eq. (9.12). Therefore,weuse the effectivemedium theory to realize the corresponding
parameter. Drawing on the multilayered structure [22], we design the chameleonlike
rotator as shown in Fig. 9.3a. As required by Eqs. (9.3) and (9.12), we choose two
materials with extremely large (κl ≈ 106 W m−1 K−1) and extremely small (κs ≈
10−3 Wm−1 K−1) thermal conductivities to approximately satisfy Eq. (9.3), and then
use the helical structure to approximately satisfy Eq. (9.12). The simulation results
are shown in Fig. 9.3b–g.Among them, Fig. 9.3b–d show the results of chameleonlike
rotator-1, rotating heat flux 90 ◦C. Figure9.3e, f presents the results of chameleonlike
rotator-2, rotating heat flux 180 ◦C.Therefore, it is feasible to fabricate chameleonlike
rotators with multilayered composite structures.

Restricted by experimental conditions, we choose copper (κcu ≈ 400Wm−1 K−1)
and air (κair ≈ 0.026W m−1 K−1) to fabricate a multilayered composite structure
to realize a small-angle rotator. According to the series/parallel connection for-
mula [28], the effective thermal conductivity of the composite structure is about

Fig. 9.3 Simulation results of chameleonlike rotators with multilayered structures. a Schematic
diagram. The structure is composed of two kinds of material with thermal conductivities of 106

and 10−3 W m−1 K−1, respectively. Simulations results of b–d chameleonlike rotator-1 and e–g
chameleonlike rotator-2 in different environments. The composite materials in b–g are the same as
those in a. Adapted from Ref. [27]
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diag (200, 0.052)Wm−1 K−1 before transformation, putting a limit on the variation
range of the environmental thermal conductivity. We calculate κe with κ1 changing
from 0.1 to 50W m−1 K−1, and confirm that the chameleonlike rotator works well
from 0.1 to 5W m−1 K−1, as shown in Fig. 9.4b. The difference |κe − κ1| is smaller
than 0.05Wm−1 K−1 (denoted by the star, with a deviation smaller than 1%). There-
fore, we conduct experiments with environmental thermal conductivities of 1 and
5Wm−1 K−1. The system is designed as shown in Fig. 9.4a. The chameleonlike rota-
tor is composed of air and copper, fabricated by laser cutting. The environment is
colloidalmaterials obtained bymixing silica gel (κgel = 0.15Wm−1 K−1 and density
ρgel = 1.14 × 103 kg m−3) and white copper powder (κwcu = 33 W m−1 K−1 and
ρwcu = 8.65 × 103 kg m−3). The thermal conductivity of the mixture is determined
by the Bruggeman formula [29],

pgel
κgel − κmix

κgel + 2κmix
+ (1 − pgel)

κwcu − κmix

κwcu + 2κmix
= 0, (9.13)

where pgel is the volume fraction of silica gel in the mixture. By setting κmix = 1
or 5 W m−1 K−1, we can derive the composition ratio of silica gel, which helps us
fabricate the colloidal materials. Although interface thermal conductance [30, 31]
exists, the mixture in regions I and III has a little fluidity, ensuring good contact
between the object and copper. We then fill two hot and ice water tanks as hot and
cold sources. The FLIR E60 infrared camera measures the temperature profile of the
sample. The experimental results are shown in Fig. 9.4d (κmix = 1 W m−1 K−1) and
9.4f (κmix = 5 W m−1 K−1). The corresponding simulation results are presented in
Fig. 9.4c and e. Heat dissipation exists because the sample is connected to the hot
and cold tanks with two copper plates. Moreover, the natural convection between the
sample and air also results in heat dissipation. Therefore, there is a small difference
between the computational and experimental values, but this does not affect the
expected results. The isotherms still keep straight even though the environmental
thermal conductivity changes.Meanwhile, heat flux is rotated as expected. Therefore,
the experimental results are consistent with the simulation results, verifying the
feasibility of chameleonlike rotators.

9.5 Discussion

The major difference of our scheme is to start the coordinate transformation from
a highly anisotropic parameter, which is proved to have a chameleonlike behavior.
Therefore, the designed rotator based on this parameter can also have a chameleonlike
behavior.Meanwhile, nomatter how the shape of the rotator changes, the chameleon-
like behavior still exists. Therefore, the present scheme can also design chameleon-
like rotators with arbitrary shapes. Nevertheless, a perfect transformation-invariant
(i.e., highly anisotropic) shell is described by Eq. (9.3), indicating that the higher
anisotropy yields a better chameleonlike behavior and a wider working range. Due to
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Fig. 9.4 Laboratory experiments of chameleonlike rotator. a Experimental setup. The structure is
composed of copper (κcu ≈ 400Wm−1 K−1) and air (κair ≈ 0.026Wm−1 K−1). b κ as a function
of κ1. The blue (top) and red (middle) lines correspond to κ1 and κe, respectively. The black (bottom)
line refers to |κe − κ1|. The coordinate of ∗ is (5, 0.047). c and e Simulation results and d and f
experimental results of the samples. The arrows indicate the direction of heat flux. The inner and
outer diameters of the shell are 0.075 and 0.15m, respectively. Adapted from Ref. [27]

the lack of highly conductive materials, the working range of the fabricated rotator is
from 0.1 to 5Wm−1 K−1. More methods [32–36] can be applied to enhance thermal
conductivities.

Moreover, the scheme can be extended to transient regimes by taking density and
heat capacity into account [23, 37–42]. The scheme is also not limited to conductive
systems. Recent studies explored convective-diffusive systems [43–45], hydrody-
namic systems [46, 47], and acoustic systems [18, 19] to design functional devices.
Therefore, it is also promising to design chameleonlike rotators in these fields.
Although these results are obtained at the macroscopic scale described by the Fourier
law, intelligence may also be helpful for heat manipulations with nanostructures
[48, 49].

9.6 Conclusion

We have designed thermal chameleonlike rotators based on transformation-invariant
metamaterials. With a highly anisotropic thermal conductivity, the designed rotator
can work in different environments, saving time and labor. Both simulations and
experiments verify the feasibility of the scheme. These results improve the intelli-
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gence of traditional thermal metamaterials and have potential applications in design-
ing intelligent metamaterials. The proposed scheme can also be extended to other
fields, such as hydrodynamics, where the critical parameter (permeability or viscos-
ity) plays a similar role as thermal conductivity in thermotics.

9.7 Exercise and Solution

Exercise

1. Calculate the Jacobian transformation matrix of Eq. (9.11).

Solution

1. For the region r < R1, J = I. For the region R1 < r < R2,

J =
(

1 0
−θ0/ (R2 − R1) 1

)
. (9.14)
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Chapter 10
Theory for Invisible Thermal Sensors:
Bilayer Scheme

Abstract In this chapter, we propose a bilayer scheme with isotropic materials to
design invisible thermal sensors with detecting accuracy. Therefore, the original
temperature fields in the sensor and matrix can keep unchanged. By solving the
linear Laplace equation with a temperature-independent thermal conductivity, we
derive two groups of thermal conductivities to realize invisible thermal sensors, even
considering geometrically anisotropic cases. These results can be directly extended
to thermally nonlinear cases with temperature-dependent thermal conductivity, as
long as the ratio between the nonlinear thermal conductivities of the sensor and
matrix is a temperature-independent constant. These explorations are beneficial to
temperature detection and provide insights into thermal camouflage.

Keywords Invisible thermal sensors · Detecting accuracy · Bilayer scheme

10.1 Opening Remarks

Precision measurement is indispensable in many fields, so high-performance sensors
are crucial. Generally, when a sensor is put in a physical field, it will distort the
physical field. Therefore, the measured value is not the original one, thus making the
sensor inaccurate. In addition to inaccuracy, the perturbation induced by the sensor
also makes the sensor “visible”, which is adverse in many practical applications. The
methods of scattering cancellation [1] and transformation optics [2] were proposed
to design invisible electromagnetic sensors. Invisible acoustic sensors [3–5] and
invisible magnetic sensors [6] were also presented successively.

Invisible thermal sensors also attracted research interest. The methods of scat-
tering cancellation [7–9], neutral inclusion [10], and transformation thermotics [11]
were put forward to design invisible thermal sensors. Furthermore, an invisible mul-
tiphysical sensor was also fabricated for both thermal and electric detection [12].
These studies focused on thermal invisibility because it is particularly important to
fight against infrared detection. For example, invisibility can protect the sensor from
being discovered when a thermal sensor detects temperature. However, accuracy is
almost neglected in these schemes, so the detected temperature has deviations from
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the original one, thus making thermal sensors inaccurate. Meanwhile, invisible ther-
mal sensors for nonlinear cases are still lacking, limiting practical applications. Here,
“nonlinear” means that thermal conductivities are temperature-dependent.

To solve the problem, we propose a bilayer scheme to design invisible thermal
sensors, even considering geometrically anisotropic and thermally nonlinear cases.
These two points benefit practical applications because thermal sensors do not have
to be geometrically isotropic, and nonlinear thermal conductivity is common. In
fact, bilayer scheme has achieved great success in designing thermal cloaks [13–18],
thermal concentrators [19], and chameleonlike metashells [20, 21]. Cloaks make the
temperature gradient in the center zero; concentrators make the temperature gradient
in the center steeper than that in the matrix; invisible sensors keep the same tempera-
ture gradient in the sensor andmatrix.We derive two groups of thermal conductivities
by solving the linear Laplace equation, making thermal sensors both accurate and
invisible. Moreover, we prove that the bilayer scheme can be directly extended to
thermally nonlinear cases as long as the ratio between the nonlinear thermal conduc-
tivities of the sensor and matrix is a temperature-independent constant.

10.2 Linear and Geometrically Isotropic Case

We discuss the case shown in Fig. 10.1a. The Cartesian coordinates are denoted as
xi (i = 1, 2 for two dimensions and i = 1, 2, 3 for three dimensions). The radii of
the core, inner shell, and outer shell are denoted as λa , λb, and λc, respectively. The
thermal conductivities of the core, inner shell, outer shell, and matrix are denoted
as κa , κb, κc, and κd , respectively. Since the geometry is isotropic, we discuss the
case in cylindrical coordinates (r, θ) or spherical coordinates (r, θ, ϕ). Here, two

Fig. 10.1 Schematic diagrams of a geometrically isotropic case and b geometrically anisotropic
case. Adapted from Ref. [22]
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dimensions and three dimensions are similar because ϕ essentially does not matter.
In the presence of an external linear thermal field G0, the temperature profiles in
different regions can be expressed as

Ta = uar cos θ, (10.1a)

Tb = (
ubr + vbr

−τ
)
cos θ, (10.1b)

Tc = (
ucr + vcr

−τ
)
cos θ, (10.1c)

Td = (
udr + vdr

−τ
)
cos θ, (10.1d)

where Ta , Tb, Tc, and Td are the temperatures in the core, inner shell, outer shell, and
matrix, respectively. τ = 1 for two dimensions and τ = 2 for three dimensions. ua ,
ub, vb, uc, vc, ud , and vd are seven coefficients to be determined by the following
boundary conditions,

uaλa = ubλa + vbλ
−τ
a , (10.2a)

ubλb + vbλ
−τ
b = ucλb + vcλ

−τ
b , (10.2b)

ucλc + vcλ
−τ
c = udλc + vdλ

−τ
c , (10.2c)

κaua = κb
(
ub − τvbλ

−τ−1
a

)
, (10.2d)

κb
(
ub − τvbλ

−τ−1
b

) = κc
(
uc − τvcλ

−τ−1
b

)
, (10.2e)

κc
(
uc − τvcλ

−τ−1
c

) = κd
(
ud − τvdλ

−τ−1
c

)
, (10.2f)

ud = G0, (10.2g)

vd = 0, (10.2h)

ua = ud . (10.2i)

Equations (10.2a)–(10.2c) and (10.2d)–(10.2f) indicate the continuities of tempera-
ture and heat flux, respectively. Equations (10.2g) and (10.2h) ensure a linear thermal
field in thematrix, thusmaking the sensor thermally invisible. Equation (10.2i)makes
the temperature in the sensor the same as that in the matrix, thus ensuring accurate
detection. We take κb and κc as other two coefficients which (together with the seven
coefficients in Eqs. (10.1a)–(10.1d)) can be determined by the nine equations in
Eq. (10.2). Therefore, κb and κc can be solved as

κ
(1)
b =

κaα3 − κdα1 +
√

(κa − κd)
(
κaα

2
2 − κdα

2
1

)

α5
, (10.3a)
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κ(1)
c =

κaα2 − κdα4 −
√

(κa − κd)
(
κaα

2
2 − κdα

2
1

)

α6
, (10.3b)

or

κ
(2)
b =

κaα3 − κdα1 −
√

(κa − κd)
(
κaα

2
2 − κdα

2
1

)

α5
, (10.4a)

κ(2)
c =

κaα2 − κdα4 +
√

(κa − κd)
(
κaα

2
2 − κdα

2
1

)

α6
, (10.4b)

where

α1 = λ1+τ
a

(
λ1+τ
b + τλ1+τ

c

) + λ1+τ
b

[
τλ1+τ

b − (2τ + 1) λ1+τ
c

]
, (10.5a)

α2 = λ1+τ
a

[
(2τ + 1) λ1+τ

b − τλ1+τ
c

] − λ1+τ
b

(
τλ1+τ

b + λ1+τ
c

)
, (10.5b)

α3 = λ1+τ
a

[
2τλ1+τ

a − (2τ − 1) λ1+τ
b − τλ1+τ

c

] + λ1+τ
b

(
τλ1+τ

b − λ1+τ
c

)
, (10.5c)

α4 = λ1+τ
b

(
λ1+τ
a − τλ1+τ

b

) + λ1+τ
c

[
τλ1+τ

a + (2τ − 1) λ1+τ
b − 2τλ1+τ

c

]
, (10.5d)

α5 = 2τ
(
λ1+τ
a − λ1+τ

b

) (
λ1+τ
a − λ1+τ

c

)
, (10.5e)

α6 = 2τ
(
λ1+τ
a − λ1+τ

c

) (
λ1+τ
b − λ1+τ

c

)
. (10.5f)

When κa < κd , Eqs. (10.3) and (10.4) are always positive. When κa = κd , the sensor
has the same thermal conductivity as the matrix, resulting in κb = κc = κa = κd , so
the bilayer scheme is not necessary. When κa > κd , Eqs. (10.3b) and (10.4a) are
negative. Negative thermal conductivity means that the direction of heat flux is from
low temperature to high temperature,which can be effectively realized by introducing
extra energy [23]. Also, we do not need to worry about complex values as long as
the value of λb is appropriately chosen. Physically, when κa < κd , the temperature
gradient in the sensor is larger than that in the matrix, and the bilayer scheme can
reduce the temperature gradient to make the temperature gradients in the sensor and
matrix the same.When κa > κd , the temperature gradient in the sensor is smaller than
that in the matrix, but the bilayer scheme cannot enhance the temperature gradient
with only positive thermal conductivities.

10.3 Linear and Geometrically Anisotropic Case

We discuss the case shown in Fig. 10.1b. The semi axes of the core, inner shell, and
outer shell are denoted as λai , λbi , and λci , respectively (i = 1, 2 for two dimensions
and i = 1, 2, 3 for three dimensions). Since the geometry is anisotropic, we discuss
the case in elliptical coordinates (ρ, ξ) or ellipsoidal coordinates (ρ, ξ, η). Here,
although two dimensions and three dimensions are different, we can remove the
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terms associated with η and x3 to reduce three dimensions to two dimensions. The
ellipsoidal coordinates (ρ, ξ, η) can be expressed as

x21
ρ + λ2

a1

+ x22
ρ + λ2

a2

+ x23
ρ + λ2

a3

= 1, (10.6a)

x21
ξ + λ2

a1

+ x22
ξ + λ2

a2

+ x23
ξ + λ2

a3

= 1, (10.6b)

x21
η + λ2

a1

+ x22
η + λ2

a2

+ x23
η + λ2

a3

= 1, (10.6c)

where ρ = constant denotes an ellipsoidal surface, and λi is the semi axis of the
ellipsoid (ρ = constant) along xi axis. Accordingly, the Cartesian coordinates can
be expressed as

x21 =
(
ρ + λ2

a1

) (
ξ + λ2

a1

) (
η + λ2

a1

)

(
λ2
a1 − λ2

a2

) (
λ2
a1 − λ2

a3

) , (10.7a)

x22 =
(
ρ + λ2

a2

) (
ξ + λ2

a2

) (
η + λ2

a2

)

(
λ2
a2 − λ2

a1

) (
λ2
a2 − λ2

a3

) , (10.7b)

x23 =
(
ρ + λ2

a3

) (
ξ + λ2

a3

) (
η + λ2

a3

)

(
λ2
a3 − λ2

a1

) (
λ2
a3 − λ2

a2

) . (10.7c)

In the presence of an external linear thermal fieldG0 along xi axis, the temperature
profiles in different regions can be expressed as [24]

Ta = uaxi , (10.8a)

Tb =
[

ub + vb

∫ ρ

ρa

dρ
(
ρ + λ2

ai

)
g (ρ)

]

xi , (10.8b)

Tc =
[

uc + vc

∫ ρ

ρa

dρ
(
ρ + λ2

ai

)
g (ρ)

]

xi , (10.8c)

Td =
[

ud + vd

∫ ρ

ρa

dρ
(
ρ + λ2

ai

)
g (ρ)

]

xi , (10.8d)

where g (ρ) =
√(

ρ + λ2
a1

) (
ρ + λ2

a2

) (
ρ + λ2

a3

) = λ1λ2λ3, and ρa (= 0)
denotes the ellipsoidal core surface with semiaxes λai . As explained above,

g (ρ) =
√(

ρ + λ2
a1

) (
ρ + λ2

a2

) = λ1λ2 for two dimensions.
We use two mathematical skills to proceed. The first one is associated with the

temperature derivations in Eq. (10.8),
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∂xi
∂ρ

= xi
2

(
ρ + λ2

ai

) , (10.9a)

∂

∂ρ

⎡

⎣xi

ρ∫

ρa

dρ
(
ρ + λ2

ai

)
g (ρ)

⎤

⎦ = xi(
ρ + λ2

ai

)
g (ρ)

(10.9b)

+ xi
2

(
ρ + λ2

ai

)

ρ∫

ρa

dρ
(
ρ + λ2

ai

)
g (ρ)

.

The second one is related to the integrations in Eqs. (10.8b)–(10.8d) which can be
rewritten as

ρ∫

ρa

dρ
(
ρ + λ2

ai

)
g (ρ)

=
∞∫

ρa

dρ
(
ρ + λ2

ai

)
g (ρ)

−
∞∫

ρ

dρ
(
ρ + λ2

ai

)
g (ρ)

(10.10)

= 2Lai

g (ρa)
− 2Li

g (ρ)
,

where Lai and Li are shape factors along xi axis,

Lai = g (ρa)

2

∞∫

ρa

dρ
(
ρ + λ2

ai

)
g (ρ)

, (10.11a)

Li = g (ρ)

2

∞∫

ρ

dρ
(
ρ + λ2

ai

)
g (ρ)

. (10.11b)

Then, the boundary conditions can be expressed as

ua = ub, (10.12a)

ub + vb

ρb∫

ρa

dρ
(
ρ + λ2ai

)
g (ρ)

= uc + vc

ρb∫

ρa

dρ
(
ρ + λ2ai

)
g (ρ)

, (10.12b)

uc + vc

ρc∫

ρa

dρ
(
ρ + λ2ai

)
g (ρ)

= ud + vd

ρc∫

ρa

dρ
(
ρ + λ2ai

)
g (ρ)

, (10.12c)

κaua = κb

[
ub + 2vb

g (ρa)

]
, (10.12d)

κb

⎡

⎣ub + 2vb
g (ρb)

+ vb

ρb∫

ρa

dρ
(
ρ + λ2ai

)
g (ρ)

⎤

⎦ = κc

⎡

⎣uc + 2vc
g (ρb)

+ vc

ρb∫

ρa

dρ
(
ρ + λ2ai

)
g (ρ)

⎤

⎦ ,

(10.12e)
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κc

⎡

⎣uc + 2vc
g (ρc)

+ vc

ρc∫

ρa

dρ
(
ρ + λ2ai

)
g (ρ)

⎤

⎦ = κd

⎡

⎣ud + 2vd
g (ρc)

+ vd

ρc∫

ρa

dρ
(
ρ + λ2ai

)
g (ρ)

⎤

⎦ ,

(10.12f)
ud = G0, (10.12g)

vd = 0, (10.12h)

ua = ud . (10.12i)

The physical understanding of Eq. (10.12) is similar to Eq. (10.2). Similarly, we can
derive two groups of thermal conductivities as

κ
(1)
b = β(1) (κa, κd , λai , λbi , λci ) , (10.13a)

κ(1)
c = γ (1) (κa, κd , λai , λbi , λci ) , (10.13b)

or

κ
(2)
b = β(2) (κa, κd , λai , λbi , λci ) , (10.14a)

κ(2)
c = γ (2) (κa, κd , λai , λbi , λci ) , (10.14b)

where β(1), γ (1)
[
< β(1)

]
, β(2), and γ (2)

[
> β(2)

]
are four functions determined by

Eq. (10.12). The physical understanding of Eqs. (10.13) and (10.14) are consistent
with that of Eqs. (10.3) and (10.4). The isotropic case with Eqs. (10.3) and (10.4)
is very complicated, let alone the anisotropic case with Eqs. (10.13) and (10.14).
Therefore, we use Mathematica to calculate thermal conductivities with determined
(κa, κd , λai , λbi , λci ) when performing simulations. Certainly, the anisotropic case
with Eqs. (10.13) and (10.14) can be reduced to the isotropic case with Eqs. (10.3)
and (10.4). We do not start from Eqs. (10.13) and (10.14) to derive Eqs. (10.3) and
(10.4) because Eqs. (10.13) and (10.14) are too complicated to simplify.

10.4 Nonlinear Case

We discuss the thermally nonlinear case where thermal conductivities are dependent
on temperature. This consideration is necessary because many common materials,
such as silicon and germanium, are nonlinear.We suppose the thermal conductivity of
the matrix to be κd (T ) = κd f (T ), where f (T ) can be any temperature-dependent
functions. Then, we prove that the bilayer scheme can also be applied for thermally
nonlinear cases as long as the ratio between the nonlinear thermal conductivities
of core and matrix is a temperature-independent constant, namely κd (T ) /κa (T ) =
κd/κa . Therefore, the thermal conductivity of the core should be κa (T ) = κa f (T ).



140 10 Theory for Invisible Thermal Sensors: Bilayer Scheme

We directly substitute κd (T ) and κa (T ) into Eqs. (10.3) and (10.4). Then, we can
also derive two groups of κb (T ) and κc (T ) which satisfy

κb (T ) = κb f (T ) , (10.15a)

κc (T ) = κc f (T ) . (10.15b)

Here, superscripts are omitted because both two groups of thermal conductivities
satisfy this property.More generally,we substituteκd (T ) andκa (T ) intoEqs. (10.13)
and (10.14). κb (T ) and κc (T ) also satisfy

κb (T ) = β [κa f (T ) , κd f (T ) , λai , λbi , λci ]

= β [κa, κd , λai , λbi , λci ] f (T ) = κb f (T ) , (10.16a)

κc (T ) = γ [κa f (T ) , κd f (T ) , λai , λbi , λci ]

= γ [κa, κd , λai , λbi , λci ] f (T ) = κc f (T ) . (10.16b)

Such a property allows us to transform the nonlinear Laplace equation into the
linear Laplace equation. Meanwhile, general solutions are consistent in different
regions. The nonlinear Laplace equation in different regions can be expressed as

∇ · [−κa, b, c, d (T )∇T
] = ∇ · [−κa, b, c, d f (T )∇T

]

= ∇ · [−κa, b, c, d∇h (T )
] = 0, (10.17a)

where ∂h (T ) /∂T = f (T ). In other words, as long as we replace T with h (T ),
the nonlinear Laplace equation can be transformed into the linear Laplace equa-
tion. Therefore, the above theories can be applied without any correction. The only
assumption is that the ratio between the nonlinear thermal conductivities of sensor
and matrix is a temperature-independent constant.

10.5 Finite-Element Simulation

We use the template of solid heat transfer in COMSOL Multiphysics to confirm
these theoretical analyses. Without loss of generality, we perform simulations in two
dimensions. Although interfacial thermal resistance may exist in practice [25, 26],
its macroscopic effect is usually small. Therefore, we neglect the interfacial thermal
resistance in simulations.

Firstly, we discuss the geometrically isotropic case in Fig. 10.2. A thermal sensor
is embedded in the matrix for temperature detection. Since the thermal conductivity
of the sensor is different from that of the matrix, the whole temperature profile is
distorted (Fig. 10.2a). Therefore, the sensor is not only thermally visible but also
inaccurate. When a pioneering monolayer scheme [12] is applied, it can ensure ther-
mal invisibility. However, it does not perform well in detecting accuracy because the
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Fig. 10.2 Simulations of geometrically isotropic case. a Sensor embedded in the matrix. b Sensor
coated by the monolayer scheme proposed in Ref. [12] with inner and outer radii of λa and λc,
respectively. The thermal conductivity of the single layer is 161.1W m−1 K−1. c Sensor coated
by two layers designed with Eq. (10.3). d Sensor coated by two layers designed with Eq. (10.4).
e Temperature gradients on the dashed lines in a–d as a function of x1. The simulation size is
10 × 10 cm2. The temperatures of the left and right boundaries are set at 313 and 283K. Other
boundaries are insulated. λa = 2, λb = 2.5, λc = 3 cm, and κa = 50, κd = 100 W m−1 K−1.
κ

(1)
b = 378.5, κ(1)

c = 58.5, and κ
(2)
b = 26.7, κ(2)

c = 346.3 W m−1 K−1. Adapted from Ref. [22]
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temperature in the sensor is still different from the original one (Fig. 10.2b). Then,
we resort to the bilayer scheme. We coat the sensor with the bilayer scheme whose
thermal conductivities are designed according to Eq. (10.3), and the simulation result
is shown in Fig. 10.2c. The temperature in thematrix becomes linear again, thusmak-
ing the sensor thermally invisible. Meanwhile, the temperature in the sensor is the
same as the original one, thus ensuring accurate detection.We also design the thermal
conductivities of the two layers according to Eq. (10.4), and the same effect can be
obtained (Fig. 10.2d). For quantitative comparison, we export the data on the dashed
lines in Fig. 10.2a–d. Since the temperature difference is not significant enough to
observe, we export temperature gradient ∂T/∂x1 for comparison. The result is pre-
sented in Fig. 10.2e, indicating that the bilayer scheme can indeed simultaneously
ensure thermal invisibility and accurate detection. The inset of Fig. 10.2e shows the
temperature profile of a pure matrix with a linear thermal field of −300 K/m.

Then, we discuss the geometrically anisotropic case in Fig. 10.3, which is more
practical. The results are similar to the geometrically isotropic case. Figure10.3a and
b demonstrate the temperature profiles without and with a sensor embedded in the
matrix, respectively. The sensor distorts the whole temperature profile, resulting in
thermal visibility and inaccurate sensor detection. When the monolayer scheme [16]
is applied, it can ensure thermal invisibility, but the temperature in the sensor is
still changed (Fig. 10.3c). Figure10.3d and e shows the results coated by two layers
designed with Eqs. (10.13) and (10.14), respectively. Again, the temperatures in the
matrix and sensor become the same. Therefore, the sensor is thermally invisible and
accurate. For clarity, we plot the temperature difference � with the temperature in
Fig. 10.3c (Fig. 10.3d or e) minus that in Fig. 10.3a, which is shown in Fig. 10.3f
(Fig. 10.3g or h). Our scheme ensures that the temperature difference� in the matrix
and sensor is always zero, confirming an accurate and thermally invisible sensor.

Finally, we discuss the thermally nonlinear case in Fig. 10.4. Nonlinear
(temperature-dependent) thermal conductivities, whether weak or strong, are com-
mon in nature. Here, “strong” (or “weak”) means that the nonlinear (or linear) term
of thermal conductivity is dominant. Therefore, it is necessary to extend our scheme
to thermally nonlinear cases. To make nonlinear properties clear, we discuss strong
nonlinearity directly. A typical case of strong nonlinearity is the thermal radiation
described by theRosseland diffusion approximation,which is proportional to T 3 [27–
29]. Therefore, we take on f (T ) = μ + νT 3 with μ and ν being two constants. We
set a high temperature at 2283KK, and aerogel (or ceramic), with excellent tolerance
to high temperatures, can be applied to observe thermal nonlinearity. As proved in
Eq. (10.16), we can directly multiply the original thermal conductivities with f (T )

to proceed.
Since the thermal conductivity of the matrix is nonlinear, the temperature gradient

is no longer a constant (Fig. 10.4a). When an elliptical sensor is embedded in the
matrix, the straight isotherms are distorted (Fig. 10.4b). Then, we coat the sensor
with two layers designed with Eq. (10.16). The simulation results are presented
in Fig. 10.4c and d, respectively. The distorted isotherms in the matrix and sensor
restore. Similarly, we also plot the temperature difference � with the temperature
in Fig. 10.4c (or Fig. 10.4d) minus that in Fig. 10.4a, and the results are shown in
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Fig. 10.3 Simulations of geometrically anisotropic case. a Pure matrix. b Sensor embedded in the
matrix. c Sensor coated by the monolayer scheme proposed in Ref. [16] whose thermal conductivity
is 149.5W m−1 K−1. d Sensor coated by two layers designed with Eq. (10.13). e Sensor coated
by two layers designed with Eq. (10.14). f Temperature difference with the temperature in c minus
that in a. g Temperature difference with the temperature in d minus that in a. h Temperature
difference with the temperature in eminus that in a. λa1 = 2, λa2 = 1, λb1 = 2.5, λb2 = 1.8, λc1 =
3, λc2 = 2.45 cm, and κa = 5, κd = 100 W m−1 K−1. κ(1)

b = 274.5, κ(1)
c = 61.8, and κ

(2)
b = 2.4,

κ
(2)
c = 342.1 W m−1 K−1. Adapted from Ref. [22]

Fig. 10.4e (or Fig. 10.4f).We can observe zero temperature difference� in thematrix
and sensor, so the bilayer scheme performs satisfactorily.

The bilayer scheme can be extended to transient regimes by considering heat
capacity and density [30–32]. Since invisibility is a special case of camouflage, these
results may guide thermal camouflage [33–40]. The present scheme is dependent on
elliptical/ellipsoid shapes because the Laplace equation can be analytically handled.
Therefore, other methods remain to be explored for complex shapes [41, 42], such
as combining neutral inclusion [10] and transformation thermotics [43, 44].
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Fig. 10.4 Simulations of thermally nonlinear case. The temperatures of the left and right boundaries
are set at 2283 and 283K, respectively. f (T ) = 1 + 10−9T 3. The other parameters are the same
as those for Fig. 10.3. Adapted from Ref. [22]

10.6 Conclusion

We have proposed a bilayer scheme to design invisible thermal sensors. Compared
with existing schemes, the present one is accurate and applicable for geometri-
cally anisotropic and thermally nonlinear cases. Thermal invisibility can protect
sensors from being detected, and accurate detection benefits practical applications.
The extensions to geometric anisotropy and thermal nonlinearity make thermal
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sensors more widely applicable. Moreover, we unify two/three-dimensional cases,
isotropic/anisotropic cases, and linear/nonlinear caseswith a single theoretical frame-
work, laying a solid foundation for designing thermal metamaterials under different
conditions.

10.7 Exercise and Solution

Exercise

1. Take the interfacial thermal resistance discussed in Ref. [26] into account and
derive the corresponding parameters for invisible thermal sensors.

Solution

1.When interfacial thermal resistance is taken into consideration, temperature jumps
will occur at the interfaces of the system. Therefore, the boundary conditions associ-
ated with the continuity of temperatures (Eqs. (10.2a)–(10.2c)) should be rewritten
as [26]

uaλa + Rabκaua = ubλa + vbλ
−τ
a , (10.18a)

ubλb + vbλ
−τ
b + Rbcκb

(
ub − τvbλ

−τ−1
b

) = ucλb + vcλ
−τ
b , (10.18b)

ucλc + vcλ
−τ
c + Rcdκc

(
uc − τvcλ

−τ−1
c

) = udλc + vdλ
−τ
c , (10.18c)

where Rab, Rbc, and Rcd are the interfacial thermal resistances of the sensor and first
layer, the first layer and second layer, and the second layer and matrix, respectively.
The other boundary conditions are unchanged.
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Chapter 11
Theory for Invisible Thermal Sensors:
Monolayer Scheme

Abstract In this chapter, we propose an anisotropic monolayer scheme to prevent
thermal sensors from distorting local and background temperature profiles, making
them accurate and thermally invisible. We design metashells with anisotropic ther-
mal conductivity and perform finite-element simulations in two or three dimensions
for arbitrarily given thermal conductivity of sensors and backgrounds. We further
experimentally fabricate a metashell with an anisotropic thermal conductivity based
on the effective medium theory, which confirms the feasibility of our scheme. Our
results are beneficial to improving the performance of thermal detection and may
also guide other diffusive physical fields.

Keywords Invisible thermal sensors · Monolayer scheme · Anisotropic thermal
conductivity

11.1 Opening Remarks

Temperature measurement has broad applications, requiring high sensitivity for ther-
mal sensors. However, the distortion of temperature profiles resulting from thermal
sensors cannot be avoided by only improving sensitivity. A severe problem lies in
the thermal-conductivity mismatch between sensors and backgrounds. Similar prob-
lem (parametric mismatch) also occurs in some other fields, and promotes relevant
researches in electromagnetism [1, 2], magnetics [3], and acoustics [4–6].

Many schemes were proposed based on neutral inclusion [7] or transformation
thermotics [8]. Furthermore, a multiphysical scheme was proposed by coating a
sensor with an isotropic shell [9]. Though these schemes improve the performance
of thermal detection, they are also faced with problems of complex parameters and
technological difficulty. For the scheme based on transformation thermotics [8],
anisotropic, inhomogeneous, and even negative thermal conductivity is required,
which makes its experimental realization extremely difficult. For the scheme based
on an isotropic shell [7, 9–11], local temperature profiles are still different from
the original ones, making thermal detection inaccurate. Here, “local” indicates the
region occupied by a sensor. To improve accuracy, one shouldminimize the thickness
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of the isotropic shell, which, however, still cannot completely remove inaccuracy.
In this sense, to date, thermal sensors with both accuracy and invisibility are still
experimentally lacking. Here, accuracy and invisibility respectively indicate that
local and background temperature profiles are not distorted.

Different from existing methods [7–11], we propose an anisotropic monolayer
scheme that can accurately measure local temperature profiles without disturbing
background thermal fields. It is worth noting that a similar scheme has been suc-
cessfully applied to design other thermal functions, such as cloaking [12–14], con-
centrating [13–15], and chameleon [16, 17]. The present scheme is applicable for
arbitrarily given thermal conductivities of backgrounds and sensors, which is con-
firmed by finite-element simulations in two or three dimensions. Furthermore, we
experimentally fabricate a metashell with anisotropic thermal conductivity based on
the effective medium theory [18–22], and the experimental results agree well with
the theory and finite-element simulations.

11.2 Theoretical Foundation

We start by discussing a two-dimensional system shown in Fig. 11.1. The system
is divided by a metashell (Area II) into three areas, whose thermal conductivities
are κ1 for sensor (Area I), κ2 = diag (κrr , κθθ ) for metashell (Area II), and κ3 for
background (Area III). κ2 is expressed in cylindrical coordinates (r, θ), where κrr
and κθθ are radial and tangential thermal conductivities, respectively. We consider
the known equation describing passive heat conduction at steady states,

∇ · (−κ · ∇T ) = 0, (11.1)

where κ and T are thermal conductivity and temperature, respectively.
Equation (11.1) can be expanded in cylindrical coordinates as

1

r

∂

∂r

(
rκrr

∂T

∂r

)
+ 1

r

∂

∂θ

(
κθθ

∂T

r∂θ

)
= 0. (11.2)

The general solution to Eq. (11.2) is

T = A0 + B0 ln r +
∞∑
i=1

[Ai sin (iθ) + Bi cos (iθ)] r im1 (11.3)

+
∞∑
j=1

[
C j sin ( jθ) + Dj cos ( jθ)

]
r jm2 ,

where m1 = √
κθθ/κrr and m2 = −√

κθθ/κrr , representing anisotropy degree.
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Fig. 11.1 Schematic
diagram of the anisotropic
monolayer scheme. Adapted
from Ref. [23]

The temperature profiles of sensor (Area I), metashell (Area II), and background
(Area III) are respectively denoted as T1, T2, and T3, which satisfy the general solution
in Eq. (11.3). Especially, T1 and T3 can be given by the right side of Eq. (11.3) with
m1 = 1 and m2 = −1. Boundary conditions are determined by the continuities of
temperature and normal heat flux,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T1 (R1) = T2 (R1) ,

T2 (R2) = T3 (R2) ,(
−κ1

∂T1
∂r

)
R1

=
(

−κrr
∂T2
∂r

)
R1

,(
−κrr

∂T2
∂r

)
R2

=
(

−κ3
∂T3
∂r

)
R2

.

(11.4)

Considering the symmetry of boundary conditions, we only keep certain terms in
Eq. (11.3) as the temperature profiles of three areas,

T1 = A0 + Ar cos θ, (11.5a)

T2 = A0 + Brm1 cos θ + Crm2 cos θ, (11.5b)

T3 = A0 + Dr cos θ + Er−1 cos θ, (11.5c)

where the temperature at θ = ±π/2 is defined as A0, and D = |∇T0| is the modulus
of an external linear thermal field ∇T0.
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We have six undetermined coefficients (i.e., A, B, C , E , κrr , and κθθ ) and only
four equations (Eq. (11.4)). The other two equations are to make thermal sensors
accurate and thermally invisible,

{
A = D,

E = 0,
(11.6)

where A = D indicates that the local temperature profile is the same as the back-
ground temperature profile, making a thermal sensor accurate; and E = 0 indicates
that the background temperature profile is undistorted, making a thermal sensor
invisible.

Then, the six unknown coefficients can be uniquely determined by six equa-
tions (Eqs. (11.4) and (11.6)), including the anisotropic thermal conductivity of the
metashell κ2 = diag (κrr , κθθ ). Therefore, thermal sensors with accuracy and ther-
mal invisibility in two dimensions are designed.

On the same footing, we extend the two-dimensional theory to three dimen-
sions. Accordingly, the thermal conductivity of the metashell is denoted as κ2 =
diag

(
κrr , κθθ , κϕϕ

)
with κθθ = κϕϕ . Then, Eq. (11.1) can be expanded in spherical

coordinates (r, θ, ϕ) as

1

r2
∂

∂r

(
r2κrr

∂T

∂r

)
+ 1

r

1

sin θ

∂

∂θ

(
sin θκθθ

∂T

r∂θ

)
= 0, (11.7)

where ϕ is neglected because we consider a rotational symmetric case.
The general solution to Eq. (11.7) is

T =
∞∑
i=0

(
Air

s1 + Bir
s2
)
Pi (cos θ) , (11.8)

where s1 = [−1 + √
1 + 4i (i + 1) κθθ /κrr

]
/2, s2 = [−1 − √

1 + 4i (i + 1) κθθ /κrr
]
/2, i is

summation index, and Pi is the Legendre polynomials. Since three-dimensional
boundary conditions are the same as two-dimensional ones, the temperature pro-
files for three areas can be expressed as

T1 = A0 + Ar cos θ, (11.9a)

T2 = A0 + Brs1 cos θ + Crs2 cos θ, (11.9b)

T3 = A0 + Dr cos θ + Er−2 cos θ, (11.9c)

where s1 = [−1 + √
1 + 8κθθ/κrr

]
/2, s2 = [−1 − √

1 + 8κθθ/κrr
]
/2, and the six

unknown coefficients (i.e., A, B, C , E , κrr , and κθθ ) can also be solved by
Eqs. (11.4) and (11.6). Therefore, we also make three-dimensional thermal sen-
sors accurate and invisible. We use Mathematica to solve the six equations
(Eqs. (11.4) and (11.6)) and obtain the required thermal conductivity of themetashell.
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11.3 Finite-Element Simulation

To confirm our theory, we further perform finite-element simulations with COM-
SOLMultiphysics. We can derive the anisotropic thermal conductivity of metashells
and perform finite-element simulations for arbitrarily given thermal conductivity of
backgrounds and sensors.

For comparison, we show a reference with uniform thermal conductivity in
Fig. 11.2a. The finite-element simulations with a reference shell (a bare sensor
embedded in the background, i.e., bareness), an isotropic shell (calculated with the
theory in Ref. [9]), and an anisotropic metashell (calculated by our theory) are pre-

Fig. 11.2 Case with κ1 < κ3. The simulation box is 18×18cm2, R1 = 3 cm, and R2 = 6 cm.
Black lines represent isotherms. The temperatures of cold source (left boundary) and hot source
(right boundary) are set at 283 and 313K, respectively. The thermal conductivities of a reference
(all areas) and b reference shell (Area II) are set to be the same, i.e., 222.5W m−1 K−1. The
thermal conductivities of sensor (Area I) and background (Area III) in b–d are set to be 108.2 and
222.5W m−1 K−1, respectively. The thermal conductivities of c isotropic shell and d anisotropic
metashell are 277.3 and diag (178.0, 349.0) Wm−1 K−1, respectively. Adapted from Ref. [23]
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Fig. 11.3 Quantitative comparison of Fig. 11.2. Temperature-difference distributions with a the
temperature in Fig. 11.2c minus that in Fig. 11.2a and b the temperature in Fig. 11.2d minus that in
Fig. 11.2a. c Temperature-gradient distributions on Line 1 in Fig. 11.2. d Temperature distributions
on Line 2 in Fig. 11.2. Adapted from Ref. [23]

sented in Fig. 11.2b–d, respectively. Figure11.2b indicates that a bare thermal sensor
indeed distorts local (Area I) and background (Area III) temperature profiles. Com-
paring Fig. 11.2a and c, although the isotropic shell keeps the background temper-
ature profile undistorted, the local temperature profile is still changed. Fortunately,
our scheme (Fig. 11.2d) makes local and background temperature profiles the same
as those in Fig. 11.2a, thus making the sensor accurate and thermally invisible.

To compare different schemes quantitatively, we also plot temperature-difference
profiles with the temperature in Fig. 11.2c minus that in Fig. 11.2a (Fig. 11.3a) and
the temperature in Fig. 11.2d minus that in Fig. 11.2a (Fig. 11.3b). The temperature
difference in the local region of Fig. 11.3a is nonzero, indicating that the detected
temperature is not the original one. The temperature difference in the local region
of Fig. 11.3b is zero, making a thermal sensor accurate. Certainly, the temperature
profile of the metashell has a small difference. We export the temperature-gradient
distributions along x axis on Line 1 in Fig. 11.2, as shown in Fig. 11.3c. The results
indicate that the isotropic and anisotropic shells (Fig. 11.2c and d) show the same
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Fig. 11.4 Case with κ1 > κ3. The thermal conductivities of a reference (all areas) and b reference
shell (Area II) are set to be the same, i.e., 251.8W m−1 K−1. The thermal conductivities of sensor
(Area I) and background (Area III) in b–d are set to be 397.0 and 251.8W m−1 K−1, respec-
tively. The thermal conductivities of c isotropic shell and d anisotropic metashell are 217.5 and
diag (308.0, 104.0)Wm−1 K−1, respectively. Other parameters are the same as those for Fig. 11.2.
Adapted from Ref. [23]

advantage of thermal invisibility (i.e., the constant temperature-gradient distribution
as that in reference). However, due to the thermal-conductivitymismatch between the
sensor and background, a bare sensor distorts the heat flowof the original background
thermal field, so the temperature gradient at the position of Line 1 in Fig. 11.2b is
not a constant. We also export the temperature distributions on Line 2 in Fig. 11.2,
as shown in Fig. 11.3d. The results show that the anisotropic scheme is better than
the isotropic one because what the thermal sensor in Fig. 11.2d detects is completely
consistent with the reference. However, the detection in Fig. 11.2c deviates from the
reference.
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Fig. 11.5 Quantitative comparison of Fig. 11.4. Temperature-difference distributions with a the
temperature in Fig. 11.4c minus that in Fig. 11.4a and b the temperature in Fig. 11.4d minus that in
Fig. 11.4a. c Temperature-gradient distributions on Line 1 in Fig. 11.4. d Temperature distribution
on Line 2 in Fig. 11.4. Adapted from Ref. [23]

Moreover, we also discuss the case that the thermal conductivity of the sensor
(Area I) is larger than that of the background (Area III) to ensure completeness; see
Figs. 11.4 and 11.5. The results are similar to Figs. 11.2 and 11.3. That is, a bare
thermal sensor will distort temperature profiles of all areas (Fig. 11.4b). The existing
isotropic scheme can keep the background temperature profile undistorted, but the
local one is changed (Fig. 11.4c). The present scheme can ensure both local and
background temperature profiles undistorted (Fig. 11.4d). Factual data can be found
in Fig. 11.5.

To go further, we also perform three-dimensional finite-element simulations. The
temperature profiles in the sensor (Area I) in Fig. 11.6b and c are different from
that in Fig. 11.6a, which means that the sensor cannot accurately measure local tem-
perature distributions. Fortunately, the temperature profiles in the sensor (Area I)
and background (Area III) in Fig. 11.6d are identical to those in Fig. 11.6a. We also
perform quantitative analyses on “accurate” and “invisible” properties of the sensor
(Fig. 11.6e–h), and the results are what we expect, just like the two-dimensional case.
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Fig. 11.6 Three-dimensional simulations. The simulation box is 18×18×18cm3, R1 = 3 cm, and
R2 = 6cm.The thermal conductivities of a reference (all areas) andb reference shell (Area II) are set
to be the same, i.e., 222.5Wm−1 K−1. The thermal conductivities of sensor (Area I) and background
(Area III) inb-d are set to be 108.2 and222.5Wm−1 K−1, respectively.The thermal conductivities of
c isotropic shell and d anisotropic metashell are 242.5 and diag (183.7, 269.0, 269.0)Wm−1 K−1,
respectively. Temperature-difference distributions with e the temperature in c minus that in a (i.e.,
�T1 = T1 − T0) and f the temperature in d minus that in a (i.e., �T2 = T2 − T0). g Temperature-
gradient distributions on Line 1 in a–d. h Temperature distributions on Line 2 in a-d. Adapted
from Ref. [23]
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To sum up, the accuracy and invisibility of three-dimensional thermal sensors are
also confirmed by simulations.

11.4 Laboratory Experiment

To experimentally validate the finite-element simulations in Fig. 11.2b and d, we set
up a device shown in Fig. 11.7a. By utilizing laser cutting, we fabricate two samples
(Fig. 11.7b and c) based on ellipse-embedded structures [18]. The holes in Areas
I and III are uniformly distributed with circular shapes, ensuring that the effective
thermal conductivity is isotropic. The holes in Area II have anisotropic (elliptical)
geometry, so the effective thermal conductivity is also anisotropic. Therefore, the
perforated structure indeed follows the theory. To eliminate infrared reflection and
thermal convection as much as possible, we also apply transparent and foamed plas-
tic films (insulating materials) on the upper and lower surfaces of the two samples,
respectively. Then, we measure the temperature profiles of these two samples with
the infrared camera Flir E60. The measured results with a reference shell and with an
anisotropic metashell are shown in Fig. 11.7d and e, respectively. We also perform
finite-element simulations based on these two samples, as shown in Fig. 11.7f and g.
Both finite-element simulations (Fig. 11.2b and d, and Fig. 11.7f and g) and experi-
ments (Fig. 11.7d and e) prove that with the present scheme, a thermal sensor does
accurately detect the local temperature profile without disturbing the background
thermal field.

We have discussed the scheme in steady heat conduction, and extending it to
transient states is promising, which should consider density and heat capacity. Fur-
thermore, topology optimization is also a powerful method to design metamateri-
als [24–27] beyond transformationmethod [28–31], which could be applied to design
accurate and invisible sensors.

11.5 Conclusion

We have proposed an anisotropic monolayer scheme to make thermal sensors accu-
rate and thermally invisible. By coating a thermal sensor with a metashell with
anisotropic thermal conductivity, the thermal sensor can accurately measure local
temperature profiles without disturbing surrounding thermal fields. The present
scheme is validated by two-dimensional simulations and experiments, which also
apply to three dimensions. These results may advance the performance of thermal
detection and provide guidance to thermal camouflage [32–39]. On the same basis,
this work also offers hints to obtaining counterparts in other diffusive fields.

11.6 Exercise and Solution

Exercise

1. Solve the unknown numbers in Eqs. (11.5) and (11.9).
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Fig. 11.7 Laboratory experiments. a Experimental setup.b and cReal photos of two samples.d and
e (or f and g) are measured results (or finite-element simulations) corresponding to the two samples
shown in b and c, respectively.White lines represent isotherms. The sensor (or background) in b and
c is carvedwith air circles with radius 0.21cm (or 0.15cm). The anisotropicmetashell is carvedwith
air ellipses with major (or minor) semiaxis of 0.21cm (or 0.044cm). The thermal conductivities of
copper and air are 397 and 0.026W m−1 K−1, respectively. These parameters cause the tensorial
thermal conductivity of the anisotropic metashell in c to be diag (178.0, 349.0) W m−1 K−1,
and the thermal conductivities of sensor (or background) in b and c to be 108.2W m−1 K−1 (or
222.5W m−1 K−1). The sample size in b and c is the same as that for Fig. 11.2b and d. Adapted
from Ref. [23]
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Solution
1. Since κrr and κθθ appear in the exponent, it is difficult to analytically express
them. To solve the problem, we treat κ1 and κ3 as two undetermined coefficients,
which together with other coefficients can be respectively expressed in two and three
dimensions as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Equations (11.10) and (11.11) have similar forms with only different m1, 2 and s1, 2.
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Chapter 12
Theory for Invisible Thermal Sensors:
Optimization Scheme

Abstract Metamaterial-based devices have been extensively explored for their
intriguing functions, such as cloaking, concentrating, rotating, and sensing. How-
ever, they are usually achieved by employing metamaterials with extreme param-
eters, critically restricting engineering preparation. In this chapter, we propose an
optimization model with particle swarm algorithms to simplify parametric designs
to realize bilayer thermal sensors composed of bulk isotropic materials (circular
structure). For this purpose, the fitness function is defined to evaluate the difference
between the actual and expected temperatures. By choosing suitable materials for
different regions and treating the sensor, inner shell, and outer shell radii as design
variables, we finally minimize the fitness function via particle swarm optimization.
The designed scheme is easy to implement in applications and shows excellent per-
formances in detective accuracy and thermal invisibility, which are confirmed by
finite-element simulations and laboratory experiments. The optimization model can
also be flexibly extended to a square case. This method can calculate numerical
solutions for difficult analytical theories (circular structure) and optimal solutions
for problems without analytical theories (such as square structure), providing new
inspiration for simplifying the design of metamaterials in various communities.

Keywords Invisible thermal sensors · Particle swarm optimization · Irregular
shapes

12.1 Opening Remarks

Novel meta-devices [1–24] have been researched continuously over the decades in
various fields since the pioneering theoretical proposals of transformation theory [1–
4]. Recently, many fruitful strategies have been proposed for offering new avenue of
devising thermal meta-devices such as neutral inclusion [6], bilayer schemes [10],
illusion thermotics [13], regionalization transformation [14], and many-particle ther-
mal invisibility [21]. However,most experimental devices are prepared by employing
metamaterials with unconventional thermal conductivities (i.e., anisotropic, graded
or singular), which remain to be overcomed for engineering applications. New
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schemes deserve exploring for purpose of simplifying engineering preparation and
developing novel functional meta-devices.

Optimization method has been conjectured as an effective tool for the design of
metamaterials in the macro [25–33] or micro [34–36] scale, which is applied com-
prehensively in recent years. A gradient-based numerical optimization algorithmwas
used to control the heat flow in the printed circuit board [27]. Also, non-gradient-
based black-box algorithms, including evolutionary algorithms, have been used in
the reverse structural design of thermal metamaterials [31]. Based on topology opti-
mization [29, 30, 32, 33], thermal meta-devices are reversely designed for specific
objective functions, providing excellent performance. Topology optimization usually
involves a change in structural topology, resulting in complex structural parameters.
This feature inspires us to explore simpler structural meta-devices with equally high
performance by employing optimization algorithms.

Here, we propose an optimization model with particle swarm algorithms [37]
(PSA) for designing bilayer thermal sensors composed of bulk isotropic materials.
For example, we design a circular bilayer thermal sensor with detective accuracy
and thermal invisibility. For this purpose, two objective functions are constructed
simultaneously, one for detecting the temperature distribution of the region occupied
by the sensor with accuracy and the other for undisturbing the temperature distri-
bution of the original background. When choosing suitable material analogies for
different regions, we treat the radius of the sensor, inner shell, and outer shell as
design variables. By adopting PSA, the characteristics of the prescribed optimized
structure are precisely and efficiently found. The designed scheme not only simplifies
practical fabrication but shows almost perfect performance, as both simulation and
experimental results exhibit. The optimization model can also be flexibly extended
to a square case.

12.2 Theoretical Foundation

The scheme for a bilayer thermal sensor is shown in Fig. 12.1a. A sensor (with
radius of R1, Material (1) coated with a bilayer shell (inner shell with radius of
R2, Material (2); outer shell with radius of R3, Material (3) is put in the center
of background (Material 4) for detection of the temperature distribution of region
occupied by it. Hot source and cold source are, respectively, set at the right-most
and left-most boundaries. The up-most and down-most boundaries are thermally
insulated. Temperature distributions follow the Laplace equation with passive heat
conduction at steady state,

∇ · (−κ (x) · ∇T ) = 0, (12.1)
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Fig. 12.1 a Schematic diagram for bilayer thermal sensors. b Discretized finer mesh for optimiza-
tion. Adapted from Ref. [38]

where κ (x) is thermal conductivity, denoted by

κ (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ1 for x in region of Material 1,

κ2 for x in region of Material 2,

κ3 for x in region of Material 3,

κ4 for x in region of Material 4.

(12.2)

Considering expanding Eq. (12.1) in cylindrical coordinates and symmetry of
boundary conditions, the general solution of the temperature distribution in four
regions can be expressed as

T1 = A0 + Ar cos θ, (12.3)

T2 = A0 + Br cos θ + Cr−1 cos θ, (12.4)

T3 = A0 + Dr cos θ + Er−1 cos θ, (12.5)

T4 = A0 + Fr cos θ + Gr−1 cos θ, (12.6)

where A0 is the temperature at θ = ±π/2, and F = |∇T0| represents the modulus
of an external linear thermal field ∇T0.

Boundary continuity conditions of temperature and normal heat flow should be
satisfied,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 (R1) = T2 (R1) ,

T2 (R2) = T3 (R2) ,

T3 (R3) = T4 (R3) ,
(−κ1

∂T1
∂r

)

R1
= (−κ2

∂T2
∂r

)

R1
,

(−κ2
∂T2
∂r

)

R2
= (−κ3

∂T3
∂r

)

R2
,

(−κ3
∂T3
∂r

)

R3
= (−κ4

∂T4
∂r

)

R3
.

(12.7)

When thermal sensor works, there is no thermal disturbances in sensor and back-
ground regions, which means we have following two equations,

{
A = F,

G = 0.
(12.8)

We simplify the form of equations that are composed of Eqs. (12.7) and (12.8)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

FR1 = BR1 + CR−1
1 ,

BR2 + CR−1
2 = DR2 + ER−1

2 ,

DR3 + ER−1
3 = FR3,

−κ1F = −κ2
(
B − CR−2

1

)
,

−κ2
(
B − CR−2

2

) = −κ3
(
D − ER−2

2

)
,

−κ3
(
D − ER−2

3

) = −κ4F.

(12.9)

For given R1, κ1, κ2, κ3 and κ4, we do have six unknown coefficients (B, C , D, E ,
R2 and R3) determined by six equations (Eq. (12.9)) uniquely. However, due to the
nonlinear coupling of multiple unknowns, it is difficult to find an explicit analytical
expression for any one radius. When the thermal conductivity of the shell (circular
or elliptic structure) is taken as unknown coefficients, analytic expressions can be
obtained,which have great limitations. In thisway, the physical image of the influence
of geometric size on the performance of thermal sensors cannot be given intuitively
from the analytical theory. There is a mapping relationship between the radius of the
circles (say, R1, R2 and R3) and the performance of the thermal sensor. We turn it
into an optimization problem and reversely design the geometry size according to
the performance.

12.3 Optimization Problem Description

In principle, a thermal sensor should have the ability of reproducing temperature
distributions in sensor and background regions, which are the same as those in cor-
responding regions of original background [39]. The heat field to be studied is dis-
cretized for numerical optimization by using finer mesh in COMSOL Multiphysics,
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as shown in Fig. 12.1b. Considering optimization problem, two objective functions
for bilayer thermal sensors with accuracy and invisibility are, respectively, defined
as

�s = 1

Ns

Ns∑

i=1

∣
∣T (i) − Tref (i)

∣
∣ , (12.10)

�b = 1

Nb

Nb∑

i=1

∣
∣T (i) − Tref (i)

∣
∣ , (12.11)

where i , T , Tref , Ns , and Nb represent sequence number of nodes, temperature
distribution controlled by bilayer thermal sensor, temperature distribution in pure
background, number of nodes in sensor and background regions after discretization,
respectively. Then we add Eqs. (12.10) and (12.11) to represent the fitness function,

� = �s + �b. (12.12)

As a swarm intelligence optimization algorithm, PSA (Fig. 12.2) has a very high
convergence rate, adopted extensively for inverse problems. PSA gets the optimal
solution through the coordination of particles in the solution space, and particles con-
stantly follow the current optimal particle. To solve the optimal problem mentioned
above, we first initialize N particles R0

j j = 1, 2, ..., N , in the feasible solution space
K , given as

K = {
R = (R1, R2, R3) : Rmin ≤ Ri < R j ≤ Rmax , i < j; i, j ∈ {1, 2, 3}} .

(12.13)
The characteristics of each particle are represented by position, velocity and fit-

ness function in K space. Particles move constantly in the solution space, updating
the position and velocity of individuals by tracking individual and group extremum
points. Here, individual and group extremum points are the positions with the min-
imum fitness function among all the positions experienced by the individual and
group particles. Each time positions of particles are updated, the fitness function of
which are calculated. During each iteration, the updating formula of particle velocity
and position are

V i+1
j = wV i

j + c1d1
(
P i

j − Ri
j

) + c2d2
(
P g − Ri

j

)
, (12.14)

Ri+1
j = Ri

j + V i+1
j , (12.15)

where i is iteration number, j is sequence number of each particle, P i
j is individual

extremum point of j-th particle at the i-th iteration, and P g is group extremum point.
w is inertia weight usually taken as a linear decreasing function, denoted by
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Fig. 12.2 a Illustration of the algorithm of PSA. b Schematic diagram of a particle swarm in search
of an optimal solution. c Contour map of (b). Adapted from Ref. [38]

Table 12.1 Parameter setting of optimization model

N ws we Imax c1 c2

50 0.9 0.4 150 1.49 1.49

w = ws − (ws − we)
i

Imax
, (12.16)

wherews ,we, and Imax are respectively initial inertia weight (for global search), final
inertia weight (for local search), and total number of iteration. c1 and c2 are empirical
constant. d1 and d2 are random numbers between 0 and 1. Relevant parameters of the
optimization model are shown in Table12.1. When finishing total iterations, termi-
nation conditions are met (or say minimum fitness function converged). Therefore,
we get the optimal solution for design variables. Also, we have finished the design
of bilayer thermal sensors.

On the same footing, we extend bilayer thermal sensors to a square case, where
there is no strict analytical theory of bilayer thermal sensors. For a given set of four
different bulk isotropic materials, the sides of three squares (L1, L2 and L3, from
inside to outside) are selected as design variables. Using PSA, we can obtain the
geometrical size of the bilayer thermal sensor with the best performance of accuracy
and invisibility.
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Fig. 12.3 Finite-element simulation results of circular bilayer thermal sensors. The simulation box
is 22× 22cm2.White lines represent isotherms. a Pure background for reference. b and c First case
for bare sensor with R1 = 3.42 cm and bilayer thermal sensor with R1 = 3.42 cm, R2 = 3.64 cm,
and R3 = 5.95 cm. f and g Second case for bare sensor with R1 = 2.73 cm and bilayer thermal
sensor with R1 = 2.73 cm, R2 = 4.11 cm, and R3 = 6.85 cm. d and e Temperature difference
between (b), (c), and (a). h and i Temperature difference between (f), (g), and (a). Adapted from
Ref. [38]

12.4 Finite-Element Simulation

With each suitable set of selected materials, we obtain the optimal solution R of the
design variables, representing the sensor, inner shell, and outer shell radii. For numer-
ical demonstrations, we choose two different materials for the inner shell (Inconel
alloy 625 and Stainless steel 436with thermal conductivity of 9.8 and 30Wm−1 K−1)
to perform finite-element simulations with COMSOL MULTIPHYSICS. Sensor,
outer shell, and background are Magnesium alloy, Copper, and Aluminum with ther-
mal conductivity of 72.7, 400, and 220W m−1 K−1. Thus, we get two sets of design
variables, parameterizing two cases of bilayer thermal sensors.

Before discussing the results of bilayer thermal sensors, we first show two ref-
erence schemes; one for pure background (Fig. 12.3a), the other for bare sensor
(Fig. 12.3b and f). The presence of a bare sensor disturbs the thermal field of the pure
background, making the thermal field in the sensor region distorted. Figure12.3c and
g show the simulation results of twocases of bilayer thermal sensors designedbyPSA.
External isotherms in two cases are both vertical. In two cases, the interval between
internal isotherms (in the sensor region) is almost identical to the pure background.
We plot the temperature-difference distributions between various schemes and pure
background to accentuate the temperature difference. From Fig. 12.3d and h, we get
a significant temperature deviation in sensor and background regions imposed by
bare sensors. On the contrary, the temperature difference in sensor and background
regions in Fig. 12.3e and i is almost zero. Furthermore, the temperature distributions
along the y axis on Line 1 in Fig. 12.3 are exported to contrast the performance of
these schemes quantitatively; see Fig. 12.4. Each bilayer thermal sensor maintains
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Fig. 12.4 Quantitative comparison of Fig. 12.3. a Temperature distributions (T0, T1, and T2) on
Line 1 in Fig. 12.3a, b, and c. Upper-right inset shows the temperature difference on Line 1 between
T1 (T2) and T0. b Temperature distributions (T0, T3, and T4) on Line 1 in Fig. 12.3a, f, and g.
Upper-right inset shows the temperature difference on Line 1 between T3 (T4) and T0. Adapted
from Ref. [38]

the same temperature distributions in the sensor and background regions as those
in the pure background, demonstrating its excellent performance. However, a bare
sensor not only measures the sensor region inaccurately but also distorts the thermal
field in the background region, whose temperature difference (TD) is shown in the
upper right inset of Fig. 12.4.

Moreover, we also perform finite-element simulations of square bilayer thermal
sensors with different geometrical sizes (structure with single shell, structure with
bilayer shell of random size, and structure with bilayer shell of optimized size).
As expected, optimized size dramatically improves the performance of the thermal
sensor, reproducing temperature distributions in sensor and background regions from
the original thermal field; see Fig. 12.5.

12.5 Laboratory Experiment

To test the performance of the bilayer thermal sensor, we select one case (Fig. 12.3g)
to experiment with a setup shown in Fig. 12.6a. For comparison, we prepare two
samples, one for backgroundwith pureAluminum(Fig. 12.6c); another for the bilayer
scheme made of Magnesium alloy (AZ91D), Stainless steel (ASTM 436), Copper,
and Aluminum (from inside to outside) (Fig. 12.6e). Both of them have the size of 22
× 22× 0.5cm3, each with two tentacles 5 cm high on the left and right, respectively.
Sensor (R1), inner shell (R1 and R2), and outer shell (R2 and R3) have the circular
boundaries with the radii of R1 = 2.73 cm, R2 = 4.11 cm, and R3 = 6.85 cm. We
process the structure of four materials by laser cutting and combine these parts using
mechanics enchases craft, as shown in Fig. 12.6b. The left and right tentacles of
samples are immersed in 283 and 313K water baths, and an infrared camera FLIR
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Fig. 12.5 Simulation results of square bilayer thermal sensors. The simulation box is 17× 17cm2.
White lines represent isotherms. Sensor, inner shell, outer shell, and background are respectively
expanded Magnesium alloy, Stainless steel, Copper, and Aluminum with conductivity of 72.7, 30,
400, and 220Wm−1 K−1.aThermal sensor of single layer sizewith L1 = 2 cmand L2 = 3.82 cm.b
Bilayer thermal sensor of randomsizewith L1 = 3 cm, L2 = 4 cmand L3 = 5 cm. cBilayer thermal
sensor of optimized size with L1 = 2 cm, L2 = 3.82 cm and L3 = 6.59 cm. d–f Temperature
difference between a–c and Fig. 12.3a. Adapted from Ref. [38]

E60 is used to measure the temperature distributions of two samples at the steady
state (after 10min). Figure12.6d and f show the measured results of Fig. 12.6c and
e, respectively. Though thermal contact resistance exists in the interface of different
materials, our scheme exhibits excellent properties in both accuracy and thermal
invisibility, which is well consistent with the simulation result of Fig. 12.3g.

12.6 Conclusion

In summary, we have proposed an optimization model with particle swarm algo-
rithms for designing bilayer thermal sensors composed of bulk isotropic materials.
For example, we design and fabricate a circular bilayer thermal sensor with high per-
formance, as both simulation result and experimental result exhibit. Such a scheme
removes the need for extreme parameters (anisotropic, graded, or singular), making
engineering applications readily and efficiently. The optimization model can also
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Fig. 12.6 Laboratory experiments. a Experimental setup. bComposition of bilayer thermal sensor.
c and e Real photos of reference and bilayer thermal sensor. d and f Measured results for (c) and
(e). White lines represent isotherms. The sample size in (c) and (e) is the same as that for Fig. 12.3a
and g. Adapted from Ref. [38]

be flexibly extended to a square case. Finally, an intelligent method of simplify-
ing structures and materials can calculate numerical solutions for difficult analytical
theories (such as circular structure) and optimal solutions for problems without ana-
lytical theories (such as square structure). This property provides an insight into the
development of metamaterials in a wide range of communities.
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12.7 Exercise and Solution

Exercise

1. Let y = x2, we initialize two particleswhose x coordinates are x1 = 1 and x2 = 2,
respectively. Using particle swarm optimization, we can get the minimum value
of y. Please write down the x (2)

1 and x (2)
2 coordinates of the two particles after the

first two iterations.

V (i+1)
j = wV (i)

j +
(
P (i)

j − R(i)
j

)
+

(
P g − R(i)

j

)
, R(i+1)

j = R(i)
j + V (i+1)

j ,

(12.17)
where w = 0.5 and V (0)

j = 0.

Solution

1. First iteration of particle j , we have

V (1)
j = wV (0)

j +
(
P (0)

j − x (0)
j

)
+

(
P g − x (0)

j

)
, x (1)

j = x (0)
j + V (1)

j . (12.18)

Second iteration of particle j , we have

V (2)
j = wV (1)

j +
(
P (1)

j − x (1)
j

)
+

(
P g − x (1)

j

)
, x (2)

j = x (1)
j + V (2)

j . (12.19)

After substituting the values, we get x (2)
1 = 1 and x (2)

2 = 0.5.
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Chapter 13
Theory for Omnithermal Illusion
Metasurfaces: Cavity Effect

Abstract In this chapter, we consider multifold heat-transfer modes and propose
a class of restructurable metasurfaces to show illusions in infrared and similarity
in visible-light view. We consider the three basic modes of heat transfer (omnither-
motics) in theoretical designs and adopt radiation-cavity effects in experimental
manufacture. We also make it feasible to tune surface temperature and emissivity
synergistically. Besides, such metasurfaces can work in temperature-varying back-
grounds and transient states. This scheme may provide a platform for the design of
adaptable thermal illusion and show robustness under multifrequency detections.

Keywords Omnithermal illusion metasurface · Cavity effect · Multifrequency
detection

13.1 Opening Remarks

The temperature signals of macroscopic objects can be observed by infrared imaging
because all objects with nonzero temperatures emit electromagnetic energy, known
as thermal radiation [1–3]. The Wien law [4] implies that within an extensive tem-
perature range (100 ∼ 103 K), the radiation-spectrum peak of an ideal black body
locates in the infrared region. This intrinsic property is extensively applied in industry
reconnoiter, military detection, and daily life. Naturally, the technology of thermal
illusion [5–9] has attracted much attention due to its promising prospect in illusion or
camouflage, namely, misleading or camouflaging thermal signals. The former (“illu-
sion”) means that an existing object exists in infrared imaging, replacing another
non-existing object [5–7]. In contrast, the latter (“camouflage”) represents that the
thermal infrared pattern of an existing object blends into the background as if the
object does not exist [8, 9].Meanwhile, various challenges arise in designing infrared
illusion,mainly resulting from complex surroundings,multifold heat-transfermodes,
and fabrication difficulties.

Recent progress on infrared illusion focuses on regulating surface temperatures
Tsur and designing surface emissivities εsur, which play twokey roles in infrared imag-
ing. On the one hand, with the successful development of thermal metamaterials [10–
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Fig. 13.1 Schematic diagram showing the proposed thermal metasurface. The units are arranged
in three arrays (Array I, Array II, and Array III), which can form three different images (specific
gestures) in the infrared camera (the third column). Meanwhile, they are similar in the visible-light
view (the second column). Adapted from Ref. [29]

17], temperature distributions can be tailored at will with elaborate microstructure
designs. Based on it, the thermal illusion has been achieved within fixed or vary-
ing backgrounds. However, there are two weaknesses of this method in the existing
studies: firstly, most of them are confined to conductive systems [18–21], neglecting
thermal convection and radiation; secondly, the surface structures are still identifi-
able from the background in the visible-light view [22–24], which make them hard
to be concealed under multiband detections. On the other hand, tuning emissivities
can disguise an actual object into a fake one in the infrared camera. For self-adapting
control, phase-change materials are widely adopted [25–28]. But these materials are
not common and usually call for additional installations to input stimulus, adapting
to changing circumstances (say, changing temperatures). Besides, if ambient temper-
atures vary sharply or even out of the region of phase-change temperature, its effect
will become invalid. So both of these two methods of infrared illusion have some
limitations. Furthermore, these two tailoring methods are mutually independent and
scarcely coupled due to the lack of a practical and synergistic platform.

To overcome the limitations and promote the integration of tuning Tsur and εsur in
a single platform, we design an omnithermal restructurable thermal metasurface for
infrared illusion; see Fig. 13.1. We can achieve characteristic infrared patterns by tai-
loring each block unit and assembling them in a specific array. We consider the three
heat transfer modes, conduction, convection, and radiation (omnithermotics), which
dominate surface temperatures. With the radiation-cavity effect, say, the dependence
of effective emissivity on the sizes, shapes, and proportion of surface cavities, the
specific emissivity can be achieved on each unit within a wide temperature range.
Therefore, this single platform can tailor the surface temperature and emissivity syn-
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ergistically. The unit-discretization operation in the x − y plane not only provides
flexibility in designing fake temperature signals (hence yielding infrared illusion) but
also makes different arrays almost identical (thus causing similarity in visible light)
despite different properties (Tsur and εsur). As a result, both illusions in infrared view
and similarity in visible-light view are achieved simultaneously, as schematically
shown in the middle and right columns of Fig. 13.1.

13.2 Theoretical Foundation

According to the Stefan−Boltzmann law [30], the total thermal radiative energy
density Ibb of a black body is related to the biquadrate of surface temperature Tsur,

Ibb =
∞∫

0

ubb (λ, Tsur) dλ =
∞∫

0

2πhc2

λ5

1

e
hc

λkB Tsur − 1
dλ =

(
2π5k4B
15c2h3

)
T 4
sur = σT 4

sur,

(13.1)
where λ is radiative wavelength and ubb (λ, Tsur) is the black-body spectral radiance,
described by the Plank law. Here, h is the Plank constant, c is the velocity of light in
vacuum, kB is the Boltzmann constant, and σ is the Stefan−Boltzmann constant. We
consider a scene that an infrared camera captures the infrared signals of an object
in a far field for identification, the actually received spectral radiance deviates from
the result described by Eq. (13.1). Spectral directional emissivity εsur(λ, Tsur, θ, φ)

can describe this deviation, which is defined as the spectral-radiance ratio of actual
objects to black bodies at temperature Tsur, wavelength λ, and direction angles θ and
φ. But in most practical situations without elaborate directed thermal emission, the
diffuse-emitter approximation is reasonable enough. So we can simplify the surface
emissivity to εsur(λ, Tsur). Then the actual radiative energy density Iac can be written
as

Iac =
∞∫

0

εsur (λ, Tsur) ubb (λ, Tsur) dλ =
∞∫

0

εsur (λ, Tsur)
2πhc2

λ5

1

e
hc

λkB Tsur − 1
dλ.

(13.2)
As we concern the total thermal radiative energy instead of the spectral radiance, the
full wavelength emissivity εsur(Tsur) makes sense. It can be defined as

εsur(Tsur) = Iac
Ibb

=
∫ ∞
0 εsur (λ, Tsur) ubb (λ, Tsur) dλ∫ ∞

0 ubb (λ, Tsur) dλ
=

∫ ∞
0 εsur (λ, Tsur) ubb (λ, Tsur) dλ

σT 4
sur

.

(13.3)
Except for the intrinsic emissivity affects thermal radiation, both the signal collection
range and resolution of the infrared camera should also be considered. According to
the practical situations, the signal collection range (λ1, λ2) covers the main emission
band. Then the full wavelength emissivity εsur(Tsur) can be adopted in this scene.
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Combing with Eqs. (13.2) and (13.3), the reading temperature Tread is given as [8]

Tread = C × Iac = C

λ2∫

λ1

εsur (λ, Tsur) ubb (λ, Tsur) dλ

≈ Cεsur (Tsur)

λ2∫

λ1

ubb (λ, Tsur) dλ

≈ Cεsur (Tsur)

λ2∫

λ1

2πhc2

λ5

1

e
hc

λkB Tsur − 1
dλ,

(13.4)

where C is a built-in conversion parameter of the infrared camera. Equation (13.4)
indicates that the two factors dominate the infrared imaging, namely, the camera
capacity [C, (λ1, λ2)] and the surface properties (Tsur, εsur). Here, we focus on
modulating the characteristic radiative spectrum, which depends on the surface prop-
erties (Tsur, εsur). Within a limited surface temperature region, the full wavelength
emissivity εsur(Tsur) is regarded as εsur, independent on Tsur . It is noted that if the
surface temperature varies sharply, the coupling relation between εsur and λ should
be underlined. And while the surface temperature difference is large enough between
units, the coupling relation between εsur and Tsur should also be taken into consider-
ation. Our strategy for controllable infrared illusion consists of tuning Tsur and εsur
individually and assembling them in any specific way.

For the first step, let us consider a three-dimensional bulk as a unit, as illustrated
in Fig. 13.2a. We set its sides to be thermally insulated and place a homothermal
source at the bottom. The heat flows in the bulk along the z axis and dissipates into
the surroundings from the top surface due to convection and radiation. This process
includes the three basic modes of heat transfer. In a steady state, the temperature of
the top surface Tsur can be determined by the conservation law of heat flow,

J cond = J conv + J rad, (13.5)

where J cond, J conv, and J rad are conductive, convective and radiative heat flow den-
sity, respectively. We set the unit’s height as Hb and thermal conductivity as κb. The
convective coefficient and radiative emissivity of the surface are hb and εb, respec-
tively. Besides, the source and room temperatures are given as T0 and Tair. We can
write down the expressions of J cond, J conv, and J rad as

Jcond = κb∇T |bulk = κb
T0 − Tsur

Hb
, (13.6a)

Jconv = hb(Tsur − Tair), (13.6b)

Jrad = εbσ(T 4
sur − T 4

air) = εbσ(T 2
sur + T 2

air)(Tsur + Tair)(Tsur − Tair)
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Fig. 13.2 Different tuning methods. a and b A cuboid as a block unit. Conductive flow is compa-
rable with convective and radiative flow in (a), but dramatically different in (b). c Assembly of the
units, which construct the whole metasurface. Adapted from Ref. [29]

= Rb(Tsur)(Tsur − Tair), (13.6c)

where Rb(T ) = εbσ(T 2
sur + T 2

air)(Tsur + Tair), representing the radiative ability of the
surface. Combining Eqs. (13.5)–(13.6c), we can deduce the temperature of the top
surface Tsur as

Tsur = κbT0/Hb + [hb + Rb(Tsur)] Tair
κb/Hb + hb + Rb(Tsur)

. (13.7)

Hereto, we obtain the general solution of the top-surface temperature of a unit.
To obtain the value of Tsur, an iteration of Rb(Tsur) should be executed by calculator.
Compared with the method reported in Ref. [19] where only κb is tuned, the present
scheme has four parametric freedoms for handling. They are κb, hb, εb, and Hb,
involving the three basicmodes of heat transfer. κb and Hb play the roles in controlling
conductive flow. hb and εb correspond to convective and radiative flows, respectively.
These four parameters can be expressed as

κb = Hb
[
hb(Tsur − Tair) + εbσ

(
T 4
sur − T 4

air

)]
T0 − Tsur

, (13.8a)

Hb = κb(T0 − Tsur)

hb(Tsur − Tair) + εbσ
(
T 4
sur − T 4

air

) , (13.8b)

hb = κb(T0 − Tsur)/Hb − εbσ
(
T 4
sur − T 4

air

)
Tsur − Tair

, (13.8c)
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εb = κb(T0 − Tsur)/Hb − hb(Tsur − Tair)

σ
(
T 4
sur − T 4

air

) . (13.8d)

We can see if the surface temperature Tsur of each unit is preset to create specific
infrared illusion, only three of them are independent. Also, these four parameters
can be tuned arbitrarily and simultaneously to achieve the designed Tsur of each unit.
Thus, the tuning strategy is flexible.We suppose that εb (equivalent to εsur) is uniform
in each unit and approximate to that of a black body, the reading temperature can be
estimated by Eq. (13.4) as

Tread1(x, y) ≈ C ×
λ2∫

λ1

2πhc2

λ5

1

e
hc

λkB Tsur − 1
dλ ≈ Tsur(x, y), (13.9)

where (x, y) refers to the central position of each unit.
It is noted that tuning εb plays a limited role in controlling Tsur due to its maximum

value 1, especially in low temperature regions. However, when Tsur is nearly uniform
in each unit under some circumstances, tuning surface emissivity is another effective
method for creating illusion because εsur becomes a major impact beyond Tsur in
Eq. (13.4). For example, according to Eq. (13.7), if κb is far greater than hb and
Rb(Tsur), Tsur will reach T0. Inversely, it will reach Tair, as shown in Fig. 13.2b. Then,
tailoring emissivity is the only way for creating infrared illusion in the infrared
imaging. On the basis of Eq. (13.4), the reading temperature in this case is

Tread2(x, y) ≈ εsur(x, y) × C ×
λ2∫

λ1

2πhc2

λ5

1

e
hc

λkB Tsur − 1
dλ ≈ εsur(x, y) · Tsur.

(13.10)
The final step is to assemble these units in a specific array to create the infrared

illusion in infrared imaging, see Fig. 13.2c. Each unit can be regarded as a pixel. The
fake surface temperature of each pixel should be distinguishable enough to make the
illusion valid in infrared imaging. Therefore, the contrast ratio should be larger than
the intrinsic resolution of the infrared camera under any conditions. The contrast ratio
of imaging is based on the maximum and minimum values of reading temperatures.
We can define the contrast ratio C as

C = Tread|max − Tread|min

Tread|max + Tread|min
. (13.11)

We have two ways for tailoring Tread. If the three modes of heat transfer are com-
parable, tuning Tsur solely is enough. According to Eq. (13.9), Eq. (13.11) can be
written as

C1 = Tsur|max − Tsur|min

Tsur|max + Tsur|min
. (13.12)
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Otherwise, tuning εsur is necessary to present a distinguishable temperature distribu-
tion in the infrared camera. So from Eq. (13.10), Eq. (13.11) can be written as

C2 = εsur|max − εsur|min

εsur|max + εsur|min
. (13.13)

The contrast ratio is related to the ratio of the surface temperature or the extremum
difference of the effective emissivity, representing an intrinsic character of a sort
of specifically-designed thermal metasurfaces. The flexible combination of units
contributes to the reconfigurability, and does not affect the contrast ratio C . So,
once we design the units completely, the thermal metasurface will always meet the
resolution requirement of the detector.

13.3 Finite-Element Simulation

We perform finite-element simulations based on the commercial software COMSOL
Multiphysics. The simulations focus on tuning the temperature Tsur . Here,we keep Hb

fixed and tailor κb, hb, and εb not to break the geometric construction ofmetasurfaces.
Firstly, the metasurface is constituted with 15 × 30 units, as shown in Fig. 13.2c.
They are cubes of 1 cm length. Then, we classify the total 450 units into 6 groups,
as demonstrated in Fig. 13.3a. Each group is designed independently to obtain six
patterns of Tsur. Here, we expect to create an illusion of “FUDAN”. When tuning κb,
we keep hb and εb as constants. So as the other two parameters. Then, the six groups
are assembled, as shown in Fig. 13.3a. For simplification, we heat the entire lower
surface with a homothermal heat source T0 and keep the room temperature Tair at
300 K. The laterals of the surface are thermally contacted with neighboring units to
mimic the real situation. Figure13.3b–d, respectively, show the results of tuning κb,
hb, and εb at T0 = 350 K, while Fig. 13.3e–g are those at T0 = 700 K. We can see
that convection and radiation play minor roles under low-temperature surroundings.
In particular, the effect of thermal radiation is nearly indistinguishable. When T0
goes higher, they make sense gradually. We calculate the contrast ratio C with the
simulation data at 350 and 700 K. It is 2.96 and 15.23% when tuning κb, and 0.20
and 2.28% when tuning εb. The amplification of tuning εb is about twice bigger than
that of tuning κb, confirming that radiation plays an increasingly important role with
the temperature rising.

It has been proved that the expected patterns can be observed by tuning the three
heat-transfer modes individually. Convection and radiation dominate at low and
high temperatures, affecting the contrast ratio of the pattern in the infrared camera.
Figure13.3h–j show the comparisons of Tsur between theoretical data and simulation
results under three tuning modes. They echo well at low temperatures and show a
little shift when they are high because the thermal interaction between different units
appears. More heat exchange in the x − y plane impacts Tsur. When the condition
goes to extremes (say, Tsur reaches T0 or Tair), we have to tune the effective emissivity.
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Fig. 13.3 Simulation results of tuning temperature Tsur . a Six groups and arrays with letters
“FUDAN”. b–g Temperature distributions with different tuning methods. T0 is set at 350 K and
700 K. For tuning thermal conduction, κb is set as 0.5, 1, 2, 3, 4, and 5W m−1 K−1 for six groups
while hb is 50W m−2 K−1 and εb is 1. For tuning thermal convection, hb is 5, 10, 20, 30, 40,
and 50W m−2 K−1 while κb is 1W m−1 K−1 and εb is 1. For tuning thermal radiation, εb is 0.1,
0.2, 0.4, 0.6, 0.8, and 1 while κb is 1W m−1 K−1 and hb is 50W m−2 K−1. h–j Comparisons
between theoretical values and simulation values of Tsur , corresponding to the data extracted from
b–g. Adapted from Ref. [29]

13.4 Laboratory Experiment

As shown in Fig. 13.3d, tuning radiation with emissivity at low-temperature con-
ditions has little effect on infrared illusion. However, the engineered emissivities
can impact apparent temperature distribution. Here, we resort to the surface-cavity
effect [31, 32] to modulate εsur. The cavity structures on the surface promote the
block to a higher radiant exitance. Hence, the apparent temperature in infrared imag-
ing will be deviated from the actual, forming an illusion pattern. Now, we are in the
position to design a surface cavity structure. For simplification, we adopt the cylin-
drical structure as it is easy to manufacture, as demonstrated in Fig. 13.4a. The heat
transfer process is between the surface cavity and the free space, in which the angle
factor of the cavity can be omitted. According to Ref. [31], the effective emissivity
of an isolated cylindrical cavity εe depends on its area ratio of mouth and inwall,
which can be expressed as
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Fig. 13.4 Experimental measurements for different effective emissivities εsur . a Cavity structure
(upper panel) and effective emissivity principle. The effective emissivity of a flat surface with cavity
(upper panel) is equivalent to εsur of another flat surface (lower panel), which is quantitatively
expressed in Eqs. (13.14) and (13.15). The first column of We performfinite, c, and d shows the
photo of experimental apparatus for a human pattern, a machine-gun pattern, and an “FD” pattern,
respectively. And the other three columns display the experimental measurements, each for one
observation angle (0◦, 30◦, or 60◦). Note that the experimental apparatus is placed in a heat bath of
50 ◦C. The unit of numerical values in the color bars is ◦C. Adapted from Ref. [29]

εe =
[
1 + S0

S1

(
1

εb
− 1

)]−1

, (13.14)

where S0 and S1 are the area of mouth and inwall, respectively, and εsur is the intrinsic
surface emissivity. Owing to the high thermal conductivity and regular shape of
the blocks, the surface temperature can be considered a constant. The plat surface
allows the energy to transfer into the environment, so the thermal interaction between
cavities occurs only. Thus, a quantitative emissivity expression of the whole surface
of the block can be derived as

εsur = ε′
e ≈ f εe + (1 − f )ε0 = f

[
1 + S0

S1
(
1

εb
− 1)

]−1

+ (1 − f )εb. (13.15)

The area proportion of the cavity f and inherent area ratio S0/S1 enable us to tailor the
effective emissivity of the surface to form specific apparent temperature distribution
in infrared imaging.

We examine the practical effects directly with an infrared camera FLIR E60,
whose resolution is 0.1 K. We use a 10 × 15 array and two groups of tailored units
for designing feature patterns for simplification. Copper cubeswith 2 cm in length are
employed as blockunits. The thermal conductivity of copper is about 397Wm−1 K−1,
to homogenize Tsur. Group I is not hollow with an intrinsic emissivity of 0.2, while
group II is trepanned with a cylindrical hole. The hole is 0.4 cm in radius and 1 cm
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in depth. According to Eq. (13.15), the effective emissivity is about 0.6. Besides,
we design an acrylic plat with 15 × 20 square holes for encoding the block units.
They can be inserted in the holes for fixation. We design infrared patterns of a
human, amachine gun, and the letters “FD”, respectively, as shown in Fig. 13.4b–d by
manually rearranging these units. This operation can also be mechanically executed
with additional active installations, thus forming an active restructurablemetasurface.
We place the encoded surface in a water bath with a temperature of 50oC. The room
temperature is about 20oC.After the system reaches a steady state, the infrared camera
helps to detect the feature patterns. Themetasurfaces of different arrangementways in
visible-light view are hard to distinguish (similarity). At different angles to observe,
we find its robustness in both infrared and visible-light views, see Fig. 13.4b–d. It
is worth mentioning that when the surface is coated with an anti-reflection film, we
find that the feature pattern disappears. The reading temperatures get a little higher
than the previous, confirming that the cavity engineering method helps change the
imaging.

13.5 Discussion

Object emissivity and surface temperature determine the imaging pattern of infrared
cameras. We have demonstrated two tuning methods by simulation or experiment
of emissivity and temperature on the same platform to achieve infrared illusion and
visible-light similarity. Reference [19] has given a feasible way to tune temperature
by manipulating conduction processes. In addition to this, how to practically control
convective and radiative flows need further study to satisfy theoretical predictions
by Eqs. (13.8a)–(13.8d). Tuning Tsur only works with the system in the steady state,
while tuning εsur works in both steady and transient states. We should note that emis-
sivity plays two roles in the tailoring process. On the one hand, it guides the radiative
flow to change the surface temperature. On the other hand, it helps conceal the actual
temperature Tsur to cheat the infrared camera by displaying an apparent temperature.
So, we perform the variable-controlling method in the above simulations and experi-
ments. This platform is a flexible and applicable tool for infrared illusion. In different
temperature regions, targeted tuning methods are available. Besides, the encoding
and assembling process on unit cells is non-invasive and repeatable. Its flexibility
with block assembly makes the illusion applicative to diverse situations. Moreover,
infrared cameras usually have some limitations in dimensional resolution; the illu-
sion pattern quality can be improved when the sizes of units are comparable with
dimensional resolution. The proposed restructurability is essentially distinguished
from the common reconfigurability or adjustability [33]. The former is property-
invariant but structurally rearrangeable, while the latter is structure-invariant but
property-adjustable. The proposed restructurable metasurface exhibits both illusions
in infrared light and similarity in visible light. The “similarity” can be upgraded to
“indistinguishability” as long as the surface is structured carefully, as implied by
Fig. 13.4b–d, which should be useful for real applications.
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Also, as a direct application, we suggest using our scheme to realize infrared
anticounterfeiting. As we know, anticounterfeiting is extensively applied in industry,
military, and daily life. The common strategies are based on optical holograms [34–
36], which naked eyes or detectors can find. Nevertheless, such technologies tend to
be defeated because the typical pattern can be forged. Recently, flourishing research
on optical metasurfaces has been involved in this traditional field [37–40]. Light’s
amplitude, phase, and polarization can be tailored arbitrarily with carefully designed
two-dimensional microstructures. So, its intrinsic signal is characteristic and hard
to be replicated. However, we only need to capture emissive electromagnetic-wave
information for identification. Intuitional insight is to tailor the characteristic radiative
signals for anticounterfeiting, which does not need additional incident lights. The
encryption process can be executed on our proposed metasurfaces, while decoding
is achieved by using infrared imaging. The key secret is hard to be forged because
of its similarity in visible-light view. Moreover, restructurability raises the difficulty
level for falsifying. This kind of anticounterfeiting strategy has applicability in non-
invasive and quick-recognition scenes.

13.6 Conclusion

Wehave proposed a practical scheme for achieving infrared-light illusion and visible-
light similarity. The tuning of surface temperature and emissivity can be executed
synergistically.Comparedwith existing thermalmetamaterials, our schemeconsiders
all the three basic modes of heat transfer (omnithermotics), thus expanding the scope
of applications. Also, we have introduced the cavity effect to tailor the emissivity,
simplifying the manufacture. We hope this scheme can not only overcome some
challenges in designing infrared illusion but also has direct applications in industry
and commerce.

13.7 Exercise and Solution

Exercise

1. Discuss the effective emissivity of a cylindrical cavity with radius r and depth h.

Solution

1. According to Eq. (13.14), we can derive
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εe =
[
1 + πr2

2πrh + πr2

(
1

εb
− 1

)]−1

=
[
1 + 1

2h/r + 1

(
1

εb
− 1

)]−1

=
[
1 + 1

2δ + 1

(
1

εb
− 1

)]−1

, (13.16)

where δ = h/r is the depth-radius ratio.
Then, we can define a cavity factor as F = εe/εb,

F = εe

εb
=

[
εb + S0

S1
(1 − εb)

]−1

=
[
εb + 1

2δ + 1
(1 − εb)

]−1

. (13.17)

For the same εb, the larger δ, the larger F . For the same δ, the smaller εb, the
larger F .
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Chapter 14
Theory for Effective Advection Effect:
Spatiotemporal Modulation

Abstract In this chapter, we introduce spatiotemporal modulation to realize ther-
mal wave nonreciprocity. The major mechanism is the effective advection effect
of spatiotemporal modulation in an open thermal system. We further analyze the
phase difference between two spatiotemporally modulated parameters, which offers
a tunable parameter to control nonreciprocity. We further define a rectification ratio
based on the reciprocal of spatial decay rates and discuss the nonreciprocity condi-
tions accordingly. Finite-element simulations are performed to confirm theoretical
predictions, and experimental suggestions are provided to ensure the feasibility of
spatiotemporal modulation. These results have potential applications in realizing
thermal detection and thermal stabilization simultaneously.

Keywords Effective advection effect · Spatiotemporal modulation · Thermal
wave nonreciprocity

14.1 Opening Remarks

Ever since the concept of spatiotemporal modulation was proposed [1], intensive
studies have been conducted not only inwave systems [2–16] including photonics [2–
5], acoustics [6–9], and metasurfaces [10–12] but also in diffusion systems [17–19].
A direct application of spatiotemporal modulation is to realize nonreciprocity which
refers to asymmetric propagation in opposite directions. Although many different
kinds of waves have been studied to achieve nonreciprocity based on spatiotemporal
modulation, thermal waves have received little attention despite being an important
phenomenon. In terms of mechanism, thermal waves are a special kind of wave that
is dominated by a diffusion equation (i.e., the Fourier equation), thus also called
diffusion waves [20]. In terms of application, thermal waves can realize nondestruc-
tive detection (i.e., thermal wave imaging), widely applied in aerospace, machinery,
and electricity [21–23]. Some recent studies also focused on diffusion waves to real-
ize anti-parity-time symmetry [24–27], negative thermal transport [28], cloaks [20,
29–31], and crystals [32–34].
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However, a mechanism to achieve thermal wave nonreciprocity is still lacking.
Thermal waves can be treated as periodic temperature fluctuations, usually a double-
edged sword. On the one hand, they are desirable for thermal detection. On the other
hand, they are unwanted for thermal stabilization. Therefore, it is crucially important
to realize thermal wave nonreciprocity. For this purpose, we explore spatiotemporal
modulation to achieve thermal wave nonreciprocity, inspired by pioneering studies
on nonreciprocal thermal materials [18]. It has been revealed that an advection term
appears in the conduction equation at quasi-steady states if thermal conductivity
and mass density are spatiotemporally modulated, thus achieving nonreciprocity.
However, the applicability of thermal waves was not discussed. On the one hand,
thermal waves feature completely transient states where the Willis term should be
considered. On the other hand, the phase difference between two spatiotemporally
modulated parameters remains explored.

Here, we thoroughly discuss thermal wave nonreciprocity based on spatiotem-
poral modulation. Since there is a phase difference between two spatiotemporally
modulated parameters, we construct two backward cases (Fig. 14.1) with different
nonreciprocity conditions. The results demonstrate that the phase difference offers
a flexible and tunable parameter to control nonreciprocity. We also discuss the heat
flux to reveal the feature of spatiotemporal modulation.

14.2 Theoretical Foundation

We consider a passive thermal conduction process in one dimension, dominated by

ρ (x − ut)
∂T

∂t
+ ∂

∂x

[
−σ (x − ut)

∂T

∂x

]
= 0, (14.1)

where σ (x − ut) is thermal conductivity and ρ (x − ut) is the product of mass
density and heat capacity. The spatiotemporally modulated parameters in Fig. 14.1a
take the form of

σ (x − ut) = σA + σB cos [K (x − ut)] , (14.2a)

ρ (x − ut) = ρA + ρB cos [K (x − ut) + α] , (14.2b)

where σA, σB , ρA, and ρB are four constants. K = 2π/γ is wave number, γ is
wavelength, u is modulation speed, and α is phase difference. Since σ (x − ut) and
ρ (x − ut) are periodic functions, the Bloch theorem is applicable and the tempera-
ture solution can be expressed as

T = φ (x − ut) ei(kx−ωt), (14.3)
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where k andω are, respectively, the wave number and circular frequency of a thermal
wave. φ (x − ut) is an amplitude modulation function that has the same periodicity
as σ (x − ut) and ρ (x − ut). Equation (14.1) can then be homogenized with the
approximations of k � K and ω � uK [18],

ρ̃
∂ T̃

∂t
+ C

∂ T̃

∂x
− σ̃

∂2T̃

∂x2
− S

∂2T̃

∂x∂t
= 0, (14.4)

where the homogenized parameters can be expressed as

σ̃ ≈ σA

(
1 − σ 2

B

2σ 2
A

1

1 + 
2

)
, (14.5a)

ρ̃ ≈ ρA

(
1 − ρ2

B

2ρ2
A


2

1 + 
2

)
, (14.5b)

C ≈ u
σBρB

2σA

1

1 + 
2
P (α) , (14.5c)

S ≈ 1

u

σBρB

2ρA


2

1 + 
2
Q (α) , (14.5d)

with
 = ρAuγ / (2πσA), P (α) = cosα + 
 sin α, and Q (α) = cosα + 
−1 sin α.
T̃ can be treated as the envelope line of the actual temperature T . Here, we extend
the results reported in Ref. [18] by additionally considering a phase difference of
α. σ̃ and ρ̃ are irrelevant to α, but C and S are dependent on α, offering a tunable
parameter.

We then qualitatively discuss the nonreciprocity induced by spatiotemporal mod-
ulation. In what follows, the subscripts of f , b1, and b2 denote the parameters related
to the forward case in Fig. 14.1a, the backward-1 case in Fig. 14.1b, and the backward-
2 case in Fig. 14.1c, respectively. The two backward cases are equivalent only when
α = 0. Since σ̃ and ρ̃ do not contribute to nonreciprocity, we mainly discuss C and
S in detail.

For the forward case, we knowC f = C and S f = S. For the backward-1 case, we
can derive Cb1 = −C and Sb1 = −S. Nonreciprocity requires C f �= Cb1 (or S f �=
Sb1). Therefore, as long asC �= 0 (or S �= 0), nonreciprocity will occur and a largerC
(or S) yields larger nonreciprocity. For clarity,weplot the functions ofC (α) and S (α)

in Fig. 14.2 with 
 = 0.5, 1, 2. The maximum and minimum values of C appear at
α = −arccot
 + π/2 and α = −arccot
 − π/2, respectively; and the zero value
occurs at α = arctan
 ± π/2. The maximum and minimum values of S appear at
α = − arctan
 + π/2 and α = − arctan
 − π/2, respectively; and the zero value
occurs atα = arccot
 ± π/2. For the backward-2 case, we can obtainCb2 = C (−u)

and Sb2 = S (−u). Nonreciprocity requires C f �= Cb2 (or S f �= Sb2). Therefore, as
long asC (u) �= C (−u) [or S (u) �= S (−u)], nonreciprocity will occur. We can also
observe that α = ±π/2 makes P (α) and Q (α) two odd functions of u. C and S
then become two even functions of u, so nonreciprocity disappears. In one word,
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Fig. 14.1 Thermalwave nonreciprocity. a Forward case.bBackward-1 case by changing the source
position. c Backward-2 case by changing the modulation direction. Adapted from Ref. [35]

Fig. 14.2 C and S as functions of α. Parameters: σA = 300 W m−1 K−1, σB = 100 W m−1 K−1,
ρA = 3 × 106 J m−3 K−1, ρB = 5 × 105 J m−3 K−1, and u = 0.05 m/s. Adapted from Ref. [35]
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the nonreciprocity condition for the backward-1 case is C �= 0 (or S �= 0), and that
for the backward-2 case is C (u) �= C (−u) [or S (u) �= S (−u)]. Especially when
α = 0, C (−u) = −C (u) [or S (−u) = −S (u)], the nonreciprocity condition for
the backward-2 case can then be reduced to C �= 0 (or S �= 0), which is the same as
that for the backward-1 case.

We then consider a transient case that can support thermal waves’ propagation.
Qualitative analysis is insufficient sincebothC and S can contribute to nonreciprocity.
Therefore, we quantitatively discuss a rectification ratio. For this purpose, we apply
a periodic temperature at the left side of the structure in Fig. 14.1a to generate a
forward thermalwave described byEq. (14.3). The periodic temperature has a formof
Tp = φ0e−iωt + T0 where φ0 denote the temperature amplitude. We set the reference
temperature T0 = 0 K in theoretical discussions for brevity. The envelope line of the
actual temperature T can then be expressed as

T̃ = φ0e
i(kx−ωt). (14.6)

The real part of Eq. (14.6) makes sense, which has been experimentally realized by
periodically heating amaterial [24, 25]. The substitution of Eq. (14.6) into Eq. (14.4)
yields

− iωρ̃ + ikC + k2σ̃ − ωkS = 0. (14.7)

Since thermal conduction features dissipation, thewave number k should be complex,
i.e., k = μ + iξ with μ and ξ being two real numbers. Equation (14.6) can then be
rewritten as T̃ = φ0e−ξ xei(μx−ωt). Therefore, the physical meaning of μ is the wave
number and that of ξ is the spatial decay rate. With the complex k, Eq. (14.7) can be
further reduced to

− iωρ̃ + i (μ + iξ)C + (μ + iξ)2 σ̃ − ω (μ + iξ) S = 0. (14.8)

By independently considering the real and imaginary parts of Eq. (14.8), we can
derive two equations,

−ξC + (
μ2 − ξ 2

)
σ̃ − ωμS = 0, (14.9a)

ωρ̃ − μC − 2μξσ̃ + ωξ S = 0. (14.9b)

The solution to Eq. (14.9) is

μ = 2Sω + √
2ε

4σ̃
, (14.10a)

ξ = −4Cω (2σ̃ ρ̃ − CS) + 2
√
2

(
C2 − S2ω2

)
ε + √

2ε3

8σ̃ (2σ̃ ρ̃ − CS) ω
, (14.10b)
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with ε =
√

−C2 + S2ω2 +
√(

C2 + S2ω2
)2 + 16ω2σ̃ ρ̃ (σ̃ ρ̃ − CS). Although

Eq. (14.10) is complicated, we can discuss some special conditions to have a
rough idea. For the forward case, we can know μ f = μ and ξ f = ξ . For the
backward-1 case, we can derive μb1 = μ (−C, −S) and ξb1 = ξ (−C, −S). Due
to ε (C, S) = ε (−C, −S), it does contribute to nonreciprocity, so the nonreciproc-
ity origins ofμ and ξ lie in S andC , respectively (Eq. (14.10)).We can then conclude
that nonreciprocal μ requires S �= 0 (i.e., α �= arccot
 ± π/2) and nonreciprocal ξ
requires C �= 0 (i.e., α �= arctan
 ± π/2). For the backward-2 case, we can derive
μb2 = μ [C (−u) , S (−u)] and ξb2 = ξ [C (−u) , S (−u)]. When α = ±π/2, C , S,
and ε are all even functions of u, so nonreciprocity will disappear. Therefore, non-
reciprocal μ (or ξ ) requires α �= ±π/2.

In general, it makes little sense to define a rectification ratio based on wave num-
bers. However, it is meaningful to define a rectification ratio (RT ) based on the
temperature amplitude

(
φ0e−ξ x

)
or the reciprocal of spatial decay rate (1/ξ),

RT 1 = 1/ξ f − 1/ξb1
1/ξ f + 1/ξb1

= ξb1 − ξ f

ξb1 + ξ f
, (14.11a)

RT 2 = 1/ξ f − 1/ξb2
1/ξ f + 1/ξb2

= ξb2 − ξ f

ξb2 + ξ f
, (14.11b)

where RT 1 and RT2 are defined for the backward-1 and backward-2 cases, respec-
tively. We plot RT 1 and RT 2 as functions of α in Fig. 14.3. The results demonstrate
that a smaller 
 or a smaller ω yields larger nonreciprocity. Therefore, both RT1

and RT 2 can theoretically reach 1, and we can obtain a perfect thermal wave diode.
Especially when α = 0, Eq. (14.11) can be reduce to

RT 1 = RT 2 = 2
√
2Cω (2σ̃ ρ̃ − CS)

2
(
C2 − S2ω2

)
ε + ε3

, (14.12)

indicating that the two backward cases are equivalent when α = 0.
Another possibility to define a rectification ratio (RJ ) lies in nonreciprocal heat

fluxes J . For this purpose, we define the dynamic heat flux J according to Eq. (14.1),

J = −σ (x − ut)
∂T

∂x
= −σ (x − ut)

∂

∂x

[
φ (x − ut) e−ξ xei(μx−ωt)

]
= −σ (x − ut)

[
φ′ (x − ut) + (−ξ + iμ) φ (x − ut)

]
e−ξ xei(μx−ωt), (14.13)

where φ′ (x − ut) = ∂φ (x − ut) /∂x . Since σ (x − ut), φ (x − ut), and φ′ (x − ut)
are all periodic functions, the dynamic heat flux described by Eq. (14.13) varies with
temporal periodicity, but the heat flux amplitude decays along the x axis due to the
term of e−ξ x . Therefore, we can also define RJ based on the reciprocal of spatial
decay rate (1/ξ) which should have the same form as Eq. (14.11), indicating that the
whole theoretical framework is self-consistent.
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Fig. 14.3 RT 1 and RT 2 as functions of α. The parameters are the same as those for Fig. 14.2.
Adapted from Ref. [35]

We can then draw a brief conclusion. Spatiotemporalmodulation can generate two
additional terms: the convective term associated with C and the Willis term related
to S. C and S can be flexibly tuned by α. We also discuss two backward cases: (I)
changing the source position and (II) changing the modulation direction, equivalent
only when α = 0. We further discuss their nonreciprocity conditions and define a
rectification ratio (RT or RJ ) based on the reciprocal of spatial decay rate (1/ξ).

14.3 Finite-Element Simulation

We then perform simulations with COMSOL Multiphysics to confirm the the-
oretical analyses. For this purpose, we study the thermal conduction in a one-
dimensional structurewhoseparameters are spatiotemporallymodulated as described
by Eq. (14.2) with 
 = 1. For accuracy, the mesh size is one-tenth of the modulation
wavelength (γ ), and the time tolerance is 10−6.

We firstly discuss the backward-1 case, which requires changing the source posi-
tion but keeping the modulation direction (Fig. 14.1b). As theoretically predicted
(Eq. (14.11)), RT1 = 0 occurs when α = π/4 ± π/2. For brevity, we set α = −π/4
to perform simulations. The temperature and heat flux evolutions are presented in
Fig. 14.4a, c, respectively. We can observe that the forward and backward-1 prop-
agations are the same, indicating reciprocal propagations. Moreover, RT 1 reaches
the maximum value when α = π/4 as predicted. We also perform simulations with
α = π/4, and the results are presented in Fig. 14.4b, d. The temperature amplitudes
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Fig. 14.4 Simulations of the backward-1 case. The parameters are the same as those for Fig. 14.2
with 
 = 1 and L = 0.2 m. The periodic temperature is set at Tp = 40 cos (−2π t/50) + 323 K.
The detected position locates at the center of the structure. a and b Temperature evolution. c and d
Heat flux evolution. Adapted from Ref. [35]

are different, indicating nonreciprocal propagations. The theoretical prediction of the
forward and backward-1 temperature amplitudes are 5.13 and 1.87K, respectively.
The simulations show that the forward and backward-1 temperature amplitudes are
5.23 and 1.92K, respectively. Therefore, the simulations agree well with the theo-
retical predictions.

We then discuss the backward-2 case, which requires changing the modulation
direction but keeping the source position (Fig. 14.1c). Equation (14.11) tells that
RT2 = 0 appears when α = ±π/2, and we set α = −π/2 to perform simulations
(Fig. 14.5a, c). The forward and backward-2 propagations have the same tempera-
ture (or heat flux) amplitudes, indicating reciprocal thermal waves. In addition, RT2

reaches the maximum value when α = 0 as predicted, and the simulation results are
presented in Fig. 14.5b, d. The theoretical prediction of the forward and backward-2
temperature amplitudes are 4.48 and 2.19K, respectively. The simulations demon-
strate that the forward and backward-1 temperature amplitudes are 4.53 and 2.24K,
respectively. Again, the simulations and theories have good agreement.

Wefinally provide some experimental suggestions to ensure the feasibility of prac-
tical implementations. The most crucial is to realize spatiotemporal modulations of
σ (thermal conductivity) and ρ (the product of mass density and heat capacity).
We firstly discuss the spatiotemporal modulation of σ . Many studies have shown
that thermal conductivities can be flexibly controlled by external fields like electric
fields [36, 37] and light fields [38]. The in-plane thermal conductivity can change
two orders of magnitude with an out-of-plane electric field [36]. We then discuss the
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Fig. 14.5 Simulations of the backward-2 case. The parameters are the same as those for Fig. 14.4.
The difference from Fig. 14.4 is that here we change the modulation speed instead of changing the
source position. Adapted from Ref. [35]

spatiotemporal modulation of ρ by considering heat capacity. Many materials have a
phase change [39] in the presence of an electric field, so heat capacities change with
the phase change. Therefore, spatiotemporal modulations of σ and ρ can be realized
with an electric field. Moreover, Ref. [19] also provides an insight into practical
implementations, although the experiments were conducted in electrics. Since ther-
motics and electrics follow similar equations (thermal conductivity corresponds to
electric conductivity and heat capacity corresponds to electric capacity), spatiotem-
poral modulations of σ and ρ might also be realized by rotating disks, as presented
in Ref. [19]. A periodic temperature can be obtained by directly using a pulse heat
source or alternately using a ceramic heater and a semiconductor cooler. Therefore,
these results should be possible to be experimentally validated. Here, thermal waves
are based on the Fourier law, and many other kinds of thermal waves remain further
explored, i.e., those considering thermal relaxation [40–43].

14.4 Conclusion

We propose the mechanism of tunable thermal wave nonreciprocity with spatiotem-
poral modulation. The tunability lies in the phase difference (α) between two spa-
tiotemporally modulated parameters. We reveal that the homogenized thermal con-
ductivity (σ̃ ) and the homogenized product of mass density and heat capacity (ρ̃)
are independent of the phase difference (α). Still, the convective term (C) and the
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Willis term (S) are crucially dependent on the phase difference (α). We also discuss
two backward cases: (I) changing the source position and (II) changing the modu-
lation direction. The two cases are equivalent only when α = 0. We further define
a rectification ratio (RT1 or RT 2) based on the reciprocal of spatial decay rate (1/ξ )
and discuss nonreciprocity conditions. These theoretical analyses are all confirmed
by finite-element simulations, and experimental suggestions are also given to ensure
feasibility. These results could provide distinct opportunities for nonreciprocal heat
transfer.

14.5 Exercise and Solution

Exercise

1. Derive Eq. (14.5) by homogenizing spatiotemporal modulation.

Solution

1. We consider two variable substitutions of n = x − ut and τ = t , yielding ∂/∂x =
∂/∂n and ∂/∂t = ∂/∂τ − u∂/∂n. Equation (14.1) can then be reduced to

ρ (n)
∂T

∂τ
− uρ (n)

∂T

∂n
+ ∂

∂n

[
−σ (n)

∂T

∂n

]
= 0. (14.14)

Similarly, Eq. (14.2) can also be simplified as

σ (n) = σA + σB cos (Kn) , (14.15a)

ρ (n) = ρA + ρB cos (Kn + α) . (14.15b)

We rewrite Eq. (14.15) with the Fourier expansion,

σ (n) =
∑

s=0, ±1

σse
iKsn = σ0e

iK0n + σ+1e
iK+1n + σ−1e

iK−1n, (14.16a)

ρ (n) =
∑

s=0, ±1

ρse
iKsn = ρ0e

iK0n + ρ+1e
iK+1n + ρ−1e

iK−1n, (14.16b)

with K0 = 0, K±1 = ±K , σ0 = σA, σ±1 = σB/2, ρ0 = ρA, and ρ±1 = e±iαρB/2.
With the Bloch theorem, we can express the temperature solution as

T (n, τ ) = φ (n) ei(Gn−Wτ) =
( ∑
s=0, ±1

φse
iKsn

)
ei(Gn−Wτ)

= (
φ0e

iK0n + φ+1e
iK+1n + φ−1e

iK−1n
)
ei(Gn−Wτ), (14.17)
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where G and W are the wave number and circular frequency in the n − τ frame.
φ (n) is the amplitude modulation function.
We can then express ∂T/∂τ and ∂T/∂n as

∂T

∂τ
= −iW

(
φ0e

iK0n + φ+1e
iK+1n + φ−1e

iK−1n
)
ei(Gn−Wτ), (14.18)

∂T

∂n
= i

[
(G + K0) φ0e

iK0n + (G + K+1) φ+1e
iK+1n + (G + K−1) φ−1e

iK−1n
]
ei(Gn−Wτ).

(14.19)

We can further write ρ (n) ∂T/∂τ as

ρ (n)
∂T

∂τ
= − iW (ρ0φ0 + ρ+1φ−1 + ρ−1φ+1) e

iK0nei(Gn−Wτ)

− iW (ρ0φ+1 + ρ+1φ0) e
iK+1nei(Gn−Wτ)

− iW (ρ0φ−1 + ρ−1φ0) e
iK−1nei(Gn−Wτ)

+ o
(
eiK±1n

)
. (14.20)

We can also express −uρ (n) ∂T/∂n and −σ (n) ∂T/∂n as

−uρ (n)
∂T

∂n
= − iu

[
ρ0 (G + K0) φ0 + ρ+1 (G + K−1) φ−1 + ρ−1 (G + K+1) φ+1

]
eiK0nei(Gn−Wτ)

− iu
[
ρ0 (G + K+1) φ+1 + ρ+1 (G + K0) φ0

]
eiK+1nei(Gn−Wτ)

− iu
[
ρ0 (G + K−1) φ−1 + ρ−1 (G + K0) φ0

]
eiK−1nei(Gn−Wτ)

+ o
(
eiK±1n

)
, (14.21)

−σ (n)
∂T

∂n
= − i

[
σ0 (G + K0) φ0 + σ+1 (G + K−1) φ−1 + σ−1 (G + K+1) φ+1

]
eiK0nei(Gn−Wτ)

− i
[
σ0 (G + K+1) φ+1 + σ+1 (G + K0) φ0

]
eiK+1nei(Gn−Wτ)

− i
[
σ0 (G + K−1) φ−1 + σ−1 (G + K0) φ0

]
eiK−1nei(Gn−Wτ)

+ o
(
eiK±1n

)
. (14.22)

With Eq. (14.22), we can further derive
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∂

∂n

[
−σ (n)

∂T

∂n

]

= (G + K0)
[
σ0 (G + K0) φ0 + σ+1 (G + K−1) φ−1 + σ−1 (G + K+1) φ+1

]
eiK0nei(Gn−Wτ)

+ (G + K+1)
[
σ0 (G + K+1) φ+1 + σ+1 (G + K0) φ0

]
eiK+1nei(Gn−Wτ)

+ (G + K−1)
[
σ0 (G + K−1) φ−1 + σ−1 (G + K0) φ0

]
eiK−1nei(Gn−Wτ)

+ o
(
eiK±1n

)
. (14.23)

By arranging the terms associated with eiK0n , eiK+1n , and eiK−1n in Eqs. (14.20),
(14.21) and (14.23) together, we can obtain three equations,

− i
[
ρ0 (W + uG + uK0) φ0 + ρ+1 (W + uG + uK−1) φ−1 + ρ−1 (W + uG + uK+1) φ+1

]
+ (G + K0)

[
σ0 (G + K0) φ0 + σ+1 (G + K−1) φ−1 + σ−1 (G + K+1) φ+1

] = 0,
(14.24a)

− i
[
ρ0 (W + uG + uK+1) φ+1 + ρ+1 (W + uG + uK0) φ0

]
+ (G + K+1)

[
σ0 (G + K+1) φ+1 + σ+1 (G + K0) φ0

] = 0, (14.24b)
− i

[
ρ0 (W + uG + uK−1) φ−1 + ρ−1 (W + uG + uK0) φ0

]
+ (G + K−1)

[
σ0 (G + K−1) φ−1 + σ−1 (G + K0) φ0

] = 0. (14.24c)

Equation (14.24) is written in the n − τ frame, and we can also express it in the
x − t frame by taking k = G and ω = W + uG where k and ω are, respectively,
the wave vector and circular frequency in the x − t frame,

− i
[
ρ0 (ω + uK0) φ0 + ρ+1 (ω + uK−1) φ−1 + ρ−1 (ω + uK+1) φ+1

]
+ (k + K0)

[
σ0 (k + K0) φ0 + σ+1 (k + K−1) φ−1 + σ−1 (k + K+1) φ+1

] = 0,
(14.25a)

− i
[
ρ0 (ω + uK+1) φ+1 + ρ+1 (ω + uK0) φ0

]
+ (k + K+1)

[
σ0 (k + K+1) φ+1 + σ+1 (k + K0) φ0

] = 0, (14.25b)

− i
[
ρ0 (ω + uK−1) φ−1 + ρ−1 (ω + uK0) φ0

]
+ (k + K−1)

[
σ0 (k + K−1) φ−1 + σ−1 (k + K0) φ0

] = 0. (14.25c)

With Eqs. (14.25b) and (14.25c) , we can derive the expressions of φ+1 and φ−1,

φ+1 = − (k + K+1) σ+1 (k + K0) − iρ+1 (ω + uK0)

(k + K+1) σ0 (k + K+1) − iρ0 (ω + uK+1)
φ0, (14.26a)

φ−1 = − (k + K−1) σ−1 (k + K0) − iρ−1 (ω + uK0)

(k + K−1) σ0 (k + K−1) − iρ0 (ω + uK−1)
φ0. (14.26b)

We then consider two approximations of k � K and ω � uK , so Eq. (14.26)
can be reduced to
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φ+1 = − K+1σ+1k − iρ+1ω

K+1σ0K+1 − iρ0uK+1
φ0, (14.27a)

φ−1 = − K−1σ−1k − iρ−1ω

K−1σ0K−1 − iρ0uK−1
φ0. (14.27b)

Similarly, Eq. (14.25a) can also be reduced to

k2σ0φ0 − iωρ0φ0 + (kσ−1K+1 − iρ−1uK+1) φ+1 + (kσ+1K−1 − iρ+1uK−1) φ−1 = 0.

(14.28)

The substitution of Eq. (14.27) into Eq. (14.28) yields

k2σ0φ0 − iωρ0φ0 − (kσ−1K+1 − iρ−1uK+1) (K+1σ+1k − iρ+1ω)

K+1σ0K+1 − iρ0uK+1
φ0

− (kσ+1K−1 − iρ+1uK−1) (K−1σ−1k − iρ−1ω)

K−1σ0K−1 − iρ0uK−1
φ0 = 0.

(14.29)

Equation (14.29) can be further arranged in a physical form,

− iω

(
ρ0 + iKuρ+1ρ−1

σ0K 2 − iρ0uK
+ −iKuρ+1ρ−1

σ0K 2 + iρ0uK

)
φ0

+ ik

(
K 2uσ+1ρ−1

σ0K 2 − iρ0uK
+ K 2uσ−1ρ+1

σ0K 2 + iρ0uK

)
φ0

+ k2
(

σ0 − K 2σ+1σ−1

σ0K 2 − iρ0uK
− K 2σ+1σ−1

σ0K 2 + iρ0uK

)
φ0

− ωk

( −iKρ+1σ−1

σ0K 2 − iρ0uK
+ iKρ−1σ+1

σ0K 2 + iρ0uK

)
φ0 = 0. (14.30)

By taking ∂/∂t = −iω, ∂/∂x = ik, and T̃ = φ0ei(kx−ωt), we can rewrite
Eq. (14.30) as

ρ̃
∂ T̃

∂t
+ C

∂ T̃

∂x
− σ̃

∂2T̃

∂x2
− S

∂2T̃

∂x∂t
= 0, (14.31)

where the homogenized parameters take the form of

σ̃ = σ0 − K 2σ+1σ−1

σ0K 2 − iρ0uK
− K 2σ+1σ−1

σ0K 2 + iρ0uK
, (14.32a)

ρ̃ = ρ0 + iKuρ+1ρ−1

σ0K 2 − iρ0uK
+ −iKuρ+1ρ−1

σ0K 2 + iρ0uK
, (14.32b)

C = K 2uσ+1ρ−1

σ0K 2 − iρ0uK
+ K 2uσ−1ρ+1

σ0K 2 + iρ0uK
, (14.32c)
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S = −iKσ−1ρ+1

σ0K 2 − iρ0uK
+ iKσ+1ρ−1

σ0K 2 + iρ0uK
. (14.32d)

We can further reduce Eq. (14.32) to

σ̃ = σA

(
1 − σ 2

B

2σ 2
A

1

1 + 
2

)
, (14.33a)

ρ̃ = ρA

(
1 − ρ2

B

2ρ2
A


2

1 + 
2

)
, (14.33b)

C = u
σBρB

2σA

1

1 + 
2
(cosα + 
 sin α) , (14.33c)

S = 1

u

σBρB

2ρA


2

1 + 
2

(
cosα + 1



sin α

)
, (14.33d)

with 
 = ρAuγ / (2πσA).
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Chapter 15
Theory for Diffusive Fizeau Drag: Willis
Coupling

Abstract In this chapter, we design a spatiotemporal thermal metamaterial based on
heat transfer in porous media to demonstrate the diffusive analog to Fizeau drag. The
space-related inhomogeneity and time-related advection enable the diffusive Fizeau
drag effect. Thanks to the spatiotemporal coupling, different propagating speeds
of temperature fields can be observed in two opposite directions, thus facilitating
nonreciprocal thermal profiles. The phenomenon of diffusive Fizeau drag stands
robustly even when the advection direction is perpendicular to the propagation of
temperature fields. These results could pave an unexpected way toward realizing the
nonreciprocal and directional transport of mass and energy.

Keywords Diffusive Fizeau drag · Willis coupling · Speed difference

15.1 Opening Remarks

Light travels at different speeds along and against the water flow, theoretically pre-
dicted by Fresnel [1] and experimentally verified by Fizeau [2]. This momentous
discovery, generally referred to as Fizeau drag, has been well explained by relativis-
tic kinematics. Similar effects have also been revealed in other moving [3, 4] or
spatiotemporal [5, 6] media. Recently, two experimental studies have reported plas-
monic Fizeau drag by the flow of electrons [7, 8], which results from the nonlinear
kinematics of drifting Dirac electrons.

On the other hand, diffusion systems can also exhibit wavelike behaviors [9–14],
which provides the possibility to realize diffusive Fizeau drag. However, unlike the
dragging of photons and polaritons by the momentum interaction (Fig. 15.1a, b), it
is intrinsically challenging to drag the macroscopic heat by the biased advection [16,
17] due to the absence of macroscopic heat momentum (Fig. 15.1c). Therefore, the
forward and backward propagating speeds of temperature fields are always identical.
Nevertheless, the amplitudes of temperature fields are different in opposite directions
due to the dissipative property of heat transfer [18, 19]. Therefore, it is still an
extremely challenging problem to realize diffusive Fizeau drag.

© The Author(s) 2023
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Fig. 15.1 Origin of diffusive Fizeau drag. Fizeau drag of a light and b polariton by the momentum
interaction. c Failure of a direct thermal analog due to the lack of macroscopic heat momentum.
d Fizeau drag of heat in a spatiotemporal thermal metamaterial by thermal Willis coupling. The
red arrows contain the information on wave number and amplitude, indicating the forward and
backward cases with (a), (b), (d) different wave numbers, and (c) different amplitudes. Adapted
from Ref. [15]

15.2 Theoretical Foundation

We construct a spatiotemporal thermal metamaterial with space-related inhomo-
geneity and time-related advection to uncover diffusive Fizeau drag in heat transfer
(Fig. 15.1d). Since the characteristic length of spatiotemporal modulation is much
smaller than the wavelength of wavelike temperature fields, the proposed struc-
ture can be regarded as a metamaterial. Neither periodic inhomogeneity nor vertical
advection alone contributes to the horizontal nonreciprocity, but their synergistic
effect can give rise to diffusive Fizeau drag. The underlying mechanism lies in the
coupling between heat flux and temperature change rate, which can be regarded as
the thermal counterpart of Willis coupling in mechanical waves [20–24]. Therefore,
the present nonreciprocity is distinctly different from the synthetic-motion-induced
nonreciprocity [25, 26].

We first explain why the direct scheme presented in Fig. 15.1c fails. Heat transfer
in porous media is described by ρ0∂t T + ∇ (φρauT − κ0∇T ) = 0, where ρ0 (or ρa)
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is the product of mass density and heat capacity of the porous medium (or fluid), κ0 is
the thermal conductivity of the porousmedium, φ is the porosity, and u is the velocity
of the fluid with the horizontal and vertical components of ux and uy , respectively.
We consider a wavelike temperature field described by T = Aei(βx−ωt) + Tr , where
β and ω are the wave number and angular frequency, respectively. Here, we use
“wavelike” because heat transfer is essentially governed by a diffusive equation
rather than a wave equation. We set the temperature field amplitude of A as 1 and
the balanced temperature of Tr as 0 for brevity. We apply a periodic source with a
temperature of T (x = 0) = e−iωt , thus leading to a real ω and a complex β. The
imaginary part of β reflects the spatial decay rate of wavelike temperature fields. We
focus on the real part of β because the propagating speed of wavelike temperature
fields can be calculated by v = ω/Re[β]. The substitution of T = ei(βx−ωt) with a
preset real ω into the governing equation of heat transfer yields

β f, b = ±
√
2γ

4κ0
+ i

−8φρauxωρ0γ0 ± √
2γ

(
2φ2

a
2u2x + γ 2

)

16ωρ0κ
2
0

, (15.1)

where β f and βb are, respectively, the forward and backward wavenumbers with a

definition of γ =
√

−φ2ρ2
au

2
x +

√
φ4ρ4

au
4
x + 16ω2ρ2

0κ
2
0 . Since a nonzero ux cannot

generate different |Re[β]| in opposite directions, the forward and backward propa-
gating speeds of temperature fields are identical, i.e., no diffusive Fizeau drag.

To achieve diffusive Fizeau drag, we introduce spatially-periodic inhomogeneity
to the porous medium,

ρ(ξ) = ρ0(1 + 
ρ cos(Gξ + θ)), (15.2a)

κ(ξ) = κ0(1 + 
κ cos(Gξ)), (15.2b)

where
ρ and
κ are the modulation amplitudes, G = 2π/d is the modulation wave
number, d is the horizontal modulation wavelength, ξ = x + ζ y is the generalized
coordinate with a definition of ζ = d/h, h is the vertical height, and θ is the modu-
lation phase difference. To exclude the captivation that the horizontal advection can
generate nonreciprocal amplitudes of temperature fields, as described by the imagi-
nary part of Eq. (15.1), we consider the upward advection with a speed of uy , which
does not contribute to the horizontal nonreciprocity. The governing equation of heat
transfer in spatiotemporal thermal metamaterials can be expressed as

ρ(ξ)
∂T

∂t
+ φuy

∂T

∂y
+ ∂

∂x

(
−D0κ(ξ)

∂T

∂x

)
+ ∂

∂y

(
−D0κ(ξ)

∂T

∂y

)
= 0, (15.3)

with definitions of ρ(ξ) = ρ(ξ)/ρ0, κ(ξ) = κ(ξ)/κ0, ε = ρa/ρ0, and D0 = κ0/ρ0.
We further consider a wavelike temperature field with a spatially-periodic modu-

lation,
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T = F(ξ)ei(βx−ωt) =
(

∑

s

Fse
isGξ

)

ei(βx−ωt), (15.4)

where F(ξ) is a Bloch modulation function with parameters of s = 0, ±1, ±2, . . . ,

±∞ and F0 = 1. We can treat ei(βx−ωt) as the temperature field envelope and F(ξ)

as local inhomogeneity. The substitution of Eq. (15.4) into Eq. (15.3) yields a series
of component equations related to the order of s. For accuracy, we consider s =
0, ±1, ±2, · · · , ±10 and F|s|>10 = 0 to obtain twenty-one equations with twenty-
one unknown numbers including β and F|s|≤10, so β can be numerically calculated.

The properties of spatiotemporal modulation are reflected in three crucial dimen-
sionless parameters of 2π� = φuyd/D0, � = 
ρ cos θ/
κ , and ζ = d/h. The
parameter of 2π� is similar to the Peclet number, which can describe the ratio
of advection to diffusion. The parameters of � and ζ reflect the influences of
modulation amplitude and wavelength, respectively. We define the speed ratio as
η = |v f /vb| = |Re[βb]/Re[β f ]| to discuss the degree of nonreciprocity, where v f

and vb are the forward and backward propagating speeds of temperature fields,
respectively.

We first discuss � when ζ = 0.2 (Fig. 15.2a). Since 2π� = 0 and 2π� → ∞
always yield η = 1, it is necessary to introduce the vertical advection, but not the
larger, the better. Meanwhile, a speed difference still exists when � = 0 (i.e., 
ρ =
0), so it is unnecessary to modulate ρ and κ simultaneously. We find two types of
curves in Fig. 15.2a. Type I features that η is always larger than 1 (the top three
curves). Type II features that η is first larger and then smaller than 1 (the bottom
three curves). The transition between types I and II is at the critical point of � = 1
(the third curve from the top), where the modulations in Eqs. (15.2a) and (15.2b) do
not affect the effective thermal diffusivity in the vertical direction. When we change
ζ from 0.2 to 1 (Fig. 15.2b) and 2 (Fig. 15.2c), type III curves appear, with η always
smaller than 1. These three types indicate that nonreciprocal speeds can be flexibly
manipulated.

We further discuss θ when ζ = 1 (Fig. 15.2d), so � = 
ρ cos θ/
κ can be both
positive and negative. The critical point of � = 1 still determines the transition
between types I and II.Moreover, since θ = π/2 always leads to� = 0, the curves in
Fig. 15.2e are almost overlapped.We also discuss the thermal diffusivity of D = κ/ρ

(Fig. 15.2f), where κ is the balanced value of the periodic thermal conductivity and
ρ is the balanced value of the periodic product of mass density and heat capacity.
The peaks of η appear at almost the same value of 2π�. Meanwhile, the peak of η

gets larger as the thermal diffusivity decreases, which does not mean that the smaller
the thermal diffusivity is, the better. We do not discuss the small thermal diffusivity
because the system becomes insulated.

We further plot the thermal dispersion in Fig. 15.3a. The thermal dispersion curve
is symmetric when 2π� = 0, but becomes asymmetric when 2π� = 8, which is the
proof of diffusive Fizeau drag. We also plot the wavenumber difference 
Re[β] =
Re[β f ] + Re[βb] in Fig. 15.3b, demonstrating linear responses toω.More intuitively,
a speed difference leads to a time difference of temperature field evolution at two
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Fig. 15.2 Numerical results of the speed ratio of η = |v f /vb| as a function of 2π� = φuyd/D0.
� = 
ρ cos θ/
κ is tuned by a–c 
ρ or (d) θ . Except the parameters presented in a–f, the others
are φ = 0.1, ε = 1, D0 = 5 × 10−5 m2/s, d = 0.02 m, and ω = π/10 rad/s for a–f ; 
ρ = 0.7
for (d); 
ρ = 0.6 for (f); 
κ = 0.5 for (a)-(e); 
κ = 0.9 for (f); θ = 0 for (a)–(d) and (f); and
θ = π/2 for (e). Adapted from Ref. [15]

symmetric positions of x and C − x to reach the same phases. The forward phase at
x is Re[β f ]x − ωt f , and the backward phase at −x is −Re[βb]x − ωtb. The same
phases correspond to a time difference of 
t = t f − tb, which can be calculated by


t = 
Re[β]|x |/ω. (15.5)

Since 
t increases linearly with |x |, we focus on the parameter of 
t/|x | =

Re[β]/ω in Fig. 15.3c, which is almost invariant as ω changes.
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Fig. 15.3 Simulation results of diffusive Fizeau drag. a Thermal dispersion. b Wave number dif-
ference 
Re[β] = Re[β f ] + Re[βb] as a function of ω. c Time difference per unit of distance

t/|x | = 
Re[β]/ω as a function of ω. Evolution of T ∗ when (d1)–(d4) 2π� = 0 or (e1)–(e4)
2π� = 8, corresponding to uy = 0 or uy = 0.2 m/s, respectively. Parameters: φ = 0.1, ε = 1,
D0 = 5 × 10−5 m2/s, 
ρ = 0.9, 
κ = 0.9, θ = π , d = 0.02 m, h = 0.02 m, and t0 = 20 s. The
simulation length is 30d = 0.6 m. The left and right boundaries are insulated. The upper and lower
boundaries are set with periodic conditions. Sim.: Simulation; and Num.: Numerical. Adapted from
Ref. [15]

15.3 Finite-Element Simulation

Finite-element simulations are also performed with COMSOL Multiphysics. For
brevity, we define a dimensionless temperature of T ∗ = (T − Tr )/A and a dimen-
sionless time of t∗ = t/t0, where t0 is the time periodicity of the temperature source.
When 2π� = 0 (Fig. 15.3d1), the forward and backward cases are identical at
y = 0, but a slight difference appears at y = ±h/4 (Fig. 15.3d2, d3) due to the
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Fig. 15.4 Influences of inhomogeneity on thermalWillis coupling. The left column shows different
kinds of inhomogeneity. The right column shows the evolution of T ∗. The parameters and boundary
conditions are the same as those in Fig. 15.3. Adapted from Ref. [15]

local inhomogeneity described by the F(ξ) in Eq. (15.4). As long as we discuss
the average temperature in the vertical direction, the effect of local inhomogene-
ity can be excluded, so the forward and backward cases become identical again
(Fig. 15.3d4). We further set 2π� = 8, and the simulation results demonstrate a time
difference of 
t∗ = 0.14, which can be observed locally (Fig. 15.3e1–e3) and glob-
ally (Fig. 15.3e4). The numerical results predict a time difference of 
t∗ = 0.15,
indicating that the numerical calculations are convincing. Meanwhile, we plot the
numerical results with dotted curves, which agree well with the simulation results.

We analytically homogenize the governing equation to reveal the underlying
mechanism of diffusive Fizeau drag. We find two high-order terms of ∂2

t and ∂t∂x in
the homogenized equation. This situation is similar to the properties of Willis meta-
materials that result from the homogenization of inhomogeneous media [20–24].
The modified constitutive relation describing the heat flux of J can be approximately
expressed as τ∂t J + J = −κe∂x T0 + σ2∂t T0, where τ , κe, σ2, and T0 are the homog-
enized parameters. Besides the temperature gradient of ∂x T0, the horizontal heat flux
is also coupled with the temperature change rate of ∂t T0, which can be referred to
as the thermal Willis term. Moreover, the thermal Willis term can lead to nonrecip-
rocal |Re[β]|, but cannot generate nonreciprocal |Im[β]|. This property indicates an
obvious speed difference but no amplitude difference in opposite directions, which
agrees with the simulation results in Fig. 15.3e1–e4.

Inhomogeneity is crucial to thermal Willis coupling. It will disappear when we
consider only the horizontal inhomogeneity (Fig. 15.4a1, a2) or only the vertical
inhomogeneity (Fig. 15.4b1, b2). We further change the modulations from cosine
functions to square wave functions denoted by �. When the periodicity of inhomo-
geneity is the same as that in Fig. 15.3e and 2π� = 8, a time difference of
t∗ = 0.32
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Fig. 15.5 Experimental suggestions. a Three-dimensional and b two-dimensional diagrams of a
three-layer pipe. Temperature evolution when (c1)–(c4) � = 0 or (d1)–(d4) � = 2π rad/s. The
parameters of the center layer are ρ0 = 2 × 106 J m−3 K−1, κ0 = 200 W m−1 K−1, 
ρ = 0.9,

κ = 0.9, and θ = π . Those of the inner and outer layers are ρ = 2 × 106 J m−3 K−1 and κ =
10Wm−1 K−1. The other parameters ared = 20mm, r1 = 2.43mm, r2 = 2.93mm, r3 = 3.43mm,
r4 = 3.93mm, and t0 = 20 s. The simulation length is 15d = 300mm. The left and right boundaries
are insulated. Adapted from Ref. [15]

can be observed (Fig. 15.4c1, c2). Therefore, the square wave modulation is more
efficient than the cosine modulation (
t∗ = 0.14). We further reduce the modula-
tion wavelength by a factor of five (Fig. 15.4d1). When 2π� = 8, a time difference
of 
t∗ = 0.04 appears, but it is far smaller than that of 
t∗ = 0.32 in Fig. 15.4c2.
Therefore, the more homogeneous parameters yield weaker thermalWillis coupling,
which is consistent with the current understanding in mechanical waves [20–24].

15.4 Experimental Suggestion

For experimental suggestions, we design a three-dimensional structure without flu-
ids, i.e., a three-layer solid pipe (Fig. 15.5a, b). The inner and outer layers are
homogeneous with the same angular velocities of �. The center layer is station-
ary with spatially-periodic parameters of ρ(ξ ′) = ρ0(1 + 
ρ cos(Gξ ′ + θ)) and
κ(ξ ′) = κ0(1 + 
κ cos(Gξ ′)), where ξ ′ = x + α/G is the generalized coordinate in
three dimensions with definitions of cosα = z/

√
y2 + z2 and sin α = y/

√
y2 + z2.

The two rotating layers can provide the surface advection to the center layer, which
has a similar effect as the bulk advection. The simulation results without and with
angular rotation are presented in Fig. 15.5c1–c4, d1–d4, respectively. The detecting
locations are in the inner, center, outer, and all layers, respectively.With proper angu-
lar rotation, a time difference between the evolution of the forward and backward
temperature field indicates diffusive Fizeau drag.
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15.5 Conclusion

We conclude the distinctive features of diffusive Fizeau drag. (I) As described by Eq.
(15.1), only the biased advection cannot realize diffusive Fizeau drag. (II) Diffusive
Fizeau drag in spatiotemporal thermal metamaterials results from thermal Willis
coupling between heat flux and temperature change rate. (III) Diffusive Fizeau drag
is unexpected because the vertical advection can generally not induce horizontal
nonreciprocity. (IV) Three curves in Fig. 15.2 indicate that diffusive Fizeau drag can
be flexibly controlled.

We have revealed diffusive Fizeau drag in a spatiotemporal thermal metamaterial,
featuring a speed difference of temperature field propagation in opposite directions.
Spatial or temporal modulation alone cannot realize the horizontal nonreciprocity, so
spatiotemporal modulation necessarily introduces the high-order coupling, referred
to as thermal Willis coupling, between heat flux and temperature change rate. Dif-
fusive Fizeau drag has also been visualized by observing the time difference of tem-
perature field evolution at two symmetric positions. These results suggest a distinct
mechanism to achieve nonreciprocal diffusion [25–28] by thermal Willis coupling
and also have potential applications for controlling nonequilibrium heat and mass
transfer [30, 31].

15.6 Exercise and Solution

Exercise

1. Derive Eq. (15.1).

Solution

1. Heat transfer in a two-dimensional homogeneous porous medium is governed by

ρ0
∂T

∂t
+ ∇ · (φρauT − κ0∇T ) = 0, (15.6)

with definitions of ρ0 = φρa + (1 − φ)ρs0 and κ0 = φκa + (1 − φ)κs0. ρa (or
ρs0) is the product of mass density and heat capacity of the fluid (or solid). κa
(or κs0) is the thermal conductivity of the fluid (or solid). The substitution of a
wavelike temperature field described by T = ei(βx−ωt) into Eq. (15.6) yields

− iωρ0 + iβφρaux + β2κ0 = 0. (15.7)

Since we apply a periodic source with a temperature of T (x = 0) = e(−iωt), ω

is real and β is complex. We can take β = p + iq, with p and q being two real
numbers, so Eq. (15.7) can be rewritten as

− iωρ0 + i(p + iq)φρaux + (p + iq)2κ0 = 0, (15.8)



216 15 Theory for Diffusive Fizeau Drag: Willis Coupling

which can be further decomposed into two equations according to its real and
imaginary parts,

−qφρaux + (p2 − q2)κ0 = 0, (15.9a)

−ωρ0 + pφρaux + 2pqκ0 = 0. (15.9b)

The solution to Eqs. (15.9a) and (15.9b) is just Eq. (15.1).
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Chapter 16
Theory for Thermal Wave Refraction:
Advection Regulation

Abstract In this chapter, we study thermal waves of conduction and advection and
further design advection-assisted metamaterials to realize the positive, vertical, and
negative refraction of thermal waves. These results have a phenomenological ana-
log of electromagnetic wave refraction despite different mechanisms. The negative
refraction of thermal waves means that the incident and refractive thermal waves are
on the same side of the normal, but the wave vector and energy flow are still in the
same direction. As a model application, we apply the refractive behavior to design a
thermal wave concentrator that can increase wave numbers and energy flows. This
work provides insights into thermal wave manipulation, which may have potential
thermal imaging applications.

Keywords Thermal wave refraction · Conduction and advection · Anisotropic
permeability

16.1 Opening Remarks

Electromagnetic waves are dominated by the Maxwell equations, which have the
hyperbolic feature. Due to the generality of hyperbolic equations, electromagnetic
phenomena can be extended to other physical fields like acoustics without much
difficulty. However, it is crucially different from the Fourier conduction because the
Fourier equation is parabolic [1–3]. Bymodulating the Fourier equation with thermal
relaxation [4–9], the parabolic equation can become hyperbolic, which can support
the propagation of thermal waves and avoid the infinite speed of thermal propagation.
Thermal waves refer to wave-like temperature profiles. The refractive behaviors can
thus be studied [10–15].

Besides thermal relaxation, by combining the Fourier equation with convection,
the dominant equation can also have the hyperbolic feature [16], which leads to novel
thermal phenomena such as nonreciprocity [17, 18], anti-parity-time symmetry [19–
21], negative transport [22], cloaks [23–25], and crystals [26].However, the refractive
behaviors have been rarely touched, let alone the negative refraction of thermalwaves.
Although it is difficult to discuss the refractive behaviors of diffusion waves [1–3],
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we introduce advection to provide the hyperbolic property for heat transfer [16].
Therefore, it is possible to discuss the refractive behaviors of thermal waves based on
conduction and convection. Despite the hyperbolic property, the entire investigation
is not related to thermal relaxation [4–9]. In addition to the hyperbolic property,
advection is also ubiquitous, so taking it into account is necessary and meaningful.
Moreover, advection also clarifies the concept of thermal wave vectors, so different
refractive behaviors can be visualized. We do not consider radiation (another basic
mode of heat transfer) because it essentially belongs to electromagnetic waves.

We then consider conduction and advection with a time-harmonic temperature
source to generate thermal waves. Since the heat transfer efficiency of advection is
much higher than that of conduction, we can generally conclude that conduction
leads to the decay of thermal waves, and advection contributes to the propagation of
thermal waves [22]. Therefore, controlling thermal waves is essentially controlling
advection velocities. We then focus our discussions on advection velocities which
are preset (ideal model), determined by the Darcy equation (practical model), and
controlled by layered structures (experimental suggestion).

16.2 Theoretical Foundation

We firstly consider an ideal model base on conduction and convection in a porous
medium (composed of fluid and solid) whose dominant equation is

ρmCm
∂T

∂t
+ ∇ · (−κm∇T ) + ρ f C f v · ∇T = 0, (16.1)

where T and t are temperature and time, respectively. ρmCm is the product of the
density and heat capacity of the porous medium, and κm is the thermal conductivity
of the porous medium, which can be both calculated by the weighted average of
the fluid and solid [28]. ρ f C f is the product of the density and heat capacity of
the fluid, and v is the convective velocity of the fluid. When we discuss the pure
fluid shown in Fig. 16.1a, the solid does not exist, so we can derive ρmCm = ρ f C f

and κm = κ f with κ f being the thermal conductivity of the fluid. The convective
term ρ f C f v · ∇T introduces the hyperbolic property to heat transfer. A heat source
with time-harmonic temperature (THT) is located on the upper-left boundary. The
time-harmonic temperature can be expressed as T = A cos (ωt) + B, where A, ω,
and B are the temperature amplitude, circular frequency, and reference temperature
of the thermal wave, respectively. The other boundaries are set with open boundary
condition (OBC), indicating no reflection of heat energy (i.e., with semi-infinite
length). The ideal model is composed of pure fluid with incident velocity vi and
refractive velocity vr , whose angles to the normal are θi and θr , respectively. The heat
source with time-harmonic temperature generates thermal waves with the assistance
of convection. Therefore, the direction of thermal waves follows that of convective
velocities, which can be concluded as
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Fig. 16.1 Schematic diagrams of a ideal model, b practical model, and c layered structure. THT,
time-harmonic temperature; OBC, open boundary condition. Adapted from Ref. [27]

tan θi = vi x

−viy
, (16.2a)

tan θr = vr x

−vry
, (16.2b)

where minus signs ensure−viy > 0 and−vry > 0. The subscript x (or y) denotes the
x-component (or y-component) of convective velocities. The continuity of convective
velocities along the y axis gives

viy = vry . (16.3)

Equation (16.2) can then be simplified as

tan θi

tan θr
= vi x

vr x
, (16.4)

which is similar to the tangent law for conductive refractions [29–31], but also has
a different physical connotation. Compared with conductive refractions where ther-
mal conductivities are critical, thermal wave refractions are mainly determined by
convective velocities.

We then further discuss convective velocities with a practical model, as presented
in Fig. 16.1b. Compared with the ideal model where convective velocities are preset,
we explain the origination of convective velocities in the practical model. Although
many fluid models [32–37] are applicable, we use the Darcy equation in porous
media [32–35] for brevity, i.e., v = − (σ/μ) · ∇P , where v is convective velocity,
σ is permeability, μ is dynamic viscosity, and P is pressure. The upper and lower
boundaries are additionally set with high pressure Ph and low pressure Pl . The
anisotropic permeabilities of the incident region σ i and refractive region σ r are,
respectively, expressed as
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σ i =
(

σi xx σi xy

σiyx σiyy

)
, (16.5a)

σ r =
(

σr xx σr xy
σryx σryy

)
. (16.5b)

We can then express the incident velocity vi and refractive velocity vr with the Darcy
equation as

vi = −σ i

μ
· ∇Pi = −1

μ

(
σi xx σi xy

σiyx σiyy

)(∇Pix
∇Piy

)

= −1

μ

(
σi xx∇Pix + σi xy∇Piy
σiyx∇Pix + σiyy∇Piy

)
=

(
vi x
viy

)
, (16.6a)

vr = −σ r

μ
· ∇Pr = −1

μ

(
σr xx σr xy
σryx σryy

)(∇Prx
∇Pry

)

= −1

μ

(
σr xx∇Prx + σr xy∇Pry
σryx∇Prx + σryy∇Pry

)
=

(
vr x
vry

)
. (16.6b)

With Eq. (16.6), we can obtain

tan θi = vi x

−viy
= −σi xx∇Pix + σi xy∇Piy

σiyx∇Pix + σiyy∇Piy
, (16.7a)

tan θr = vr x

−vry
= −σr xx∇Prx + σr xy∇Pry

σryx∇Prx + σryy∇Pry
, (16.7b)

which further yields

∇Piy
∇Pix

= −σi xx + σiyx tan θi

σi xy + σiyy tan θi
, (16.8a)

∇Pry
∇Prx

= −σr xx + σryx tan θr

σr xy + σryy tan θr
. (16.8b)

The boundary conditions on the interface of incident and refractive regions are

viy = vry, (16.9a)

∇Pix = ∇Prx , (16.9b)

which indicate the continuities of convective velocities along the y axis (Eq. (16.9a))
and pressure gradients along the x axis (Eq. (16.9b)). With Eq. (16.9), we can derive

σiyx + σiyy
∇Piy
∇Pix

= σryx + σryy
∇Pry
∇Prx

. (16.10)
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The substitution of Eq. (16.8) into Eq. (16.10) yields

σi xxσiyy − σi xyσiyx

σi xy + σiyy tan θi
= σr xxσryy − σr xyσryx

σr xy + σryy tan θr
. (16.11)

Equation (16.11) is an extension of Eq. (16.4), revealing the refractive behaviors of
thermal waves with a practical model determined by permeabilities. In other words,
thermal wave refractions can be controlled by designing specific permeabilities.

We then suppose that the anisotropic permeabilities of porous media I and II
have the same eigenvalues, i.e., σs and σp. Therefore, σ i and σ r can be obtained by
anticlockwise rotating the eigenvalues with angles of γ1 and γ2, respectively. The
permeabilities can then be expressed as [38–42]

σ i =
(

σs cos2 γ1 + σp sin2 γ1
(
σs − σp

)
cos γ1 sin γ1(

σs − σp
)
cos γ1 sin γ1 σs sin2 γ1 + σp cos2 γ1

)
, (16.12a)

σ r =
(

σs cos2 γ2 + σp sin2 γ2
(
σs − σp

)
cos γ2 sin γ2(

σs − σp
)
cos γ2 sin γ2 σs sin2 γ2 + σp cos2 γ2

)
. (16.12b)

The substitution of Eq. (16.12) into Eq. (16.11) yields

σsσp

σi xy + σiyy tan θi
= σsσp

σr xy + σryy tan θr
, (16.13)

which can be further reduced to

σs(
σs/σp − 1

)
cos γ1 sin γ1 + (

σs/σp sin2 γ1 + cos2 γ1
)
tan θi

=
σs(

σs/σp − 1
)
cos γ2 sin γ2 + (

σs/σp sin2 γ2 + cos2 γ2
)
tan θr

. (16.14)

With the further assumption that the eigenvalues are highly anisotropic,

σp � σs ≈ 0, (16.15)

we can obtain σs/σp ≈ 0 and reduce Eq. (16.14) to

θi ≈ γ1, (16.16a)

θr ≈ γ2. (16.16b)

Equation (16.16) is a further extension of Eq. (16.11), which indicates that the direc-
tion of thermal waves approximately follows the orientation of anisotropic perme-
abilities. Therefore, by designing γ1 and γ2, we can effectively control the angles of
incidence and refraction.
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16.3 Finite-Element Simulation

We further perform finite-element simulations to confirm the theory. We use three
templates: heat transfer in fluids, porous media, and the Darcy law in COMSOL
Multiphysics. We choose a free triangular mesh with a maximum element size of
2 × 10−4 m, a minimum element size of 10−6 m, a maximum element growth rate of
1.1, a curvature factor of 0.2, and a resolution of narrow regions of 1. The transient
simulations are conducted with times from 0s to 200s with a step of 0.1 s, and
the relative tolerance is 0.0001. We also introduce a dimensionless characteristic
parameter to understand the two modes of heat transfer, i.e., the Peclet number
Pe = |v|L/D, where v is advection velocity, L is characteristic length, and D =
κm/ (ρmCm) is heat diffusion coefficient. In our investigation, the Peclet number
Pe = 104 is large, so our system is dominated by advection and featured by the
hyperbolic property.

The results are presented in Figs. 16.2, 16.3 and 16.4. We also consider three
typical cases. The first one is positive refraction, indicating that the incident and

Fig. 16.2 Simulations of a and b positive refraction, c and d vertical refraction, and e and f
negative refraction. Colors denote temperatures, and solid arrows denote convective velocities. The
simulation size is 10 × 10 cm2. The time-harmonic temperature is set at T = 40 cos (π t/10) +
323Kwith length 2cm,whose left endpoint has a 1 cmdistance from the left-upper corner. The initial
temperature is set at 323K. The advection velocities of the incident regions are (v0 tan θ0, −v0)

τ

where τ denotes transpose. The advection velocities of the refractive regions are
(
v0 tan θp, −v0

)τ

for (a) and (b), (v0 tan θv, −v0)
τ for (c) and (d), and (v0 tan θn, −v0)

τ for (e) and (f). Concrete
parameters: v0 = 1 mm/s, θ0 = 4π/18 rad, θp = 2π/18 rad, θv = 0 rad, θn = −2π/18 rad, κ f =
0.01 W m−1 K−1, C f = 1000 J kg−1 K−1, and ρ f = 1000 kg/m3, respectively. Adapted from
Ref. [27]
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Fig. 16.3 Simulations based on the practical model. The upper and lower boundaries are addition-
ally set with Ph = 15000 Pa and Pl = 0 Pa, respectively. The parameters of thermal conductivity,
heat capacity, and density of porous media I and II are 0.01W m−1 K−1, 1000 J kg−1 K−1, and
1000 kg/m3, respectively. The anisotropic permeabilities of porous media I and II have the same
eigenvalues, i.e., σs = 10−13 m2 and σp = 10−11 m2. The anisotropic permeabilities in the incident
regions are described by Eq. (16.12a) with γ1 = 4π/18 rad, and those in the refractive regions are
described by Eq. (16.12b) with γ2 = 2π/18 rad for (a) and (b), γ2 = 0 rad for (c) and (d), and
γ2 = −2π/18 rad for (e) and (f). The dynamic viscosity of the fluid is 0.001 Pa·s. Adapted from
Ref. [27]

refractive thermal waves are at both sides of the normal. The second is vertical
refractionwith the refractive thermalwave along the normal. The third one is negative
refraction, indicating that the incident and refractive thermal waves are on the same
side of the normal.

The simulations based on the ideal model are shown in Fig. 16.2. We take the
positive refraction as an example. The thermal wave takes about 50 s to reach the
interface (Fig. 16.2a). Since the convective velocities of the incident and refractive
regions are different, the thermal wave changes its propagation direction (Fig. 16.2b).
Since vi x and vr x are both positive, the result is positive refraction. We then maintain
the incident velocity and change the refractive velocity. Suppose the direction of
the refractive velocity is vertical to the interface. In that case, that of the refractive
thermal wave is also vertical to the interface, yielding vertical refraction (Fig. 16.2c,
d). We finally set the refractive velocity to have a negative x-component, so the
refractive and incident thermal waves are at the same side of the normal, yielding
negative refraction (Fig. 16.2e, f). Intuitively speaking, where thermal convection
flows, where thermal waves propagate. The temperature evolutions in more detail
are animated in the supplemental media.
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Fig. 16.4 Simulations based on layered structures.Anisotropic permeabilities are obtainedwith two
isotropic porous media A and B (with porosity 0.1), whose permeabilities are σa = 5 × 10−14 m2

and σb = 2 × 10−11 m2, respectively. The fluid is water whose thermal conductivity, heat capacity,
density, and dynamic viscosity are 0.6W m−1 K−1, 4200 J kg−1 K−1, 1000 kg/m3, and 0.001 Pa·s,
respectively. The thermal conductivity, heat capacity, and density of the solid is 0.1W m−1 K−1,
800J kg−1 K−1, and 3000 kg/m3, respectively. Porous media A and B are supposed to have only a
permeability difference. Adapted from Ref. [27]

The simulations in Fig. 16.2 are based on pure fluid. We then perform simula-
tions based on the Darcy equation in porous media where anisotropic permeabili-
ties can guide advection velocities. The positive, vertical, and negative refractions
results are shown in Fig. 16.3, which are the same as Fig. 16.2. Convective veloci-
ties (denoted by arrows) are no longer ideally distributed, which, however, does not
affect phenomenon observations. The propagation of thermal waves at 50 s is similar
in Fig. 16.3a, c, e because of the same permeabilities in the incident regions. Positive,
vertical, and negative refractions occur in Fig. 16.3b, d, f, respectively. Therefore,
the simulations are consistent with the theoretical predictions.

Despite the practicalmodel, the parameters are still too ideal. Therefore,we further
use a layered structure to obtain the desired anisotropic permeability (Fig. 16.1c).
Porous medium A with permeability σa and width a and porous medium B with
permeability σb and width b are arranged alternately. The effective permeabilities
with series connection σs and parallel connection σp can be expressed as [38–42]
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σs = a + b

a/σa + b/σb
, (16.17a)

σp = aσa + bσb

a + b
. (16.17b)

In this way, we can use two isotropic porous media to realize the anisotropic perme-
ability described by Eq. (16.12).

The simulations of positive, vertical, and negative refractions are shown in
Fig. 16.4a–c, d–f, g–i, respectively. Since we keep the eigenvalues of the anisotropic
permeabilities the same, only two porous media with isotropic permeabilities are
required. We can obtain the expected permeabilities by alternately arranging porous
media A and B and anticlockwise rotating the structure with different angles. Com-
pared with the advection velocities in Figs. 16.2 and 16.3, those in Fig. 16.4 are more
complicated, but the general directions are still as expected. Therefore, the expected
control of thermal waves can be obtained. Meanwhile, the simulations in Fig. 16.4
can be regarded as experimental suggestions because we choose practical parameters
like water. For this reason, the wavelength and decay rate of thermal waves are very
different from those in Figs. 16.2 and 16.3.

Although thermal wave refractions have a phenomenal analog to electromagnetic
ones, the underlying mechanisms are very different. The former requires anisotropy,
but the latter does not. Therefore, anisotropy guides the direction of convective veloc-
ities and further affects the propagation of thermal waves. In other words, convection
helps generate thermal waves. From this perspective, we further understand the neg-
ative refraction of thermal waves. Although we have observed that the incident and
refractive thermal waves are on the same side of the normal, it is phenomenological
negative refraction. Generally, negative refractions feature the opposite directions of
energy flows and wave vectors. In our system, energy flows follow convective veloc-
ities, and wave vectors follow thermal waves. Therefore, energy flows and wave
vectors are along the same direction because convective velocities yield thermal
waves (i.e., the casualty in thermotics [22]). We can then conclude that the negative
refraction of thermal waves is phenomenally observed. However, the wave vector
and energy flow are still in the same direction, not violating the casualty.

16.4 Model Application

The refractive behaviors of thermal waves can also be applied in practice, such as
in designing a thermal wave concentrator. Since an anisotropic permeability can
guide the direction of thermal waves, we are allowed to design the orientation of
the anisotropic permeability to point towards the center, as schematically shown in
Fig. 16.5a. Hence, thermal waves propagate along with the anisotropic permeability
orientation, thus being guided and concentrated (see the solid lines with arrows in
Fig. 16.5a). The simulations at 100 and 200s are presented in Fig. 16.5b, c, respec-
tively. We also plot the temperature and heat flux distributions at 200s on the central
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Fig. 16.5 Thermal wave concentrator. a Schematic diagramwith simulation size 10 × 5 cm2, inner
radius 2cm, and outer radius 3cm. Simulations at b 100s and c 200s. d Temperature distribution
and e energy flow distribution along x = 0 cm. The upper and lower boundaries are set with Ph =
3750 Pa and Pl = 0 Pa, respectively. The time-harmonic temperature is set at T = 40 cos (π t/10) +
323 K with length 6cm in the center of the upper boundary. Other boundaries are set with open
boundary condition. Four porousmedia (A, B, C, andD) are applied. Parameters: The permeabilities
of A and B are, respectively, 5 × 10−14 and 2 × 10−11 m2, and those of C and D are the same, i.e.
×10−12 m2. The thermal conductivity, heat capacity, density, and dynamic viscosity of the fluid in
A-D are 0.01Wm−1 K−1, 1000 J kg−1 K−1, 1000 kg/m3, and 0.001 Pa·s, respectively. The thermal
conductivity and density of the solid in A-D are 0.01W m−1 K−1 and 1000 kg/m3, respectively.
The heat capacity of the solid in A-C is 1000 J kg−1 K−1, and that for D is 2500 J kg−1 K−1.
Adapted from Ref. [27]

dashed line, which are shown in Fig. 16.5d, e, respectively. The wave number and
heat flux in the center are larger than those in the background. Therefore, this scheme
provides guidance to control thermal waves beyond scattering cancellation [23, 24]
and coordinate transformation [25].



16.6 Exercise and Solution 229

16.5 Conclusion

We reveal the refractive behaviors of thermal waves between different media and
present the thermal wave counterpart of electromagnetic wave refractions, including
the positive, vertical, and negative refractions. We also design convection-assisted
metamaterials to control thermal wave refractions and provide experimental sugges-
tions to observe the desired phenomena.We further propose a potential application of
thermal wave concentrators, which can be used for energy collection. These results
are helpful in understanding and controlling the refractive behaviors of thermalwaves
and may have potential applications in thermal wave imaging [46–50] and intelligent
thermal management.

16.6 Exercise and Solution

Exercise

1. Prove Eq. (16.16) in detail.

Solution

1. With Eqs. (16.15) and (16.14) can be reduced to

σs

− cos γ1 sin γ1 + cos2 γ1 tan θi
= σs

− cos γ2 sin γ2 + cos2 γ2 tan θr
.(16.18)

Since the numerators of Eq. (16.18) are approximately zero (i.e., σs ≈ 0), the
denominators of Eq. (16.18) should also be approximately zero to ensure that
Eq. (16.18) is nonzero,

− cos γ1 sin γ1 + cos2 γ1 tan θi =
− cos γ2 sin γ2 + cos2 γ2 tan θr ≈ 0. (16.19)

The physicalmeaning is that the convective velocities along the y axis are nonzero.
Solving Eq. (16.19), we can then derive

tan θi ≈ cos γ1 sin γ1

cos2 γ1
= tan γ1, (16.20a)

tan θr ≈ cos γ2 sin γ2

cos2 γ2
= tan γ2. (16.20b)
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Part II
Outside Metamaterials



Chapter 17
Theory for Active Thermal Control:
Thermal Dipole Effect

Abstract In this chapter, we establish a theory for thermal-dipole-based ther-
motics. Tailoring the thermal dipole moment allows thermal invisibility without
the requirements of singular and uncommon thermal conductivities. Furthermore,
finite-element simulations and laboratory experiments both validate the theoretical
analyses. Thermal-dipole-based thermotics offers a distinct mechanism to achieve
thermal invisibility and provides guidance to other physical fields, such as electro-
statics, magnetostatics, and particle diffusion. These results also pave the way for
heat regulation with thermal dipoles, and potential applications can be expected in
thermal protection, infrared detection, etc.

Keywords Active thermal control · Thermal dipole · Thermal invisibility

17.1 Opening Remarks

With growing concerns about energy issues, many researchers have turned their
research focus to heat management. The emerging field of thermal metamaterials
mainly drove this trend in the last decade. The most representative example is ther-
mal invisibility [1–16], which has almost run through the development of thermal
metamaterials. Thermal invisibility is characterized by the uniform thermal field of
the matrix. Many schemes have been proposed for this realization, but they have
shortcomings. The initial exploration is based on transformation thermotics [1–6],
which is the thermal counterpart of transformation optics [17]. However, transforma-
tion thermotics leads to four severe problems, thus limiting practical applications.
The first is anisotropy which requires different radial and tangential components
of the tensorial thermal conductivity. The second is inhomogeneity which means
a spatially-distributed thermal conductivity. The third is singularity which requires
zero and/or infinite thermal conductivities. The fourth is extremely large thermal con-
ductivities which are uncommon. Thermal conductivities of natural materials range
only from 0.026Wm−1 K−1 (air) to 430Wm−1 K−1 (silver). Thermal conductivities
out of this range are uncommon [16].
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Fig. 17.1 Approaches to thermal invisibility with a a bilayer cloak, b the concept of neutral inclu-
sion, c a near-zero-index cloak, and d a thermal dipole. None of these approaches can simul-
taneously remove the problem of singular and uncommon thermal conductivities except for our
thermal-dipole-based scheme. Adapted from Ref. [19]

Although these problems restrict practical applications, they also promote the
development of thermal metamaterials by solving them. Fortunately, the issues of
anisotropy and inhomogeneity were solved soon [7–16]. However, the issue of sin-
gular and uncommon thermal conductivity still cannot be solved simultaneously. For
example, we discuss a matrix with a very high thermal conductivity, such as copper
(400W m−1 K−1) because high thermal conductivities correspond to the high effi-
ciency of heat transfer. When a bilayer cloak [7–11] is designed, the thermal conduc-
tivities of the inner and outer shells are, respectively, 0 and 2615 Wm−1 K−1, which
are singular and inexistent; see Fig. 17.1a.When the concept of neutral inclusion [12–
15] is used, the thermal conductivity of the shell should be 727Wm−1 K−1, which is
also uncommon; see Fig. 17.1b. When a near-zero-index cloak [16] is designed, the
thermal conductivity of the inner shell should tend to infinity, which is singular; see
Fig. 17.1c. These two problems (singular and uncommon) largely restrict the further
development of thermal metamaterials because uncommon thermal conductivity is
difficult to achieve, and the realization of singularity (mainly the infinite thermal
conductivity) depends on very complex devices, such as thermal convection [16].
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To completely solve these two problems, we propose a theory for thermal-dipole-
based thermotics, which can simultaneously remove the requirements of singular
and uncommon thermal conductivities. We even do not require to design any shell
(or metamaterial), and a thermal dipole is enough; see Fig. 17.1d. This advantage
originates from the particularity of the thermal field of a thermal dipole, which can
just offset the influence of a particle by designing the thermal dipole moment (M).
In what follows, we establish the theory for thermal-dipole-based thermotics in two
dimensions. Finite-element simulations and laboratory experiments further validate
the approach. The thermal dipole effect provides a distinct mechanism for controlling
heat with heat, inspiring the thermal counterpart of coherent perfect absorbtion [18].

17.2 Thermal-Dipole-Based Thermotics

Thermal invisibility aims to keep the thermal field of the matrix undistorted. There-
fore, we focus on the thermal field of the matrix in what follows. In the presence of
an external uniform thermal field G0, when there is a particle (with thermal conduc-
tivity κp and radius rp) embedded in the matrix (with thermal conductivity κm), it
will distort the uniform thermal field of the matrix. The thermal field of the matrix
(generated by the external uniform thermal field), Gme, can be expressed as

Gme = −∇Tme. (17.1)

Tme is the temperature distribution given by [20]

Tme = −G0r cos θ − κm − κp

κm + κp
r2pG0r

−1 cos θ + T0, (17.2)

where (r, θ) denotes cylindrical coordinates whose origin is at the center of the
particle. G0 = |G0|, and T0 is the temperature at θ = ±π/2.

When there is a thermal dipole (with hot source power Q and distance l) at the
center of the particle, it will generate a thermal field in the matrix. The thermal field
of the matrix (generated by the thermal dipole), Gmd , can be expressed as

Gmd = −∇Tmd . (17.3)

Tmd is the temperature distribution given by

Tmd = M

π
(
κm + κp

)r−1 cos θ + T0, (17.4)

where M is the thermal dipole moment given by M = Ql. Equation (17.4) is valid
only when r � l, and details will be shown in the discussion part.
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Because of the superposition principle of vector fields, the thermal field of the
matrix (generated by the external uniform thermal field and the thermal dipole), Gs ,
can be expressed as

Gs = Gme + Gmd = −∇Ts . (17.5)

Ts is the temperature distribution given by

Ts = −G0r cos θ −
[

κm − κp

κm + κp
r2pG0 − M

π
(
κm + κp

)

]

r−1 cos θ + T0. (17.6)

As mentioned at the very beginning, thermal invisibility is characterized by the
uniform thermal field of the matrix, and thus the second term on the right side of
Eq. (17.6) should be zero,

κm − κp

κm + κp
r2pG0 − M

π
(
κm + κp

) = 0. (17.7)

Solving Eq. (17.7), we can derive the thermal dipole moment,

M = (
κm − κp

)
f G0, (17.8)

where f = πr2p is the acreage of the particle. When the thermal dipole moment is
set as required by Eq. (17.8), thermal invisibility can be achieved.

17.3 Finite-Element Simulation

We further perform finite-element simulations with COMSOL Multiphysics to val-
idate the theoretical analyses. In Fig. 17.2a, d, the temperatures of the left and right
boundaries are set at 323 and 283K, and the top and bottom boundaries are insulated.
If there is a particle with different thermal conductivity from the matrix in the center,
isotherms are contracted due to the smaller thermal conductivity of the particle; see
Fig. 17.2d. The distorted temperature profile makes the particle visible with infrared
detection. Then, we explore the thermal profile of a thermal dipole; see Fig. 17.2b, e.
All boundaries are insulated, and we set the temperature at θ = ±π/2 to 303K as the
reference temperature. The temperature profile is presented in Fig. 17.2e. Finally, we
combine the structures shown in Fig. 17.2a, b and obtain the structure presented in
Fig. 17.2c. As predicted by Eq. (17.8), the distorted temperature profile is restored;
see Fig. 17.2f. Therefore, the particle becomes invisible with infrared detection, and
thermal invisibility is achieved.
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Fig. 17.2 Finite-element simulations in the presence of a and d an external uniform thermal field,
b and e a thermal dipole, and c and f both an external uniform thermal field and a thermal dipole.
The simulation box is 20 × 20 cm2, rp = 6 cm, and l = 2 cm. The thermal conductivities of the
particle and the matrix are 200 and 400W m−1 K−1, respectively. The thermal dipole moment
should be 452.4W m as required by Eq. (17.8), which leads to Q = 22620 W. Each source of the
thermal dipole has a radius of 0.5cm. White lines represent isotherms. Temperatures higher than
323K are shown as 323K, and temperatures lower than 283K are shown as 283K. Adapted from
Ref. [19]
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Fig. 17.3 Laboratory experiments. a Schematic diagrams of the sample and experimental devices.
b and c are the measured results without and with a thermal dipole, respectively. d and e are the
corresponding finite-element simulations based on the structure in (a). Copper: thermal conductivity
400Wm−1 K−1, density 8960 kg m−3, and heat capacity 385J kg−1 K−1; air: thermal conductivity
0.026W m−1 K−1, density 1.29 × 10−3 kg m−3, and heat capacity 1005 J kg−1K−1. The radius of
the 256 air holes is 0.22cm, and the distance between air holes is 2/3cm. Adapted from Ref. [19]
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17.4 Laboratory Experiment

We also perform laboratory experiments to validate the theoretical analyses and
finite-element simulations. We fabricate the sample based on a copper plate
(400W m−1 K−1); see Fig. 17.3a. Air holes (0.026W m−1 K−1) are engraved on
the copper plate by laser cut, which makes the effective thermal conductivity of the
corresponding region to be 200W m−1 K−1. The upper and lower surfaces are cov-
ered with transparent and foamed plastic (insulated) to reduce infrared reflection and
thermal convection.

The thermal dipole is realized by a ceramic heater and a semiconductor cooler.
The designed power of a heater (or cooler) is 22620 (or −22620) W, which is an
extremely large (or small) value. On the one hand, it maintains the uniform field of
the matrix. On the other hand, it generates a higher (or lower) temperature inside
the heater (or cooler) than the hot (or cold) source. However, the higher (or lower)
temperature inside the heater (or cooler) does not contribute to the effect of thermal
invisibility because only the edge temperature of the heater (or cooler) makes sense.
Therefore, we only need to keep the temperature of the heater (or cooler) at 325 (or
281) K, as ensured by the uniqueness theorem in thermotics. The two temperatures
can be directly obtained from finite-element simulations, depending on the heater’s
size (or cooler).

We measure the temperature profile with an infrared camera (FLIR E60) between
the hot source (323K) and the cold source (283K). Themeasured results without and
with a thermal dipole are presented in Fig. 17.3b, c. We also perform finite-element
simulations based on the structure presented in Fig. 17.3a; see Fig. 17.3d, e. The
experimental results (Fig. 17.3b, c) and finite-element simulations (Fig. 17.2d, f, d,
e) both validate that the thermal dipole is reliable and flexible to achieve thermal
invisibility.

17.5 Discussion

There is only one approximation (say, r � l) in the whole process to ensure the
validity of Eq. (17.4). Therefore, we discuss the effect of this approximation on
thermal invisibility. First, we compare our thermal-dipole-based result (Fig. 17.4a)
with a reference (Fig. 17.4b). The temperature distributions of thematrix are the same.
We also plot the temperature-difference distribution (�T = T1 − T2) of the matrix
(Fig. 17.4c) to perform quantitative analyses. Themaximum value of the temperature
difference (�Tmax ) is 0.04K. Compared with the temperature difference between the
hot and cold source (40K), the relative error is only 0.1%, which shows the excellent
performance of the thermal-dipole-based scheme.

We also find that the maximum value of the temperature difference (�Tmax )
can reflect the effect of the thermal dipole on thermal invisibility. Therefore, we
calculate�Tmax with different rd (the radius of the source) and l (the distance between
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Fig. 17.4 Effects of the thermal dipole on thermal invisibility. a shows the thermal-dipole-based
temperature distribution. b presents the temperature distribution when the thermal conductivities of
the matrix and particle are the same (say, 400W m−1 K−1). c exhibits the temperature-difference
distribution of the matrix. In d and e, we explore the effects of two parameters (l and rd ) on thermal
invisibility. The upper panel in (e) is with rd = 0 cm, say two point sources of the dipole. The lower
panel in (e) is with l = 2 cm. Adapted from Ref. [19]

sources); seeFig. 17.4d, andplot twocurves, showing�Tmax changingwith l/2rp and
2rd/ l; see Fig. 17.4e. The top curve in Fig. 17.4e shows that the performance of the
thermal dipole decreases with the increment of l/2rp. When l/2rp = 0 (say, l = 0),
�Tmax = 0, which indicates the perfect performance. However, the bottom curve in
Fig. 17.4e shows that the performance of the thermal dipole keeps unchanged with
the increment of 2rd/ l. Therefore, only one parameter (say, the distance l) mainly
influences the effect of the thermal dipole on thermal invisibility, and the shorter, the
better.

Further explorations on thermal dipoles could be surely expected. For example,
thermal dipoles might be used to realize other thermal phenomena beyond thermal
invisibility, such as thermal camouflage. Thermal dipoles may also exhibit novel
properties in different systems, such as thermal Janus structures [21] and many-
particle systems [22]. The properties of thermal quadrupoles may contain other
interesting points.
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Although the concept of a dipole originates from electromagnetism, its devel-
opment in thermotics may, in turn, promote the further development of electrostat-
ics [23] and magnetostatics [24, 25]. Indeed, the concept of a dipole may also be
extended to other physical fields such as heat and mass diffusive fields [26, 27].

17.6 Conclusion

We have established a theory for thermal-dipole-based thermotics, which helps real-
ize thermal invisibility by tailoring thermal dipole moments. The thermal-dipole-
based scheme removes the requirements of singular and uncommon thermal conduc-
tivities, contributing to practical applications and further developments in thermal
management. Both finite-element simulations and laboratory experiments validate
the theoretical analyses. The potential applications of thermal dipoles are to mislead
infrared detections, simplify the fabrication of thermal metamaterials, enhance the
efficiency of heat management, etc.

17.7 Exercise and Solution

Exercise

1. Derive the three-dimensional dipole moment for thermal invisibility.

Solution

1. The thermal field of the matrix (generated by the external uniform thermal field),
G′

me, can be expressed as
G′

me = −∇T ′
me. (17.9)

T ′
me is the temperature distribution given by

T ′
me = −G ′

0r cos θ − κ ′
m − κ ′

p

2κ ′
m + κ ′

p

r ′3
p G

′
0r

−2 cos θ + T ′
0. (17.10)

The thermal field of the matrix (generated by the thermal dipole), G′
md , can be

expressed as
G′

md = −∇T ′
md . (17.11)

T ′
md is the temperature distribution given by

T ′
md = 3M ′

4π
(
2κ ′

m + κ ′
p

)r−2 cos θ + T ′
0. (17.12)
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Detailed derivations of Eq. (17.12) are as follows. The general solution to the heat
conduction equation in three dimensions is

T =
∞∑

i=0

(
Air

−1/2+√
1/4+i(i+1) + Bir

−1/2−√
1/4+i(i+1)

)
Pi (cos θ) , (17.13)

where Pi is Legendre polynomial. Then, we perform similar limit analyses to
determine the forms of T ′

pd and T
′
md . We suppose r ′

p → ∞, and then the tempera-
ture distribution of the particle generated by the thermal dipole in three dimensions
can be expressed as

T ′
pd

(
r ′
p → ∞) = Q′

4πκ ′
p

r ′−1
+ + −Q′

4πκ ′
p

r ′−1
− = Q′l ′

4πκ ′
p

r−2 cos θ = M ′

4πκ ′
p

r−2 cos θ.

(17.14)
Equation (17.14) is valid only when r � l ′ (or l ′ → 0). The temperature distribu-
tion of a thermal dipole in three dimensions is characterized by r−2 cos θ . Further,
we consider a finite rp. Similar to the analyses in two dimensions, T ′

pd and T ′
md

can be concluded as

T ′
pd = M ′

4πκ ′
p

r−2 cos θ + α′r cos θ + T ′
0, (17.15)

T ′
md = β ′r−2 cos θ + T ′

0. (17.16)

Theboundary conditions are givenby the continuous temperatures andheat fluxes,

T ′
pd

(
rp

) = T ′
md

(
rp

)
, (17.17)

(−κp∂T
′
pd/∂r

)
rp

= (−κm∂T ′
md/∂r

)
rp

, (17.18)

Therefore, the undetermined coefficients can be calculated,

α′ = −M ′ (κ ′
m − κ ′

p

)

2πr ′3
p κ ′

p

(
2κ ′

m + κ ′
p

) , (17.19)

β ′ = 3M ′

4π
(
2κ ′

m + κ ′
p

) . (17.20)
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Then, Eq. (17.16) turns to

T ′
md = 3M ′

4π
(
2κ ′

m + κ ′
p

)r−2 cos θ + T ′
0, (17.21)

which is just Eq. (17.12).
Because of the superposition principle, the thermal field of the matrix (generated
by the external uniform thermal field and the thermal dipole),G ′

s , can be expressed
as

G′
s = G′

me + G′
md = −∇T ′

s . (17.22)

T ′
s is the temperature distribution given by

T ′
s = −G ′

0r cos θ −
[

κ ′
m − κ ′

p

2κ ′
m + κ ′

p

r ′3
p G

′
0 − 3M ′

4π
(
2κ ′

m + κ ′
p

)

]

r−2 cos θ + T ′
0.

(17.23)
Thermal invisibility requires the second term on the right side of Eq. (17.23) to
be zero,

κ ′
m − κ ′

p

2κ ′
m + κ ′

p

r ′3
p G

′
0 − 3M ′

4π
(
2κ ′

m + κ ′
p

) = 0, (17.24)

Solving Eq. (17.24), we can derive the thermal dipole moment,

M ′ = (
κ ′
m − κ ′

p

)
f ′G ′

0, (17.25)

where f ′ = 4πr ′3
p /3 is the volume of the particle.
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Chapter 18
Theory for Thermal Bi/Multistability:
Nonlinear Thermal Conductivity

Abstract In this chapter, we theoretically design diffusive bistability (and even
multistability) in the macroscopic scale, which has a similar phenomenon but a
different mechanism from its microscopic counterpart (Wang et al., Phys. Rev. Lett.
101, 267203 (2008)); the latter has been extensively investigated in the literature, e.g.,
for building nanometer-scalememory components.By introducing second- and third-
order nonlinear terms (opposite in sign) into diffusion coefficient matrices, bistable
energy or mass diffusion occurs with two different steady states, identified as “0” and
“1”. In particular,we study heat conduction in a two-terminal three-body system.This
bistable system exhibits amacro-scale thermalmemory effect with tailored nonlinear
thermal conductivities. Finite-element simulations confirm the theoretical analysis.
Also, we suggest experiments with metamaterials based on shape memory alloys.
This framework blazes a trail in constructing intrinsic bistability or multistability in
diffusive systems for macroscopic energy or mass management.

Keywords Thermal bi/multistability · Nonlinear thermal conductivity ·
Macroscopic heat transfer

18.1 Opening Remarks

Modern electronic techniques face increasingly prominent heat dissipation problems
due to shrinking chip sizes and increasing integration levels [1]. Fortunately, the past
decade has witnessed the possibility of manipulating heat transport at nanoscale [2–
7], which provides a promising method for evolving electron-based computation.
Phononics, a microscale interpretation of controlling heat flow to carry and pro-
cess information, has flourished since then [8]. To date, indispensable elements of
phononic computers, including thermal diodes [2], thermal logical gates [3], and ther-
mal memories [4], have been proposed theoretically and experimentally. The thermal
memory requests a nonlinear bistable thermal circuit for basic phononic information
storage. Two different steady states can be demonstrated as “0” and “1” beyond the
same boundary condition, just like the electronic counterpart. Although this concept
was proposed in 2008 [4], the studies of thermal bistability (TBIS) devices are still far
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from being satisfactory (say, compared with existing research on optical bistability),
which prohibits its practical applications. This situation is because most studies are
executed at a microscopic scale, but the nanofabrication capacity is limited.

Recent progress in TBIS focuses on achieving bistability by introducing nonlinear
thermal radiation for forming the negative differential thermal resistance (NDTR) [9–
15], in which the Steffan-Boltzmann’s law deviates. With success in optical bistabil-
ity [16–20], it is natural tomigrate itsmethods into thermal radiation forTBISbecause
both optical and thermal-radiation processes can be classified as wave physics. Com-
prehensively, TBIS is realized mainly in two ways: the radiative phase transition at
a specific temperature region [9–12] and the anomalous radiative phenomenon such
as near-field radiation or nonlinear optical resonances [13–15]. The switching time
between two states has been improved to several hundred μs in the laboratory. The
nonlinear thermal radiation can be a potential theoretical scheme for achieving TBIS.

However, in a macroscopic diffusive system such as heat conduction, TBIS has
never been touched because of the absence of a theoretical framework analogous
to its counterpart in wave systems. Nevertheless, heat conduction, a sort of major
heat transfer mode described by the diffusion equation [21], can not apply to the
method in wave processes because of the distinction of governing equations between
diffusive and wave systems [22]. Hence, it is necessary to consider the conduction
TBIS due to its ubiquity. On the one hand, thermal conduction still plays a primary
role of heat dissipation in traditional electron-based computation. Conduction TBIS
devices may well couple thermal and electronic memory. On the other hand, great
progress has been made in manipulating macroscopic thermal conduction at will,
especially in recent decades, by using the theory of transformation thermotics and
thermal metamaterials [23–32], which may facilitate the design and manufacture of
conduction TBIS devices. Here, we establish a bistability theory for treating diffu-
sive systems. We take heat conduction as a classical diffusive system and deduce
the non-linear heat-conduction parameters by adopting two theoretical methods.
Finite-element simulations confirm it and further demonstrate a practical thermal
memory process. We also give a proof-of-principle experimental design by adopting
the temperature-trapping theory [32]. The theoretical framework applies to tailoring
diffusion coefficient matrices for bistability (and multistability) in diffusion.

18.2 Theoretical Foundation

Adiffusive system is usually described by force causing aflux. For example, Fourier’s
law J = −κ∇T implies that the heat flux is induced by a temperature gradient,
similar to Ohm’s law I = −ε∇U and Fick’s law q = −D∇n. Generally, the relation
between fluxes and forces of a diffusive system can be written as

Yi =
n∑

j=1

Ki j X j , (18.1)
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Fig. 18.1 a A two-terminal
model for thermal bistability.
Heat transfers along the
x-axis. A and B are two
different heat-conduction
materials. C is a region for
reading out and writing in.
Th and Tc are temperatures
of heat baths. T0 is the
temperature of region C. b
Schematic diagram of heat
flow in region A (dotted red
line)and B (dashed blue
line), and the net flow of
region C (solid black line). A
and B have different
nonlinear thermal
conductivities, resulting in
three intersections. Adapted
from Ref. [34]

where i represents the variety of fluxes and j symbolizes different kinds of forces.
Considering a simple single-field diffusion, i = j , Eq. (18.1) comes into no-coupled
transport in the system. If the elements of transport coefficient tensor Kii are con-
stant, the relation between a flux Yi and a force Xi is linear. However, bistability
requests that the system deviates from a linear relation between Yi and Xi . The non-
linearity of elements in the coefficient matrices becomes necessary for getting two
or more steady-state solutions in the diffusion equation. Let us take Fourier’s law
as an example. Here, nonlinearity in macroscopic heat conduction can owe to the
temperature-dependence of thermal conductivity, κ(T ) [33]. Thus, by engineering
κ(T ) of a thermal circuit, an NDTR [4, 5] will work, which induces anomalous
thermal diffusion. This property is essentially important for obtaining macroscopic
TBIS.

Inspired by the model proposed in Ref. [4], we consider a two-terminal three-
body heat transport model presented in Fig. 18.1a without loss of generality. In this
case, heat flows along the x axis. A and B are two heat-conduction materials with
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the same sizes denoted as L (length) and S (cross-sectional area). The middle small
region C shows a uniform temperature distribution due to a relatively high thermal
conductivity. So C is set for extracting state information of the system. We aim
to observe two divergent steady temperatures within C under the same boundary
condition to achieve TBIS. Both extremes are connected to heat baths. We fix Th and
Tc as the temperature of two heat baths respectively and set T0 as the temperature
of region C. According to the continuity of heat flow, T0 has a unique solution
under the steady state if A and B are linear heat-conduction materials (namely,
their thermal conductivities κA and κB are temperature-independent constants). The
heat flows JA and JB running through A and B are linear monotonic functions of
T0, which can be verified by JA = κA(Th − T0)/L and JB = κB(T0 − Tc)/L . Their
changes concerning T0 are two straight lines with one intersection point [JA(T0) =
JB(T0)], which refers to the unique heat-conduction steady state. However, steady
states can increase if A and B are two nonlinear heat-conduction materials (their
thermal conductivities depend on the temperature). Herewe denote κA(T ) and κB(T )

as their thermal conductivities, respectively

κA(T ) = κA0 +
∑

m

χAmT
m, (18.2)

κB(T ) = κB0 +
∑

n

χBnT
n, (18.3)

where m and n are positive integers. The linear relation between heat flow JA (or
JB) and T0 deviates. As illustrated in Fig. 18.1b, more than one intersection point of
JA and JB . That is to say, thermal bistability or multistability phenomena can appear
due to nonlinear heat conduction.

A. Calculations of Net Heat Flow

We define J0 = JB − JA as the net heat flow from the region C. J0 = 0 is the neces-
sary condition that a steady-state system should satisfy. In a TBIS system, J0(T0) = 0
has three real solutions. These three points are candidates of steady points. But the
point where ∂ J0/∂T0 < 0 should be excluded because it is an unstable equilibrium
point. Then, which steady state will the system come into? This depends on the
initial conditions. As shown in Fig. 18.1b, a cubic function (rather than a quadratic
function) can construct a bistable system perfectly. Thus, we can speculate that the
index terms in Eqs. (18.2) and (18.3) should be kept up to the second terms. This
means m = n = 2. Accordingly, Eqs. (18.2) and (18.3) can be reduced as

κA(T ) = κA0 + χA1T + χA2T
2, (18.4)

κB(T ) = κB0 + χB1T + χB2T
2. (18.5)
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Distinctly, two factors influence such a TBIS system. When one factor dominates,
the system will become state I (on) and vice versa into state II (off). For TBIS, the
dominating factors depend on the temperature-evolution direction. For example, if
relaxing from a low-temperature state, factor I dominates, and the system will enter
state I. On the contrary, an initial high-temperature state will conclude in another final
state. So χA1 and χA2 (or χB1 and χB2) are inferred to have opposite signs. Based
on the above analysis, we are in a position to calculate the thermal conductivity
parameters for a TBIS system.

The nonlinear thermal conductivity values show position-dependent (one-to-one
mapping to position x) in a steady state. But the heat flows JA and JB are independent
of x due to the heat flow conservation. JA can be written as JA = κeAS〈∇TA〉, where
κeA is the effective thermal conductivity and 〈∇TA〉 is the corresponding average
temperature gradient of A. So is JB . Then we can derive JA and JB as

JA = κeAS〈∇TA〉 = κeA(Th − T0)S

L
, (18.6)

JB = κeB S〈∇TB〉 = κeB(T0 − Tc)S

L
. (18.7)

To conclude JA and JB , the effective thermal conductivities should be deduced. For
simplicity, we assume B is a linear heat-conduction material (χBn = 0), and only
hold A’s nonlinearity. This simplification will not affect the cubic relation between
net heat flow J0 and T0. Then κeA and κeB can be written as

κeA =
∫ Th
T0

κA(T )

Th − T0
=

κA0Th + 1

2
χA1T

2
h + 1

3
χA2T

3
h −

(
κA0T0h + 1

2
χA1T

2
0 + 1

3
χA2T

3
0

)

Th − T0
,

(18.8)

κeB = κB0. (18.9)

Substituting Eqs. (18.8) and (18.9) into Eqs. (18.6) and (18.7), we get

JA = − S

L

[
1

3
χA2T

3
0 + 1

2
χA1T

2
0 + κA0T0 −

(
1

3
χA2T

3
h + 1

2
χA1T

2
h + κA0Th

)]
,

(18.10)

JB = S

L
(κB0T0 − κB0Tc). (18.11)
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Defining shape factor � = S/L , then J0 can be expressed as

J0 = JB − JA

= �

[
1

3
χA2T

3
0 + 1

2
χA1T

2
0 + (κA0 + κB0)T0 −

(
1

3
χA2T

3
h + 1

2
χA1T

2
h + κA0Th + κB0Tc

)]
.

(18.12)

Equations (18.4) and (18.5) describe the nonlinear heat conduction. Generally, it
is hard to solve the nonlinear heat conduction differential equation. So we may adopt
an effective-thermal-conductivity approximation to avoid the nonlinear terms above.
In addition, Kirchhoff’s transformation provides another way to make the nonlinear
equation linearization [35]. As it works well in one-dimensional heat conduction
problems, we can get exact solutions to temperature distributions in our model. Then
comparing the two results, we can verify the above approximation results.

Let us still consider the nonlinear heat conduction in region A and assume region
B has a linear thermal conductivity. Under a steady state, heat conduction in region
A can be described as

∂

∂x

[
κA(T )

∂T

∂x

]
= 0. (18.13)

Here, we define a new variable U , which has the same unit as a temperature,

U = U (T ) =
∫ T

Tre f

κA(T ′)
κA(Tre f )

dT ′, (18.14)

where Tref is an arbitrary reference temperature. And Eq. (18.13) can be transformed
as

∂

∂x

[
κA(T )

∂T

∂U

∂U

∂x

]
= 0. (18.15)

Combing Eqs. (18.14) and (18.15), we can get a heat-conduction equation with U ,

∂2U

∂x2
= 0. (18.16)

If we take Tref = 0 K, the variable U and corresponding upper and lower bounds
can be deduced as

U (T ) =
∫ T
0

(
κA0 + χA1T ′ + χA2T ′2) dT ′

κA0
= κA0T + 1

2χA1T 2 + 1
3χA2T 3

κA0
,

(18.17)
and ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U1 = κA0Th + 1
2χA1T 2

h + 1
3χA2T 3

h

κA0
(x = a),

U2 = κA0T0 + 1
2χA1T 2

0 + 1
3χA2T 3

0

κA0
(x = b).

(18.18)
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Combing Eqs. (18.16) and (18.18) together, we can solve the expression of U as

U (x) = U2 −U1

L
x +U1, (18.19)

which indicates the value of U at each position. It is easy to migrate U (x) back
to T (x). Thus, by means of the intermediate variable U , we can find the relation
between T and x as

U = κA0T + 1
2χA1T 2 + 1

3χA2T 3

κA0
= U2 −U1

L
x +U1. (18.20)

Taking the derivative of Eq. (18.20) with respect to x in region A, we get
∂T

∂x

∣∣∣∣
A

,

∂T

∂x

∣∣∣∣
A

= κA0(U2 −U1)

κA(T )L
. (18.21)

Then, the net outflow of heat from C can be written as

J∗
0 = J∗

B − J∗
A = κB0

T0 − Tc
L

S + κA(T )
∂T

∂x

∣∣∣∣
A
S

= �

[
1

3
χA2T

3
0 + 1

2
χA1T

2
0 + (κA0 + κB0)T0 −

(
1

3
χA2T

3
h + 1

2
χA1T

2
h + κA0Th + κB0Tc

)]
,

(18.22)
which echoes with Eq. (18.12). It is definite that a nonlinear one-dimensional heat
conduction process can be simplified by executing the space averaging of κ(T ),
which makes a detour around the nonlinear terms. This will facilitate the disposal of
nonlinear-heat-conduction case.

B. Tailoring Nonlinear-thermal-Conductivities Coefficients

We can see J0 satisfies a cubic relation with T0. Now we construct another cubic
function J ′

0(T0)with three zero points T01, T02, T03 (suppose Tc < T01 < T03 < T02 <

Th). J ′
0 can be written as

J ′
0 = α[(T0 − T01)(T0 − T02)(T0 − T03)]

= α[T 3
0 − (T01 + T02 + T03)T

2
0 + (T01T02 + T01T03 + T02T03)T0 − T01T02T03].

(18.23)
α is the pre-coefficient with a unit J/K. T01 and T02 are the two designed stable temper-
atures of region C. By comparing the coefficient and constant terms of Eqs. (18.12)
and (18.23), we acquire a set of equations
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3�χA2 = α,

1
2�χA1 = −α(T01 + T02 + T03),

�(κA0 + κB0) = α(T01T02 + T01T03 + T02T03),

−�
(
1
3χA2T 3

h + 1
2χA1T 2

h + κA0Th + κB0Tc
) = −αT01T02T03.

(18.24)

Then we achieve

κA0 = α

�

[−T 3
h + (T01 + T02 + T03)T

2
h − (T01T02 + T01T03 + T02T03)Tc + T01T02T03

Th − Tc

]
,

κB0 = α

�

[
T 3
h − (T01 + T02 + T03)T

2
h + (T01T02 + T01T03 + T02T03)Th − T01T02T03

Th − Tc

]
,

χA1 = − 2α

�
(T01 + T02 + T03),

χA2 = 3α

�
.

(18.25)

We can see χA1 and χA2 have opposite signs definitely, which echo the inference
above. Therefore, a bistable system features that two kinds of factors compete in
evolution from a non-equilibrium state to an equilibrium state. T01 and T02 are rep-
resentations of two different states, while T03 can not exist in a steady state. Equa-
tion (18.25) provides guidance in designing nonlinear parameters of heat-conduction
objects to realize TBIS. We can calculate the coefficients according to the pre-set
zero-point temperatures (T01, T02, and T03), the temperatures of heat baths, and two
factors � and α.

This method allows a diffusive system to exhibit bistable states by engineering
nonlinear transport coefficients. This intrinsic bistability depends on two competitive
factors, reflected by two nonlinear terms with opposite signs. We prove that the
second- and third-order nonlinearity of transport coefficientsmakes bistability effects
valid. If the nonlinearity orders are higher, multistability can come to appear. And
the switching time depends on the diffusion velocity of heat or mass.

18.3 Numerical Analysis and Simulation

We draw the graphs to illustrate our methods for tailoring nonlinear thermal conduc-
tivities. On basis of the model shown in Fig. 18.1a, we set T01 = 330 K, T02 = 370 K,
and T03 = 350 K. The heat and cold baths are fixed at 400K and 300K, respec-
tively. Two factors are set as α = 0.001 J/K and � = 1 m. The substitution of
these parameters into Eq. (18.25) yields κA0 = 366.05 J/(m K), κB0 = 1.05 J/(m K),
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Fig. 18.2 Analysis of the bistability and NDTR based on the analytical model discussed in the
text. a Heat flow in region A (dotted red line), B (dashed blue line), and net flow in region C (solid
black line) versus T0 of the system. Here B is a linear heat-conduction material, and the JB curve
is a straight line. JA and JB have three intersections. b thermal conductivities of A (dotted red line)
and B (dashed blue line) versus T0. The effective thermal conductivity of A is also shown with a
solid red line by an integral average of T0. The NDTR region is shadowed in yellow, containing
two stable temperature points. Adapted from Ref. [34]

χA1 = −2.1 J/(m K2), and χA2 = 0.003 J/(m K3). The curves of JA, JB , and J0
versus T0 are shown in Fig. 18.2a. Three intersections emerge, corresponding to the
pre-set parameters T01, T02, and T03. In Fig. 18.2b, the thermal conductivities of A
and B versus temperature are depicted. We can see that κA(T ) has negative values in
a certain temperature region. This value is calculated as (328.02K, 371.98K), which
refers to the NDTR region (see the yellow-shadowed region in Fig. 18.2). The region
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Fig. 18.3 Net flow J0 versus T0 for different small-shift coefficients. a TBIS behavior for different
linear coefficients κA0. b TBIS behavior for different linear coefficients κB0. c TBIS behavior for
different second-order coefficients χA1. d TBIS behavior for different third-order coefficients χA2.
Adapted from Ref. [34]

contains two stable temperatures, confirming that the NDTR induces the desired
TBIS. These two graphs accord with our expected results as sketched in Fig. 18.1b.

When the coefficients of nonlinear thermal conductivities have slight variations,
will TBIS be broken? Here, we give a 1% value shift to four parameters respec-
tively (κA0, κB0, χA1, and χA2 are increased by 1%, respectively). According to the
comparisons in Fig. 18.3, the small shift of κB0 cannot affect the TBIS, which can be
interpreted by the steady heat flow in the system kept almost unchanged. While the
thermal conductivity of A varies slightly, TBIS will not exist anymore. So we can
conclude that the TBIS of heat conduction is parameter-sensitive. This strict limi-
tation makes it hard to observe the TBIS phenomenon in practical heat-conduction
materials. But we can carefully tailor an intrinsic TBIS with pre-designed zero-point
temperatures.

We perform finite-element simulations based on the commercial software COM-
SOL Multiphysics. We build a model with 9cm in length and 1cm in width.
Heat conducts along the x-axis. The thermostat region is placed in the center with
κC = 1000 J/(m K). We give 400K, 500K, and 600K as three pre-designed zero
points for the thermal conductivities of the left and right parts. � is 1/4 m according
to the model’s geometry. α is arbitrary, and here we take it as 0.0001 J/K. Thus,
we can calculate that κA0 = 290 J/(m K), κB0 = 6 J/(m K), χA1 = −1.2 J/(m K2),
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Fig. 18.4 Finite-element simulations of TBIS. a Transient simulation results beyond fixed heat
baths’ temperatures. After 0.004s, the system becomes stable with two different T0 due to the
different initial temperatures. b Temperature distribution along x-axis. The left end of the model is
set as the origin point (x = 0). Theoretical heat flows and thermal conductivities of the model are
compared with the simulation results in vignettes. Adapted from Ref. [34]

and χA2 = 0.0012 J/(m K3). The density and specific heat of all materials are set as
10kg/m3 and 10J/(kg K). Boundary conditions are fixed at 700K (left) and 300K
(right). Then, we give 300K and 700K as initial surface temperatures, see Fig. 18.4a.
After the temperature evolution within 0.004s, the system comes into stable states.
However, the final temperatures of C are different according to different initial tem-
peratures, representing two different stable states. The initial temperature of 300K
induces 398.46K (stable state I) in C, while 700K leads to 600.12K (stable state II).
The states of C depend on the initial surface temperatures. We fetch the final-state-
temperature data of the model along the x-axis and curve it in Fig. 18.4b. State I and
II have two different platform temperatures in region C (4∼5cm). In addition, we
plot the theoretical results of heat flow and thermal conductivities versus T0 as inset



258 18 Theory for Thermal Bi/Multistability: Nonlinear Thermal Conductivity

Fig. 18.5 aA demonstration of the thermal memory process with the model we design. Four stages
are displayed initialization, reading-out, writing-in, and reading-out. b An experimental design
based on the temperature-trapping theory. Two stages with different types of SMA are arrayed. The
central temperatures depend on the SMA stages’ critical temperatures. Adapted from Ref. [34]

diagrams in Fig. 18.4b. Both 400K and 600K are the pre-set stable values for design-
ing the thermal conductivity parameters. And the simulation results well confirm the
theoretical values.

Then, we demonstrate an overall thermal memory process with the designed
conductionTBIS in Fig. 18.5a,which is based on the simulation results above. Firstly,
we initialize the model by a temperature-writer in 300K as an initial temperature.
After 0.004s, the system will become steady, and we read out T0 in region C by a
temperature-reader. It is 398.46K now. And then we write in another temperature as
700K. After 0.004s, a steady temperature of 600.12K can be read out. This model’s
switching time is 0.004s, which depends on each part’s density and specific heat.
So these two parameters should be considered and optimized when devices are in
practical application. This memory process makes the conduction TBIS practicable
in fabricating macroscopic thermal memory components.
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18.4 Experimental Suggestion

The temperature-trapping theory [32] inspires us to design a proof-of-principle exper-
iment. This theory implies a thermostat region in the center of a spatially symmetric
structurewithin shapememory alloys (SMAs).The thermostat’s temperature depends
entirely on the critical temperature of SMAs. Here, we improve this structure and
design a two-stage SMAs device to achieve TBIS, as shown in Fig. 18.5b. Two pairs
of SMAs are arrayed on both sides, in white and gray, forming two-stage thermal
switches. Different types of SMAs are applied in each pair. In particular, these two
stages have different critical temperatures T1 and T2, where T1 < T2. In detail, the
white stage on the left levels below T1 and bends above T1, while the right one shows
the same T1 but inverse deformation. A similar rule works on the gray stage. Heat
and cold baths are fixed on both sides with Th > T2 and Tc < T1. When the whole
device is initialized under a low temperature on the left and a high temperature on the
right, all the SMAs get straight. The outer stage bends, and the heat flow cannot run
into the inner layer when coming to the steady state. The thermostat’s temperature
approaches T1. When the initial condition reverses, all stages bend. They will not
be level at steady state as Th > T2 and Tc < T1. This process induces another steady
state that T2 is the final temperature of the thermostat. As the SMAs are commercially
available, assembling such a two-stage structure is feasible. But the thermal contact
resistances may affect the experimental results, which should be considered further.

18.5 Discussion

For the temperature-dependent thermal conductivity of A depicted in Fig. 18.1a,
the third-order nonlinearity is just a necessary condition. We can find that |κA0| ∼
|χA1T | ∼ |χA2T 2| is another parameter requirement. Fortunately, these extraordinary
thermal properties were proved to emerge in some bulk nonmetallic solids [36]. For
example, the thermal conductivity of bulk ZrO2 is 4.00 − 8.72 × 10−3T + 1.28 ×
10−5T 2 − 5.82 × 10−9T 3[W/(mK)], which agrees qualitativelywith the conduction
TBIS requires at 103 K level. It can be applied as material A in our model combing
with a common material B. By solving the inverse solutions of Eq. (18.24), namely
working out α, T01, T02, and T03, one can estimate the experimental bistable tem-
perature for such a structure composed of a nonlinear bulk heat-conduction material
plus a common material. Thus, the observation of conduction TBIS in natural mate-
rials is practically probable. Besides, using the composite effect of nonlinear heat
transfer [37], the fabrication of a conduction TBIS device with composite materials
is possible. In this case, the nonlinear thermal conductivities can be well-tailored if
adjusting the fraction or configuration of composite bulk components [38]. For exam-
ple, a core-shell structure [33] and a particle-embedded-in-host structure [39] may
be candidates. So we also suggest the composite manufacture method as material A
in fabricating the device for application scenarios.
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We have established a theoretical framework for achieving bistability in diffusive
heat systems. We prove that the TBIS phenomenon exists not only in wave pro-
cesses (say, nonlinear thermal radiation) but also can be realized in heat-conduction
systems. Second- and third-order nonlinearity of thermal conductivity can induce a
bistable thermal circuit. When the nonlinearity orders go higher, multistability can
be observed as well. We have also given numerical calculation results and show the
parameter-sensitive TBIS in heat conduction. Besides, a completed thermal mem-
ory process is demonstrated with four stages as an evident consequence. Except for
thermal memories, a thermal switch is another possible application. As the designed
experiment implies, the switch is initial-temperature-forced and can barrier or allow
heat flows due to distinguishable thermal conductivities. As waste heat is dissipated
mainly by the diffusive process in traditional computers, conduction TBIS devices
can thus be coupled with electronic devices, facilitating thermal calculation based
on existing electric calculation.

18.6 Conclusion

We have introduced an approach to designing macroscopic bistability by taking the
heat conduction process as a typical case. Due to the form-similarity of governing
equations, this method is applicable in other diffusive systems, such as direct current
or particle diffusion systems. Bistability or multistability can be realized by carefully
tailoring spatial asymmetry and nonlinearity of diffusive parameters. This method
helps generate a significant physical phenomenon in the macroscopic diffusive pro-
cess and is a potential tool in macroscopic energy or mass management.

18.7 Exercise and Solution

Exercise

1. Discuss the differences between a negative differential thermal resistance and a
negative thermal conductivity.

Solution

1. A negative differential thermal resistance means that the heat flux decreases when
the temperature difference increases, which naturally does not violate the second
law of thermodynamics.
A negative thermal conductivity means heat can spontaneously transport from
low to high temperatures, which is usually impossible due to the second law of
thermodynamics. However, it can still be effectively realized if an external source
is applied.
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Chapter 19
Theory for Negative Thermal Transport:
Complex Thermal Conductivity

Abstract In this chapter, we coin a complex thermal conductivity whose imaginary
part corresponds to the real part of a complex refractive index. Therefore, the thermal
counterpart of a negative refractive index is just a negative imaginary thermal con-
ductivity, featuring the opposite directions of energy flow and wave vector in thermal
conduction and advection, thus called negative thermal transport herein. We design
an open systemwith energy exchange and explore three different cases to reveal neg-
ative thermal transport to avoid violating causality. We further provide experimental
suggestions with a solid ring structure. All finite-element simulations agree with the
theoretical analyses, indicating that negative thermal transport is physically feasible.
These results have potential applications such as designing the inverse Doppler effect
in thermal conduction and advection.

Keywords Negative thermal transport · Complex thermal conductivity ·
Conduction and advection

19.1 Opening Remarks

Negative refraction is one of the most attractive phenomena in wave systems, which
was first revealed with negative permeability and permittivity [1]. With the pro-
posal of metal wire arrays [2] and split rings [3], negative refractive index was
soon designed and fabricated [4–6], which gave birth to broad applications like
breaking diffraction limit [7–9]. One representative property of a negative refractive
index is the opposite directions of energy flow (or Poynting vector) and wave vector
[Fig. 19.1(a)]. Based on this property, related phenomena were revealed intensively,
such as the inverse Doppler effect [10], the inverse Cerenkov radiation [11], and the
abnormal Goos-Hanschen shift [12].

Refractive phenomena were also studied with a thermal wave with a time-periodic
heat source [13]. Moreover, multilayered structures were also proposed to guide
heat flow [14–17], yielding practical applications such as thermal lens [18] and
thermal cloaks [19]. These studies attempted to connect thermal phenomena and
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Fig. 19.1 Comparison between a wave system and b diffusion system. n and κ denote complex
refractive index and complex thermal conductivity, respectively. J and β denote energy flow and
wave vector, respectively. Adapted from Ref. [20]

electromagnetic phenomena. However, some basic concepts are still ambiguous,
especially the correspondence between thermal conductivity and refractive index.

To promote the related physics in thermotics with a clear physical picture, we
manage to coin a complex thermal conductivity κ as the thermal counterpart of
a complex refractive index n (Fig. 19.1). The imaginary part of a complex thermal
conductivity is analogous to the real part of a complex refractive index. Therefore, the
thermal counterpart of a negative refractive index is just a negative imaginary thermal
conductivity, which is characterized by the opposite directions of energy flux J and
wave vector β, thus called negative thermal transport.We design an open systemwith
energy exchange to observe negative thermal transport and provide experimental
suggestions with a three-dimensional solid ring structure. All theoretical analyses
and finite-element simulations indicate that negative thermal transport is physical.

19.2 Complex Thermal Conductivity

Thermal conduction-advection process is dominated by the famous equation

ρC∂T/∂t + ∇ · (−σ∇T + ρCvT ) = 0, (19.1)

where ρ,C , σ , v, T , and t are density, heat capacity, thermal conductivity, convective
velocity, temperature, and time, respectively. Equation (19.1) indicates the energy
conservation of thermal conduction and advection. We assume that the convective
term (ρCvT ) results from themotion of solid, so density andheat capacity can be seen
as two constants which do not depend on time or temperature [21, 22]. Therefore,
the mass and momentum conservations of thermal advection are naturally satisfied.

To proceed, we apply a plane-wave solution for temperature [21–23],
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T = A0e
i(β·r−ωt) + T0, (19.2)

where A0, β, r , ω, and T0 are the amplitude, wave vector, position vector, frequency,
and reference temperature of wave-like temperature profile, respectively. i = √−1 is
imaginary unit. Only the real part of Eq. (19.2) makes sense.We substitute Eq. (19.2)
into Eq. (19.1), and derive a dispersion relation,

ω = v · β − i
σβ2

ρC
. (19.3)

With the wave-like temperature profile described by Eq. (19.2), we can derive
∇T = iβT (T0 is neglected for brevity). Then, Eq. (19.1) can be rewritten as

ρC∂T/∂t + ∇ · (−iσβT + ρCvT ) = 0. (19.4)

With the mass conservation of thermal advection, we can obtain ∇ · (ρv) = 0 or
∇ · v = 0 (for ρ is a constant). Meanwhile, β is a constant vector, so Eq. (19.4) can
be reduced to

ρC∂T/∂t − iσβ · ∇T + ρCv · ∇T = 0, (19.5)

which can be further reduced with ∇T = iβT to

ρC∂T/∂t + σβ2T + iρCv · βT = 0. (19.6)

Now, it is natural to coin a complex thermal conductivity κ as

κ = σ + i
ρCv · β

β2
, (19.7)

with which Eq. (19.6) can be simplified as

ρC∂T/∂t + κβ2T = 0. (19.8)

With ∇T = iβT , Eq. (19.8) is equivalent to the familiar equation of thermal con-
duction,

ρC∂T/∂t + ∇ · (−κ∇T ) = 0. (19.9)

Clearly, the thermal conduction-advection equation (Eq. (19.1)) is converted to the
complex thermal conduction equation (Eq. (19.9))with a complex thermal conductiv-
ity (Eq. (19.7)). Although thermal conductivity is generally defined by fixingmoving
parts (advection) as zero, advection can be mathematically regarded as a complex
form of conduction. Conduction and advection are mathematically unified within a
conductive framework (despite different physical mechanisms). Therefore, coining
complex thermal conductivity makes sense by treating advection as a complex form
of conduction.
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With the substitution of Eq. (19.2) into Eq. (19.9), we can derive a dispersion
relation,

ω = −i
κβ2

ρC
= v · β − i

σβ2

ρC
, (19.10)

which is in accordance with the result of Eq. (19.3), indicating that complex thermal
conductivity is physical.

To understand the complex frequencyω, we substitute Eq. (19.10) into Eq. (19.2),
and the wave-like temperature profile becomes

T = A0e
Im(ω)tei[β·r−Re(ω)t] + T0. (19.11)

Obviously, Re(ω) and Im(ω) determine propagation and dissipation, respectively.
Meanwhile, Re(ω) and Im(ω) are related to Im (κ) and Re (κ), respectively. In other
words, Re (κ) and Im (κ) are related to dissipation and propagation, respectively. The
physical connotation can be clearly understoodwith Fig. 19.1b. Positive (or negative)
Re (κ) means loss (or gain), indicating the amplitude decrement (or increment) of
wave-like temperature profile. Im (κ) is of our interest, which is discussed later.

We further confirm complex thermal conductivity in a thermal conduction-
advection system with COMSOL Multiphysics. The system is shown in Fig. 19.2a,
which has width L and height H . The left and right ends are set with a periodic
boundary condition. Then, the wave vector can take on only discrete values, say,
β = 2πm/L with m being any positive integers. We take on m = 5, and initial tem-
perature is set at T = 40 cos (βx) + 323 K (Fig. 19.2b, f).

We discuss two cases with v//β (Fig. 19.2b–e) and v ⊥ β (Fig. 19.2f–i). When
v//β, Im (κ) appears due to v · β �= 0, as predicted by Eq. (19.7). Therefore, prop-
agation occurs and the period of wave-like temperature profile is t0 = 2π/Re (ω) =
2π/ (v · β) = 100 s, as predicted by Eq. (19.10). The wave-like temperature pro-
files at t = 0.5t0 = 50 s and t = t0 = 100 s are shown in Fig. 19.2c, d, respectively.
The temperature distributions along x axis in Fig. 19.2b–d are plotted in Fig. 19.2e.
Clearly, the wave-like temperature profile has amplitude decrement because of the
positive Re (κ). Meanwhile, the wave-like temperature profile propagates along x
axis due to the positive Im (κ). After propagating for a period (100s), the wave-like
temperature profile approximately gains a phase difference of 2π , thus going back
to the initial position (Fig. 19.2b, d).

When v ⊥ β, Im (κ) vanishes due to v · β = 0. Therefore, propagation does not
occur, and the period is t0 = 2π/ (v · β) = ∞ s, as predicted by Eq. (19.10). The
wave-like temperature profiles at t = 50 s and t = 100 s are presented in Fig. 19.2g,
h, respectively. The temperature distributions along x axis in Fig. 19.2f–h are plotted
in Fig. 19.2i. The wave-like temperature profile has also amplitude decrement due to
the positive Re (κ). However, the wave-like temperature profile does not propagate
because of the zero Im (κ). Therefore, the behaviors of thermal conduction and
advection can be well described by using complex thermal conductivity. When wave
vector and convective velocity are with an arbitrary angle α, the velocity component
v cosα contributes to propagation.
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Fig. 19.2 a Schematic diagram. Temperature evolutions with b–e v//β and f–i v ⊥ β. Parameters:
L = 0.5 m, H = 0.25 m, ρC = 106 J m−3 K−1, σ = 1 W m−1 K−1, and v = 1 mm/s. PBC in (a)
means periodic boundary condition. Adapted from Ref. [20]

We further discuss the energy flow in Fig. 19.2b–d. Relative energy flow J ′ can
be calculated with periodicity average,

J ′ = 1

λ

λ∫

0

(−κ∇T ) dx = 0, (19.12)

where λ = 2π/β is wavelength. Here, we only take on the real part of J ′ because
the imaginary part does not make sense. Although conductive flow is irrelevant to
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Fig. 19.3 Two-dimensional negative thermal transport. a Schematic diagram with au = ad =
2 mm, ai = 1 mm, L = 0.5 m, σu = σd = 10 W m−1 K−1, σi = 0.1 W m−1 K−1, and ρuCu =
ρdCd = ρiCi = 106 J m−3 K−1. These parameters lead to g/β = 4 mm/s. b vu = −vd = 5 mm/s.
c vu = 0.5 mm/s and vd = −1.5 mm/s. d vu = −vd = 1 mm/s. Circles and stars denote the trajec-
tories of Max(Tu ) and Max(Td ), respectively. Adapted from Ref. [20]

reference temperature, convective flow (ρCvT ) is closely associated with reference
temperature [24–28]. Therefore, absolute energy flow J is

J = ρCvT0. (19.13)

In what follows, we discuss absolute energy flow and neglect the expression of abso-
lute for brevity. Clearly, J and v have the same direction. In otherwords, only thermal
advection contributes to energy flow. As we can imagine from Fig. 19.2b–d, thermal
advection results in the motion of wave-like temperature profile, so the direction
of wave vector β follows that of convective velocity v, yielding positive thermal
transport (Im (κ) > 0; see Fig. 19.1b). To some extent, positive thermal transport is
the result of causality, so negative thermal transport (Im (κ) < 0; see Fig. 19.1b) is
unique.

19.3 Negative Thermal Transport

It might be very difficult to reveal negative thermal transport in an isolated system
(Fig. 19.2a), so we consider an open system (Fig. 19.3a) where an intermediate layer
allows heat exchange between up and down layers. The complex thermal conductiv-
ities of up layer κu and down layer κd are denoted as

κu = σu + i
ρuCuvu · βu

β2
u

, (19.14a)

κd = σd + i
ρdCdvd · βd

β2
d

, (19.14b)
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where the subscripts u and d denote the parameters in up and down layers, respec-
tively. We set the wave-like temperature profiles in up layer Tu and down layer Td as

Tu = Aue
i(βu ·x−ωt) + T0, (19.15a)

Td = Ade
i(βd ·x−ωt) + T0. (19.15b)

The heat exchange between up and down layers is along z axis, which is not of our
concern. Then, the energy flows along x axis in up layer Ju and down layer Jd can
be calculated as

Ju = ρuCuvuT0, (19.16a)

Jd = ρdCdvdT0. (19.16b)

Clearly, the directions of energy flow in up and down layers are opposite due to
vu = −vd .

The thermal conduction-advection processes in up and down layers can be
described by the complex thermal conduction equation,

ρuCu∂Tu/∂t + ∇ · (−κu∇Tu) = su, (19.17a)

ρdCd∂Td/∂t + ∇ · (−κd∇Td) = sd , (19.17b)

where su and sd are two heat sources, reflecting the heat exchange between up
and down layers [21, 22]. Since the three layers in Fig. 19.3a are thin enough
(L � au, i, d ), the temperature variance along z axis can be neglected, yielding
∂2T/∂z2 = 0. The energy flow from down layer to up layer ju can be calculated
as ju = −σi (Tu − Td) /ai , where σi and ai are the thermal conductivity and width
of stationary intermediate layer, respectively. It is also reasonable to suppose that
energy flow is uniformly distributed in up layer due to thin thickness, so the heat
source in up layer su can be expressed as su = ju/au = −σi (Tu − Td) / (aiau), where
au is the width of up layer. Similarly, the heat source in down layer sd can be derived
as sd = jd/ad = −σi (Td − Tu) / (aiad), where ad is the width of down layer. With
these analyses, Eq. (19.17) can be reduced to

ρuCu∂Tu/∂t − κu∂
2Tu/∂x

2 = hu (Td − Tu) , (19.18a)

ρdCd∂Td/∂t − κd∂
2Td/∂x

2 = hd (Tu − Td) , (19.18b)

where hu = σi/ (aiau) and hd = σi/ (aiad), reflecting the exchange rate of heat
energy. We take on the same material parameters of up and down layers, say,
σu = σd (= σ), ρuCu = ρdCd (= ρC), au = ad (= a), and hu = hd (= h). We also
suppose vu = −vd (= v) and βu = βd (= β), thus yielding κu = κd (= κ) where
κd is the conjugate of κd . The substitution of Eq. (19.15) into Eq. (19.18) yields an
eigenequation Ĥψ = ωψ , where the Hamiltonian Ĥ reads
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Ĥ =
[−i

(
g + ηβ2

)
ig

ig −i
(
g + ηβ2

)
]

, (19.19)

where η = κ/ (ρC) and g = h/ (ρC). The eigenvalue of Eq. (19.19) is

ω± = −i
[
g + Re (η) β2 ±

√
g2 − Im2 (η) β4

]
, (19.20)

where Re (η) = σ/ (ρC) and Im (η) β2 = vβ.
With Eq. (19.20), we can obtain three different cases of negative thermal transport.

We discuss the first case with g2 − Im2 (η) β4 < 0, say, v > g/β. The eigenvector
is

ψ+ = [
1, eiπ/2−δ

]ς
, (19.21a)

ψ− = [
1, eiπ/2+δ

]ς
, (19.21b)

where δ = cosh−1
[
Im (η) β2/g

]
, and ς denotes transpose. The eigenvectors in

Eq. (19.21) indicate that the wave-like temperature profiles in up and down lay-
ers move with a constant phase difference of π/2 but with different amplitudes. We
take on β = 2πm/L with m = 1 in what follows. The initial wave-like temperature
profiles in up and down layers are set as the eigenvector described by Eq. (19.21b),
say, Tu = 40 cos (βx) + 323 K and Td = eδ40 cos (βx + π/2) + 323 K. We track
the motion of maximum temperature in up layer Max(Tu) and down layer Max(Td )
to observe the directions of wave vector. Since the amplitude of wave-like tempera-
ture profile in down layer (with eδ > 1) is larger than that in up layer, the directions
of wave vector in up and down layers are both leftward. Therefore, negative ther-
mal transport occurs in up layer, and the transport in down layer is still positive
(Fig. 19.3b).

We discuss the second case with g2 − Im2 (η) β4 > 0, say, 0 < v < g/β. The
corresponding eigenvector is

ψ+ = [
1, ei(π−α)

]ς
, (19.22a)

ψ− = [
1, eiα

]ς
, (19.22b)

where α = sin−1
[
Im (η) β2/g

]
. The eigenvectors in Eq. (19.22) indicate that the

wave-like temperature profiles in up and down layers are motionless with a constant
phase difference of π − α or α. To make the wave-like temperature profiles move,
we give the system a reference velocity v0, resulting in vu = v′

u + v0 and vd =
v′
d + v0, where v′

u and v′
d are original convective velocities. This operation does

not affect the essence of eigenvectors in Eq. (19.22), and only gives a reference
velocity v0 towave-like temperature profiles.We set the initial wave-like temperature
profiles in up and down layers to be the eigenvector described by Eq. (19.22b),
say, Tu = 40 cos (βx) + 323 K and Td = 40 cos (βx + α) + 323 K. We also take
on v0 = −0.5v′

u , so the wave-like temperature profiles in up and down layers still
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maintain a constant phase difference ofα butwith leftwardmotion. The trajectories of
Max(Tu) andMax(Td ) are presented in Fig. 19.3c. Clearly, negative thermal transport
occurs in up layer.

These two cases are related to eigenvectors, indicating that negative thermal
transport occurs in one layer (say, up layer). However, thermal transport is still
positive if we regard up and down layers as a whole. We further explore the third
case, related to non-eigenvectors and their dynamics, to reveal negative thermal
transport in up and down layers. For this purpose, we set the initial wave-like
temperature profiles by adding the eigenvector described by Eq. (19.22b) with an
extra phase γ , say, ψ ′

− = [
1, ei(α+γ )

]ς
, yielding Tu = 40 cos (βx) + 323 K and

Td = 40 cos (βx + α + γ ) + 323 K. In this way, even if we do not give a reference
velocity to the system, the wave-like temperature profile still moves to reach the
eigenvector. One principle of the evolution route is to make the temperature profile
decay as slowly as possible. Therefore, the eigenvector ψ+ with a phase difference
of π − α described by Eq. (19.22a) becomes a key due to its large decay rate (say,
the ω+ of Eq. (19.20)). The evolution route should try to avoid ψ+ to survive longer.
When γ ∈ (0, π − 2α), negative thermal transport will not make the temperature
profile go through ψ+, but positive thermal transport will make the temperature pro-
file go through ψ+ twice. Therefore, the evolution route naturally chooses negative
thermal transport in both up and down layers to decay more slowly (Fig. 19.3d).
Nevertheless, the wave-like temperature profile remains motionless after reaching
the eigenvector, so negative thermal transport is no longer present. In other words,
negative thermal transport in both up and down layers is transient.

19.4 Experimental Suggestion

We also suggest experimental demonstration with a three-dimensional solid ring
structure (Fig. 19.4a), which can naturallymeet the requirement of periodic boundary
conditions.Up ring (withwidthau) anddown ring (withwidthad ) rotatewith opposite
angular velocities (�u and �d ), which are connected by a stationary intermediate
layer (with width ai ). The inner and outer radii of the ring structure are r1 and r2,
respectively. Like two dimensions, we track Max(Tu) and Max(Td ) on the interior
edge of the solid ring structure. The parametric settings for Fig. 19.4b–d are basically
the same as those for Fig. 19.3b–d, respectively. Therefore, the results are also similar.
Negative thermal transport occurs in the up ring of Fig. 19.4b, c and occurs in both
up and down rings of Fig. 19.4d. Three-dimensional and two-dimensional results
agree well with theoretical analyses, confirming the feasibility of negative thermal
transport in thermal conduction and advection.

Negative thermal transport may enlighten the inverse Doppler effect in thermal
conduction and advection. Since energy flow is generated from the energy source,
a detector with the opposite direction of energy flow is getting close to the energy
source. Positive thermal transport makes wave vector (regarded as a thermal signal)
follow the direction of energy flow. Therefore, the detector andwave vector directions



272 19 Theory for Negative Thermal Transport: Complex Thermal Conductivity

Fig. 19.4 Experimental suggestions with a three-dimensional solid ring structure. a Schematic
diagram with r1 = 80 mm, r2 = 82 mm. Other parameters are kept the same as those for
Fig. 19.3a. b �u = −�d = 0.063 rad/s. c �u = 0.006 rad/s and �d = −0.019 rad/s. d �u =
−�d = 0.013 rad/s. Adapted from Ref. [20]

are opposite, yielding frequency increment (the Doppler effect). However, negative
thermal transport leads to the same detector and wave vector directions. As a result,
the frequency decreases even though the detector gets close to the energy source
(the inverse Doppler effect). These results may also provide guidance to extend
transformation thermotics [29–31] to complex regime [32] and regulate thermal
imaging [33–39]. Other thermal systems, such as those with periodic structures [40–
43], are also good candidates to explore negative thermal transport. Nevertheless,
here we reveal negative thermal transport in an open system with energy exchange,
so there is a difference from wave systems where no energy exchange is required
to realize negative refraction. Whether negative thermal transport can exist in an
isolated system remains studied.

19.5 Conclusion

In summary, we have established the thermal counterpart of a complex refractive
index by coining a complex thermal conductivity. As a result, a negative imaginary
thermal conductivity is just the thermal counterpart of a negative refractive index,
featuring the opposite directions of energy flow and wave vector in thermal con-
duction and advection. Negative thermal transport seems to violate causality, but it
can occur in an open system with heat exchange. We further reveal negative thermal
transport in three cases and provide three-dimensional experimental suggestions,
confirming its physical feasibility. These results provide a different perspective to
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cognize conduction and advection. They may enlighten outspread explorations of
negative thermal transport, such as the inverse Doppler effect in thermal conduction
and advection.

19.6 Exercise and Solution

Exercise

1. Explain the left half in Fig. 19.1b.

Solution

1. In the left half, the real part of a complex thermal conductivity is negative, so
the temperature field amplitude increases. This effect does not occur naturally
because the second law of thermodynamics is violated. However, it may happen
with external energy sources.
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Chapter 20
Theory for Thermal Wave
Nonreciprocity: Angular Momentum
Bias

Abstract In this chapter, we demonstrate that an angular momentum bias generated
by a volume force can also lead tomodal splitting in convection-diffusion systems but
with different features. We further reveal the thermal Zeeman effect by studying the
temperature field propagation in an angular-momentum-biased ring with three ports
(one for input and two for output). With an optimal volume force, temperature field
propagation is allowed at one output port but isolated at the other, and the rectification
coefficient can reach a maximum value of 1. The volume forces corresponding to
the rectification coefficient peaks can also be quantitatively predicted by scalar (i.e.,
temperature) interference. Compared with existing mechanisms for thermal nonre-
ciprocity, an angular momentum bias does not require temperature-dependent and
phase-change materials, which has an advantage in wide-temperature-range appli-
cability. These results may provide insights into thermal stabilization and thermal
topology. The related mechanism is also universal for other convection-diffusion
systems such as mass transport, chemical mixing, and colloid aggregation.

Keywords Thermal wave nonreciprocity · Angular momentum bias · Scalar
interference

20.1 Opening Remarks

Nonreciprocity refers to asymmetric propagation in opposite directions, which has
attracted broad interest inwave systems [1, 2]. A common approach to nonreciprocity
is based on the modal splitting induced by an angular momentum bias. For example,
magneto-optical media can realize electromagnetic nonreciprocity based on the elec-
tronic Zeeman effect. Inspired by the electronic Zeeman effect, the acoustic Zeeman
effect was also proposed to obtain acoustic nonreciprocity with air circulation [3].
The origin of an angular momentum bias is various, which can be attributed to cir-
cular motions [3, 4], magnetic fields [5, 6], or spatiotemporal modulations [7–10].
However, the related mechanism is confronted with many challenges in convection-
diffusion systems.On the one hand, it is unknownhow to apply an angularmomentum
bias in convection-diffusion systems. On the other hand, convection-diffusion sys-
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tems have many crucial differences fromwave systems, which are discussed in detail
when exhibiting our results.

Macroscopic thermal transport is a typical convection-diffusion system where
breaking reciprocity is highly expected and widely explored [11]. Reciprocity gen-
erally refers to a physical quantity having the same properties in different directions.
For thermal transport, the physical quantity can be heat flux, temperature ampli-
tude, etc. Thermal nonreciprocity can be realized with temperature-dependent (i.e.,
nonlinear) or phase-change materials [12–14], but the strong temperature depen-
dence restricts its wide-temperature-range applicability. Moreover, spatiotemporal
modulations can also help achieve thermal nonreciprocity [15, 16], but thermal con-
ductivities and mass densities require complicated and dynamic control. Therefore,
it remains difficult to realize thermal nonreciprocity with linear, wide-temperature-
range applicable, and easy-to-control materials.

Inspired by the electronic and acoustic Zeeman effects in wave systems [3–10],
we introduce the thermal Zeeman effect with an angular momentum bias generated
by a volume force (Fig. 20.1a, b). Here, a volume force is exerted on all fluid particles
and is proportional to the mass of the fluid in that volume, such as the forces exerted
on fluids in a gravitational field and ferrofluids in a magnetic field. We then study
the temperature propagation in a three-port ring to achieve thermal nonreciprocity
and isolation (Fig. 20.1c). Here, temperature propagation refers to the propagation
of a periodic temperature profile [17–25], which can also be regarded as a tempera-
ture fluctuation. Scalar (i.e., temperature) interference is crucial to explain thermal
nonreciprocity, which quantitatively predicts the rectification coefficient peaks in
simulations. The present scheme is free from nonlinear and phase-change materials,
thus applying to a wide temperature range. Moreover, complicated parameter control
is also unnecessary, making it feasible. Following the idea that acoustic topology can
be achieved by arranging three-port rings in a graphene-like array [26–31], we may
also realize thermal topology with the proposed mechanism of thermal nonreciproc-
ity (Fig. 20.1d).

20.2 Thermal Zeeman Effect

A thermal convection-diffusion process is dominated by ρC∂T/∂t + ∇ ·
(−κ∇T + ρCvT ) = 0, where ρ, C , κ , and v are the mass density, heat capacity,
thermal conductivity, and convective velocity of a fluid, respectively [32]. T and
t represent absolute temperature and time, respectively. Without loss of generality,
we discuss a steady incompressible creeping flow [33–36] driven by a linear pres-
sure field along the x axis. A convective velocity v (y) has a quadratic distribution
along the vertical direction [37]. We consider a small vertical height h and discuss
an average convective velocity v = −h2 (∇P − f ) / (12μ), whereμ is the dynamic
viscosity of the fluid, P denotes pressure, and f is volume force [37]. Inwhat follows,
we also discuss the average values of velocities, temperatures, and heat fluxes.
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Fig. 20.1 The thermal Zeeman effect. a Schematic diagram of modal splitting. b Splitting of the
real part of frequency as a function of volume force. c Angular-momentum-biased ring exhibiting
thermal nonreciprocity and isolation. d Schematic diagram of thermal topology. Adapted from
Ref. [38]
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We then consider a periodic temperature profile T = A cos (βx − ωt) + T0,
where A, β, ω, and T0 are temperature amplitude, wave number, circular frequency,
and reference temperature, respectively. In the absence of a volume force f , a pres-
sure field along +x (or −x) generates an average convective velocity v0 (or −v0),
see the upper inset of Fig. 20.1a. Therefore, circular frequencies are the same, i.e.,
ω0 = βv0 − iβ2D with thermal diffusivity D = κ/ (ρC). Re (ω0) represents circu-
lar frequency and −Im (ω0) denotes temporal decay rate. When there is a volume
force f along +x , a pressure field along +x (or −x) generates an average convec-
tive velocity v+ (or v−), see the lower inset of Fig. 20.1a. Circular frequencies are
no longer the same but split into

ω± = βv± − iβ2D, (20.1)

with v± = v0 ± h2 f/ (12μ). The difference between convection-diffusion systems
and wave systems is reflected in the imaginary part of Eq. (20.1). Wave systems
are generally Hermitian with energy conservation, so circular frequencies are real
numbers without loss [3]. However, convection-diffusion systems are non-Hermitian
with loss [19], so circular frequencies become complex.

For intuitive understanding, we can imagine periodic conditions on the left and
right boundaries in Fig. 20.1a and regard the +x direction as the anticlockwise
azimuthal direction. An angular velocity V = er × v/r0 and an angular volume
force F = er × f /r0 are introduced, where er is the radial unit vector and r0 is an
average radius. The ring allows only discrete wave numbers, i.e., β = N/r0 where
N is a positive integer [19]. The frequency splitting described by Eq. (20.1) can
then be understood by the Zeeman effect, which results from an angular momen-
tum bias generated by an angular volume force F, just like the energy splitting of
atoms due to a magnetic bias or the frequency splitting of sounds due to an angular
momentum bias [3].We also confirm the frequency splitting with finite-element sim-
ulations based on the template of Heat Transfer in Fluids in COMSOLMultiphysics.
Meshes are set as follows: the maximum element size is 5 × 10−4 m, the minimum
element size is 10−6 m, the maximum element growth rate is 1.1, the curvature factor
is 0.2, and the resolution of narrow regions is 1. The relative tolerance for a time-
dependent solver is 10−4. We use water parameters. We also set a pressure gradient
of |∇P| = 5 N/m3, a wave number of β = 100π m−1, and a height of h = 2 mm.
The real part of Eq. (20.1) then becomes ω± = π (5 ± f ) /30. The simulation result
agrees well with the theory (Fig. 20.1b).

20.3 Thermal Wave Nonreciprocity

We further consider a three-port ring to demonstrate thermal nonreciprocity with the
thermal Zeeman effect, as shown in Fig. 20.1c. We set port 1 as an input port and
ports 2 and 3 as output ports.We set a high pressure Ph at port 1 and two identical low
pressures Pl at ports 2 and 3. We also set a periodic temperature source at port 1, i.e.,
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T1 = A1 cos (−ωt) + T0. Ports 2 and3 are setwith open conditionswith no reflection.
For a zero volume force, two symmetrical velocities are obtained in the ring, i.e.,
v1→2 along the counterclockwise direction and v1→3 along the clockwise direction.
Therefore, temperature propagation at ports 2 and 3 are identical due to structural
symmetry. However, when a volume force along the counterclockwise direction is
applied, v1→2 increases but v1→3 decreases. Therefore, an angular momentum bias
is achieved in the ring, and the temperature propagation from port 1 to port 3 is
forbidden with an optimal volume force fopt .

We then perform finite-element simulations with time steps of 0.5 s to observe
thermal nonreciprocity. Two crucial parameters should be considered, i.e., the Peclet
number and the Reynolds number. Since we use water for simulations, the Peclet
number is Pe = 2800, demonstrating that convection is dominant. As a result, the
convection-diffusion equation mainly exhibits hyperbolic features that can support
the propagation of wave-like temperature profiles. The Reynolds number is Re = 4,
that approximately corresponds to a creeping or laminar flow [33–36], so the effects
of boundary layer behavior and singular perturbation can be ignored. In short terms,
the expected phenomena require (I) a large Peclet number for convection�diffusion
and (II) a small Reynolds number without turbulent flow.

The properties of temperature propagation can be reflected in temperature ampli-
tudes. A zero temperature amplitude indicates that temperature propagation is iso-
lated. The temperature and velocity profiles without a volume force are shown in the
first column of Fig. 20.2. Due to structural symmetry, the temperature amplitudes at
ports 2 and 3 are identical. However, it is crucially different when the volume force
reaches an optimal value fopt = 2 N/m3. The temperature amplitude at port 3 is dra-
matically reduced to zero, whereas that at port 2 still exists (see the second column
in Fig. 20.2). In other words, we achieve the isolation of temperature propagation at
port 3, and thermal nonreciprocity is maximized. We then continue to increase the
volume force to 6N/m3. Although nonreciprocity still exists (see the third column in
Fig. 20.2), the temperature amplitude at port 3 is no longer zero. The velocity profiles
with different volume forces are shown in Fig. 20.2g–i. The velocities at three ports
are irrelevant to the volume force, but those in the ring are affected linearly to realize
an angular momentum bias.

After discussing temperature and velocity properties, we can explore
heat flux properties further. We independently study conductive fluxes and
convective fluxes for clarity. Temperature amplitudes decay spatially T =
Ae−αx cos (βx − ωt) + T0. Conductive fluxes are given by Jcond = −κ∂T/∂x =
κAe−αx [α cos (βx − ωt) + β sin (βx − ωt)], which are proportional to T . Convec-
tive fluxes are determined by Jconv = ρCvT , which are also proportional to T . There-
fore, heat flux properties are similar to temperature properties due to J ∝ T . Since
conductive fluxes are related to spatial derivation, we discuss heat fluxes very close
to ports 2 and 3 (with a 4-mm distance) to ensure accuracy. Finite-element simu-
lations are presented in Fig. 20.3. When the volume force is zero, the conductive
fluxes (or convective fluxes) at ports 2 and 3 are identical (see the first column of
Fig. 20.3). When an optimal volume force fopt = 2 N/m3 is applied, the conductive
flux vanishes at port 3 but still exists at port 2 (like an alternating conductive flux).
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Fig. 20.2 Temperature and velocity profiles. a–c Temperature profiles at 600s with volume
forces of 0, 2, and 6N/m3, respectively. d–f Average temperatures at ports 2 and 3 from 500
to 600s. g–i Steady velocity profiles. Arrows denote convective velocities. The fluid is water,
whose mass density, heat capacity, thermal conductivity, and dynamic viscosity are 1000 kg/m3,
4200 J kg−1 K−1, 0.6Wm−1 K−1, and 0.001Pa s, respectively. The structure sizes are r1 = 49mm,
r2 = 51 mm, h = r2 − r1 = 2 mm, and d = 49 mm. Other parameters: Ph = 1 Pa, Pl = 0 Pa, and
T1 = 40 cos (−π t/10) + 323 K. Adapted from Ref. [38]

Therefore, the isolation of conductive fluxes is achieved. Although the convective
flux at port 3 is nonzero, it does not vary temporally. The convective flux at port 2 still
varies periodically (see the second column of Fig. 20.3). When the volume force is
6N/m3, conductive and convective fluxes are also nonreciprocal (see the last column
of Fig. 20.3).

20.4 Scalar Interference

We further discuss thermal nonreciprocity quantitatively, and six key positions 	1-
	6 are labeled in Fig. 20.4a. We define two transmission coefficients as R1−2 =
A2/A1 and R1−3 = A3/A1, where A1, A2, and A3 are the temperature amplitudes
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Fig. 20.3 Heat flux profiles. a–c Conductive fluxes and d–f convective fluxes with volume forces
of 0, 2, and 6N/m3, respectively. Conductive fluxes have negative values due to direction changes.
Adapted from Ref. [38]

Fig. 20.4 Quantitative analyses of transmission coefficients and rectification coefficients. a
Schematic diagram showing six key positions 	1-	6. Transmission coefficient R, rectification
coefficient η, and convective velocity v as a function of volume force with (b1)–(b3) Ph = 1 Pa and
(c1)–(c3) Ph = 3 Pa. The circular frequencies of periodic temperature profiles are π/10 for (b1, c1)
and 2π/15 for (b2, c2). The N1 − f curves described by Eq. (20.2a) with (d1) Ph = 1 Pa and (d2)
Ph = 3 Pa. (d3) The N2 − f curves described by Eqs. (20.5a) and (20.5b). Adapted from Ref. [38]
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at ports 1, 2, and 3, respectively. We also define a rectification coefficient η as
(R1−2 − R1−3) / (R1−2 + R1−3). R and η as a function of f are shown in Fig. 20.4b1
with volume force steps of 0.1N/m3. R1−2 first increases, then decreases, and finally
varies quasiperiodically. R1−3 decreases initially, increases afterwards, and varies
quasiperiodically at last. R1−2 and R1−3 lead to an initial increase and a final decrease
in η, and ηmax = 1 appears at fopt = 2 N/m3, indicating the isolation of temperature
propagation at port 3. Although R1−2 and R1−3 ultimately varies quasiperiodically,
they are synchronous, so η still decreases. We also change the circular frequency to
2π/15 rad/s, and the transmission results are shown in Fig. 20.4b2. ηmax = 1 still
appears at fopt = 2 N/m3. We then explain two main phenomena quantitatively, i.e.,
the optimal volume force fopt and the final quasiperiodic variations of R1−2 and
R1−3. For clarity, we also plot the average convective velocities at positions 	1-	6

as a function of volume force in Fig. 20.4b3.
The optimal volume force fopt can be quantitatively predicted by scalar (i.e., tem-

perature) interference. Unlike the vector (say, electric or magnetic field) interference
in wave systems, scalar interference cannot be explained by the principle of vector
superposition. A key point to understanding scalar interference is the decay rate. Let
us take a visual example. Constructive interference means that a high temperature
meets another high temperature, but themixed temperature is not doubled and decays
as usual. Destructive interferencemeans a high temperaturemeets a low temperature,
and the mixed temperature decays immediately with a far larger decay rate.

We then use scalar interference to explain thermal nonreciprocity. The transmis-
sion at port 2 has only one route, i.e., 	1–	5–	2. However, the transmission at port
3 has two routes, i.e.,	1–	5–	6–	3 and	1–	4–	3. When two routes have a phase
difference of (2N1 − 1) π with N1 being an integer, destructive interference causes
the transmission at port 3 to reach a local minimum value. To achieve a global min-
imum transmission at port 3, the temperature amplitudes of routes 	1–	5–	6–	3

and 	1–	4–	3 should be comparable, which requires v	6 � v	4 (� means a little
greater than). These requirements can be summarized as

[−β
(
v	4

) + β
(
v	5

) + β
(
v	6

)]
π (r1 + r2) /3 = (2N1 − 1) π, (20.2a)

fopt � fv	4=v	6
= 3 (Ph − Pl)

2 (2πr2 + 9d)
, (20.2b)

where Eq. (20.2a) ensures destructive interference and Eq. (20.2b) ensures compara-
ble temperature amplitudes of routes	1–	5–	6–	3 and	1–	4–	3. The additional
requirement described byEq. (20.2b) also reflects the difference between convection-
diffusion systems and wave systems. Since wave systems are usually Hermitian
without loss, it does not require to consider wave amplitudes. However, convection-
diffusion systems are non-Hermitianwith loss [19], so temperature amplitudes should
be considered. The wave number β can be expressed as a function of convective
velocity v,

β (v) =
√

−2v2 + 2
√

v4 + 16ω2D2

4D
, (20.3)
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where the convective velocities at positions 	4, 	5, and 	6 are

v	4 = − h2

12μ

[
−3 (Ph − Pl)

2πr2 + 9d
+ f

]
, (20.4a)

v	5 = − h2

12μ

[
−3 (Ph − Pl)

2πr2 + 9d
− f

]
, (20.4b)

v	6 = h2

12μ
f. (20.4c)

For the results in Fig. 20.4b1, b2, we plot the corresponding N1 − f curves
described by Eq. (20.2a) in Fig. 20.4d1. The f corresponding to an integer N1 is
what we require. We can also derive fv	4=v	6

= 1.97 N/m3 according to Eq. (20.2b).
Therefore, theoretical predictions of the optimal volume force are fopt = 1.99 N/m3

(N1 = 3) for Fig. 20.4b1 and fopt = 2.08N/m3 (N1 = 3) for Fig. 20.4b2,which agree
well with f = 2 N/m3 found in simulations. Moreover, only N1 = 3 appears in sim-
ulations, and other values of N1 vanish. This is because the volume force interval
between two adjacent integers of N1, i.e., � f ≈ 0.1 N/m3 is too small to observe.

We then increase Ph to 3 Pa to observe the scalar interference at port 3, and R1−3

varies quasiperiodically near fv	4=v	6
(Fig. 20.4c1, c2).We take the three valley R1−3

in Fig. 20.4c1, or 20.4c2 as an example. The corresponding volume forces are 5.3,
6.3, and 7.3N/m3 for Fig. 20.4c1, and 5.7, 6.4, and 7.2N/m3 for Fig. 20.4(c2). The
theoretical predictions with Eq. (20.2a) are 5.28 (N1 = 2), 6.32 (N1 = 1), and 7.31
(N1 = 0) N/m3 for Fig. 20.4c1, and 5.67 (N1 = 2), 6.46 (N1 = 1), and 7.20 (N1 =
0)N/m3 for Fig. 20.4c2,which are clearly presented in Fig. 20.4d2.We can also derive
fv	4=v	6

= 5.91 N/m3 with Eq. (20.2b). Therefore, fopt = 6.32 N/m3 and fopt =
6.46 N/m3 correspond to the smallest transmissions in Fig. 20.4c1, c2, respectively.
Meanwhile, ηmax = 0.94 appears at f = 6.3 N/m3 in Fig. 20.4c1, and ηmax = 0.90
occurs at f = 6.4 N/m3 in Fig. 20.4c2. Therefore, the optimal volume force fopt
derived with Eqs. (20.2a) and (20.2b) is in good agreement with simulations.

The final quasiperiodic variations of R1−2 and R1−3 can be attributed to the dis-
crete modal of the ring [19]. We take the results in Fig. 20.4b1 as an example. The
final variations begin at approximately f = 8 N/m3, and the convective velocities at
positions 	4, 	5, and 	6 are along the counterclockwise direction. Therefore, fluids
flow counterclockwise in the ring with only a velocity difference. Since the ring
can only support discrete wave numbers [19], R1−2 and R1−3 exhibit quasiperiodic
variations with f . When f corresponds to an allowed (or forbidden) wave number
of the ring, transmission reaches a local maximum (or minimum) value. Therefore,
the volume force for a local maximum (or minimum) transmission should satisfy

[
β

(
v	4

) + β
(
v	5

) + β
(
v	6

)]
π (r1 + r2) /3 = 2N2π, (20.5a)

[
β

(
v	4

) + β
(
v	5

) + β
(
v	6

)]
π (r1 + r2) /3 = (2N2 − 1) π, (20.5b)

where N2 is a positive integer.
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We also compare theoretical predictions with finite-element simulations by tak-
ing the right three peaks of R1−2 and R1−3 in Fig. 20.4b1 as an example. Their
corresponding volume forces are 10.4, 12.6, and 16.3N/m3, respectively. The the-
oretical predictions given by Eq. (20.5a) are 10.47 (N2 = 5), 12.63 (N2 = 4), and
16.36 (N2 = 3) N/m3, respectively (Fig. 20.4d3). We also take the right three valleys
of R1−2 and R1−3 in Fig. 20.4b1 as another example. Their corresponding volume
forces are 11.5, 14.3, and 19.6N/m3, respectively. The theoretical predictions given
byEq. (20.5b) are 11.42 (N2 = 5), 14.21 (N2 = 4), and 19.39 (N2 = 3)N/m3, respec-
tively (see Fig. 20.4d3). Therefore, the simulations still match with the theoretical
predictions with Eqs. (20.5a) and (20.5b).

We finally provide some experimental suggestions for completeness. A periodic
temperature can be realized by alternately using a ceramic heater and a semicon-
ductor cooler. Ferrofluids are a good candidate to realize a volume force, generally
composed of ferromagnetic nanoparticles with a 10-nm diameter dispersed in carrier
fluids [39]. Here, we may use aqueous ferrofluids containing Fe3O4 nanoparticles.
Compared with the thermal conductivity and viscosity of water, those of aqueous
ferrofluids are slightly enhanced [40] but still approximately applicable. Then we
can apply an external magnetic field to guide ferromagnetic nanoparticles to move
counterclockwise so that a volume force can be effectively realized. An infrared
camera can detect the temperatures at ports 2 and 3. Therefore, it should be possible
to observe thermal nonreciprocity experimentally.

20.5 Conclusion

We reveal thermal nonreciprocity based on the thermal Zeeman effect, referring to
the modal splitting with an angular momentum bias generated by a volume force.
The maximum rectification coefficient can reach 1, so the isolation of temperature
propagation is achieved at one output port. Scalar interference can quantitatively
explain these results, whose key lies in the decay rate. The proposed mechanism
does not require nonlinear and phase-change materials, with a wide range of appli-
cability. Thermal nonreciprocity may have not only potential applications to reduce
thermal fluctuation and realize thermal stabilization but also open new directions in
thermalmetamaterials [41] such as topological thermotics, as schematically shown in
Fig. 20.1d.Moreover, an angularmomentumbias is also general for other convection-
diffusion systems such as mass transport [42, 43], chemical mixing [44], and colloid
aggregation [45, 46] where mass diffusivity and concentration correspond to thermal
diffusivity and temperature in thermal transport, respectively.
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20.6 Exercise and Solution

Exercise

1. Derive Eqs. (20.2)–(20.4).

Solution

1. We rewrite the periodic temperature profile T = Ae−αx cos (βx − ωt) + T0 as
T = Aei(β

′x−ωt) + T0 with β ′ = β + iα. By substituting the temperature solution
into the convection-diffusion equation, we can derive

− iρCω + κ (β + iα)2 + iρCv (β + iα) = 0. (20.6)

Since Eq. (20.6) is always valid, we can calculate the real part and imaginary part
independently,

κβ2 − κα2 − ρCvα = 0, (20.7a)

ρCω − 2καβ − ρCvβ = 0. (20.7b)

By solving Eqs. (20.7a) and (20.7b), we can obtain

β (v) =
√

−2v2 + 2
√

v4 + 16ω2D2

4D
. (20.8)

The convective velocities at positions 	4, 	5, and 	6 can be calculated as

v	4 = − h2

12μ

(−|∇P	4 | f =0 + f
)
, (20.9a)

v	5 = − h2

12μ

(−|∇P	5 | f =0 − f
)
, (20.9b)

v	6 = − h2

12μ

(−|∇P	6 | f =0 − f
)
, (20.9c)

where we suppose f < |∇P	4 | f =0. If f > |∇P	4 | f =0, the minus sign on the
right side of Eq. (20.9a) should become a plus sign. We then require to calculate
|∇P	4 | f =0, |∇P	5 | f =0, and |∇P	6 | f =0.When f = 0,we canderive |∇P	4 | f =0 =
|∇P	5 | f =0 and |∇P	6 | f =0 = 0 due to structural symmetry. We then define the
pressure at the joint between port 1 and the ring as Pm and consider the route 	1–
	4–	3. Convective velocities v	1 ( f = 0) and v	4 ( f = 0) can then be expressed
as

v	1 ( f = 0) = h2

12μ

Ph − Pm
d

, (20.10a)
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v	4 ( f = 0) = h2

12μ

Pm − Pl
d + 2πr2/3

. (20.10b)

Velocity conservation gives v	1 ( f = 0) = 2v	4 ( f = 0), so we can express Pm
as

Pm = (2πr2 + 3d) Ph + 6dPl
2πr2 + 9d

. (20.11)

We can finally derive

|∇P	4 | f =0 = |∇P	5 | f =0 = Pm − Pl
d + 2πr2/3

= 3 (Ph − Pl)

2πr2 + 9d
, (20.12)

fv	4=v	6
= 1

2
|∇P	4 | f =0 = 3 (Ph − Pl)

2 (2πr2 + 9d)
. (20.13)
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Chapter 21
Theory for Thermal Geometric Phases:
Exceptional Point Encirclement

Abstract In this chapter, we experimentally demonstrate that the geometric phase
can also emerge in a macroscopic thermal convection-conduction system. Following
Li et al. [Science 364, 170–173 (2019)], we study two moving rings with equal-
but-opposite velocities, joined together by a stationary intermediate layer. We first
confirm an exceptional point of velocity that separates a stationary temperature pro-
file and a moving one. We then investigate a cyclic path of time-varying velocity
containing the exceptional point, and an extra phase difference of π appears (say,
the geometric phase). These results broaden the scope of the geometric phase and
provide insights into the thermal topology.

Keywords Thermal geometric phase · Exceptional point encirclement ·
Non-hermitian system

21.1 Opening Remarks

The Berry phase [1] was found in a quantum mechanical system, and now it has
become a fundamental concept in various systems, including the classical one [2].
The Berry phase has significant impacts on electronic properties [3] and phononic
properties [4, 5]. In addition to waves, diffusion is a widespread method for transfer-
ring energy or mass, such as heat conduction and the Brownian motion of classical
particles. Geometric phase was also revealed in diffusion systems [6–11], which led
to novel phenomena such as heat pumping [12] and geometric heat flux [13].

However, the related physics has not yet been established in amacroscopic thermal
convection-conduction system,mainly resulting from the difficulty of defining phase.
Inspired by pioneering studies, we introduce phase-related properties with thermal
convection [14–21], and study two moving rings with equal-but-opposite velocities,
joined together by a stationary intermediate layer. This macroscopic system is differ-
ent from the microscopic one where phonon is the carrier of heat transfer [22–24],
but it can also be effectively described by a non-Hermitian Hamiltonian [25–28].
Here, the Hamiltonian can be understood as a matrix, and non-Hermitian means that
the conjugate transpose is not the matrix itself. As a result, an exceptional point of
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velocity appears, similar to optics and photonics [29, 30]. The exceptional point is
related to anti-parity-time symmetry [15, 16], which is also widely explored in other
systems [31–33]. The exceptional point further leads to the geometric phase for a
cyclic path of time-varying velocity. If the cyclic path contains the exceptional point,
a moving temperature profile can accumulate an extra phase difference of π (the
geometric phase).

As revealed by a recent study [35] which provides an alternativemethod to explain
the findings reported in Ref. [15], the competition between convection and conduc-
tion is the key to the exceptional point. Therefore, the two moving rings are the
protagonists, and the intermediate layer plays a supporting role in allowing the com-
petition.

21.2 Exceptional Point

As shown in Fig. 21.1a, we investigate two moving rings with equal-but-opposite
velocities (+u and−u), joined together by a stationary intermediate layer with inner
radius r1 and outer radius r2. For the convenience of theoretical discussion, we unfold
the three-dimensional model along y − z plane, and expand the interior surface along
x axis [with length l = 2πr1, see Fig. 21.1b, where the left and right ends are applied
with periodic boundary condition. This theoretical simplification does not affect
the final conclusions, just for discussion convenience. We denote the temperature
distributions in the upper ring, lower ring, and intermediate layer as T1, T2, and Ti ,
respectively. The macroscopic thermal convection-conduction process is dominated
by ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂T1
∂t = D1

(
∂2T1
∂x2 + ∂2T1

∂z2

)
− u ∂T1

∂x , wi/2 ≤ z ≤ wi/2 + w

∂Ti
∂t = Di

(
∂2Ti
∂x2 + ∂2Ti

∂z2

)
, −wi/2 < z < wi/2

∂T2
∂t = D2

(
∂2T2
∂x2 + ∂2T2

∂z2

)
+ u ∂T2

∂x , −wi/2 − w ≤ z ≤ −wi/2

, (21.1)

where D1 (= D + d), D2 (= D − d), and Di are the diffusivities of the upper ring,
lower ring, and intermediate layer, respectively. The two moving rings and the inter-
mediate layer thicknesses are denoted as w and wi , respectively. For generality, we
extend Li et al.’s theory [15] by setting the two moving rings with different diffu-
sivities. Meanwhile, we follow the Hamiltonian description of Li et al.’s theory, and
one can also use a dimensionless description of Zhao et al.’s theory [35].

As a quasi one-dimensional model (l � w), it is reasonable to suppose that the
temperature variance along z axis is negligible (∂2T/∂z2 = 0). The intermediate
layer allows energy exchange between the two moving rings, which can be regarded
as two source terms. Therefore, the middle equation in Eq. (21.1) is replaced with
two source terms, i.e., s1 for the upper ring and s2 for the lower ring. We can then
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Fig. 21.1 Basic properties of the macroscopic thermal convection-conduction system. a Three-
dimensional model. b Simplified two-dimensional model. cDecay rate (-Imω) and frequency (Reω)
as a function of velocity u. Parameters: w = 2.5 mm, wi = 0.5 mm, r1 = 50 mm, r2 = 52 mm,
D = 10−5 m2/s, ρc = 106 J m−3 K−1, and κi = 0.1 Wm−1 K−1. These parameters lead to uEP =
4 mm/s. The velocity of ψ1 and ψ ′

1 is 2
√
2 mm/s. d Five representative eigenstates. The phase

difference of ψ1 (or ψ ′
1) is π/4 (or 3π/4), and that of ψ2, ψ3, and ψ ′

3 is π/2. The left and
right temperature profiles of each eigenstate correspond to the lower and upper rings, respectively.
Adapted from Ref. [34]

obtain
⎧
⎪⎨

⎪⎩

∂T1
∂t = D1

∂2T1
∂x2 − u ∂T1

∂x + s1
ρc , wi/2 ≤ z ≤ wi/2 + w

∂T2
∂t = D2

∂2T2
∂x2 + u ∂T2

∂x + s2
ρc , −wi/2 − w ≤ z ≤ −wi/2

. (21.2)

We take the same density and heat capacity product of the upper and lower rings,
i.e., ρc.

The boundary conditions are given by the continuities of temperature and heat
flux, ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T1 = Ti , z = wi/2
T2 = Ti , z = −wi/2

j1 = −κ1
∂T1
∂z = −κi

∂Ti
∂z , z = wi/2

j2 = κ2
∂T2
∂z = κi

∂Ti
∂z , z = −wi/2

, (21.3)
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where j1 and j2 are the heat fluxes from the intermediate layer to the upper and lower
rings, respectively.κ1,κ2, andκi are the thermal conductivities of the upper ring, lower
ring, and intermediate layer, respectively. Since we have neglected the higher-order
terms

(
∂2T/∂z2 = 0

)
,Ti is linear along z axis, thus yielding ∂Ti/∂z = (T1 − T2) /wi .

Thewidth of the twomoving rings (w) is small enough, sowe can assume that the two
sources (s1 and s2) are uniformly distributed along the ring width, i.e., s1 = j1/w =
−κi (T1 − T2)/ (wwi ) and s2 = j2/w = −κi (T2 − T1)/ (wwi ). Equation (21.2) can
then be reduced to

⎧
⎨

⎩

∂T1
∂t = D1

∂2T1
∂x2 − u ∂T1

∂x + h (T2 − T1) , wi/2 ≤ z ≤ wi/2 + w

∂T2
∂t = D2

∂2T2
∂x2 + u ∂T2

∂x + h (T1 − T2) , −wi/2 − w ≤ z ≤ −wi/2
, (21.4)

where h = κi/(ρcwwi ). Since h describes the heat exchange rate between the two
moving rings, which is vertical to the velocity direction, it is independent of the
velocity.

We use plane-wave solutions to introduce phase-related properties,

{
T1 = A1ei(kx−ωt) + T0
T2 = A2ei(kx−ωt) + T0

, (21.5)

where A1 (or A2) is the temperature amplitude in the upper (or lower) ring, k is wave
number, ω is complex frequency, and T0 is reference temperature which is set to zero
for brevity. Only the real parts of Eq. (21.5) make sense. By substituting Eq. (21.5)
into Eq. (21.4), we can obtain

{
ωA1 = −ik2D1A1 + kuA1 + ih (A2 − A1) , wi/2 ≤ z ≤ wi/2 + w

ωA2 = −ik2D2A2 − kuA2 + ih (A1 − A2) , −wi/2 − w ≤ z ≤ −wi/2
.

(21.6)
Equation (21.6) can also be expressed as

Ĥ|ψ〉 = ω|ψ〉, (21.7)

where |ψ〉 = [A1, A2]τ is eigenstate, and τ denotes transpose. The Hamiltonian Ĥ
reads

Ĥ =
[−i

(
k2D1 + h

) + ku ih
ih −i

(
k2D2 + h

) − ku

]

. (21.8)

Equation (21.8) is a general expression. Here, we discuss the case of d = 0 (i.e.,
D1 = D2 = D), and Eq. (21.8) becomes

Ĥ =
[−i

(
k2D + h

) + ku ih
ih −i

(
k2D + h

) − ku

]

, (21.9)

where D = κ1/ (ρc) = κ2/ (ρc).
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The eigenvalues of the Hamiltonian (Eq. (21.9)) take on the form

ω± = −i
[(
k2D + h

) ±
√
h2 − k2u2

]
, (21.10)

which are complex numbers. The system exhibits two different properties as u varies.
The point uEP = h/k determines the transition of two different properties, thus serv-
ing as an exceptional point. As required by the periodic boundary condition, wave
numbers can only take on discrete values, i.e., k = 2πn/ l = nr−1

1 with n being pos-
itive integers. We discuss the fundamental modes with n = 1 because their decay
rates are the lowest.

In the region u < uEP, the complex frequencies (ω±) exhibit two different
branches with purely imaginary values (Fig. 21.1c), indicating that the waves
described by Eq. (21.5) only decay but do not propagate. The difference between
ω+ and ω− is the decay rate: the decay rate of ω− is smaller than that of ω+. There-
fore, ω+ is also observable, but it decays much faster than ω−. The corresponding
eigenstates are

|ψ+〉 = [
1, ei(π−α)

]τ
, |ψ−〉 = [

1, eiα
]τ

, (21.11)

where α = sin−1 (ku/h). Therefore, the temperature profiles of the two moving
rings maintain a constant phase difference (π − α for ω+ and α for ω−) and decay
motionlessly (see ψ1 and ψ ′

1 in Fig. 21.1d).
When the velocity reaches the exceptional point, the difference between ω+ and

ω− disappears (Fig. 21.1c). The two eigenstates have the same phase difference of
π/2 and decay motionlessly (see ψ2 in Fig. 21.1d).

When u > uEP, the complex frequencies (ω±) take on real components
(Fig. 21.1c), indicating that the waves described by Eq. (21.5) not only decay but
also propagate. The corresponding eigenstates become

|ψ+〉 = [
e−δ, eiπ/2−2δ

]τ
, |ψ−〉 = [

e−δ, eiπ/2
]τ

, (21.12)

where δ = cosh−1 (ku/h). Therefore, the two eigenstates maintain the same phase
difference of π/2 but decay with motion. The moving direction follows the ring with
a larger temperature amplitude (see ψ3 and ψ ′

3 in Fig. 21.1d).
We use COMSOLMultiphysics to perform finite-element simulations based on a

three-dimensional model (Fig. 21.2). We define T1 and T2 as the temperature distri-
butions along the upper and lower interior edges of the two moving rings. We track
the evolutions of temperature profile by followingmaximum-temperature points, i.e.,
Max(T1) and Max(T2). The initial states are set as the three eigenstates ψ0, ψ

′
0, and

ψ2 (Fig. 21.2a–c).
If we set the velocity to 2

√
2 mm/s (< uEP), the initial state moves to a certain

position and remains stationary thereafter (Fig. 21.2d–f). All three final states (with
α ≈ π/4) are the eigenstate corresponding to eigenvalueω− (i.e.,ψ1, see Fig. 21.2g–
i). This phenomenon occurs because of the non-orthogonality of the eigenstates at
different branches [25]. Meanwhile, the decay rate at the upper branch is much
higher than that at the lower branch, so the eigenstate at the lower branch becomes
the observable one associated with eigenvalue ω−.
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Fig. 21.2 Evolutions of the temperature profiles. Two types of color maps denote temperature
(a–c, g–i and m–o) and time (d–f and j–l), respectively. The temperature scale is the same as
that in Fig. 21.1. The initial states are presented in a–c with the form in the Cartesian coordinates
as T1 = Ay/

√
x2 + y2 + B and T2 = Ay/

√
x2 + y2 + B for ψ0, T1 = Ay/

√
x2 + y2 + B and

T2 = −Ay/
√
x2 + y2 + B for ψ ′

0, T1 = Ay/
√
x2 + y2 + B and T2 = −Ax/

√
x2 + y2 + B for

ψ2, and Ti = B, where A = 100 and B = 400. The trajectories of Max(T1) and Max(T2) along
interior edges are shown in d–i with u = 2

√
2 mm/s and (j)-(o) with u = 6 mm/s. The parameters

are the same as those for Fig. 21.1. The meshing parameters are as follows. The maximum and
minimum element sizes are 5 × 10−4 and 10−5 m, respectively. The maximum element growth rate
is 1.3, the curvature factor is 0.2, and the resolution of narrow regions is 1. Adapted from Ref. [34]
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Moreover, we also care about how these initial states evolve to final states (i.e.,
evolution routes). One principle is that the evolution routes should try to keep away
from the eigenstate corresponding to eigenvalue ω+ (i.e., |ψ+〉, with a much higher
decay rate) to survive longer. For this purpose, themoving direction of themaximum-
temperature point in Fig. 21.2f is even against the background velocities of respective
moving rings.

If we set the velocity to 6mm/s (> uEP), the trajectories of Max(T1) and Max(T2)
are always moving because the eigenvalue has a real component (Fig. 21.2j–l). The
corresponding states at 70 s are presented in Fig. 21.2m–o. Here, the duration for
u = 6 mm/s (70 s) is shorter than that for u = 2

√
2 mm/s (160s) because the decay

rate for u = 6 mm/s is higher than that for u = 2
√
2 mm/s.

The results presented in Fig. 21.2d–i can help us draw some conclusions.When the
velocity is smaller than the exceptional point, the final eigenstate prefers to stay at the
lower branch corresponding to eigenvalueω−. The evolution route should keep away
from the eigenstate corresponding to eigenvalue ω+. The evolution routes should
ensure that the temperature profiles decay as slowly as possible before reaching the
final states.

21.3 Thermal Geometric Phase

After understanding the exceptional point and evolution routes, we can reveal the
geometric phase in our system. The Hamiltonian (Eq. (21.9)) is a function of mul-
tiple parameters. We resort to a time-varying velocity u (t) which is experimentally
controllable, instead of other parameters such as the thickness of the intermediate
layer. Although the Hamiltonian Ĥ is not Hermitian, we can check that

Ĥ
†|ψ±〉 = ω±|ψ±〉, (21.13)

where Ĥ
†
is the Hermitian transpose of Ĥ . |ψ±〉 and ω± are the complex conjugates

of |ψ±〉 and ω±, respectively. The eigenstates satisfy

〈
ψ±|ψ∓

〉
= 0. (21.14)

〈
ψ±|ψ∓

〉
denotes the complex inner product of the vectors |ψ±〉 and |ψ∓〉. As

discussed in Fig. 21.2, the final states always go back to the eigenstate associated
with eigenvalue ω− (i.e., the initial state) after experiencing a cyclic evolution, thus
ensuring an adiabatic process. Therefore, we can write down the complex geometric
phase under an adiabatic approximation as

ϕ± = i
∫

〈
ψ±(u)|dψ±(u)

〉

〈
ψ±(u)|ψ±(u)

〉 , (21.15)
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Fig. 21.3 Finite-element simulations of the geometric phase. The parameters are the same as those
for Fig. 21.1. a Five evolution routes. b Initial state. The trajectories of Max(T1) and Max(T2)
corresponding to the five evolution routes are presented in c, d, g, h, and i. The final states are
presented in e, f, j, k, and l, respectively. Adapted from Ref. [34]

which is in accordance with the results of non-Hermitian quantum systems [36]. We

find that
〈
ψ±(u)|ψ±(u)

〉
= 0 at the exceptional point because the two eigenstates

coalesce. Therefore, the exceptional point is a pole in the complex integral. We can
rewrite Eq. (21.15) in a closed loop around the exceptional point as [37]

ϕ± = i

2

∮

d ln
〈
ψ±(u)|ψ±(u)

〉
. (21.16)

According to the residue theorem, we know that ϕ± = π or−π , and the sign depends
on the direction of the closed loop. If the evolution route does not contain the excep-
tional point, the geometric phase in a cyclic evolution equals zero.

We also perform finite-element simulations to observe the geometric phase. For
this purpose, we apply a cyclic path of time-varying velocity, which is governed
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by the Hamiltonian Ĥ [u (t)]. Note that a fiduciary marker on the surface of the
ring would not necessarily return to its original location after the cyclic evolution
of velocity. We explore five different paths of velocity, as shown in Fig. 21.3a. The
initial velocity is u = 0 mm/s, and the initial state is set to the eigenstate associated
with eigenvalue ω− (i.e., ψ0, see Fig. 21.3b).

In Route 1 or 2, the eigenvalue is purely imaginary because the velocity is smaller
than the exceptional point, indicating no extra phase difference accumulated. As a
result, the two evolution routes bring the final state back to the initial state exactly
(see Fig. 21.3c, d or Fig. 21.3e, f).

However, the situation is different when the cyclic evolution of velocity contains
the exceptional point (Fig. 21.3g, h). As the velocity increases and exceeds the excep-
tional point, the eigenvalue obtains a real component, indicating that an extra phase
difference accumulates. This property means that the initial state moves smoothly
fromone branch to another.When the state goes through the eigenstate corresponding
to another eigenvalue ω+ (i.e., ψ ′

0), the state cannot return, as discussed in Fig. 21.2.
The phase difference then continuously increases to reach a different place with
eigenvalue ω− (i.e., ψ0). Therefore, the temperature profile stops at a different posi-
tion with a phase difference of π compared with the initial position (Fig. 21.3j, k).
This phenomenon is evidence of the geometric phase.

Finally,we repeatRoute4 twice (indicated asRoute5). Since the state goes through
the eigenstate corresponding to eigenvalueω+ (i.e.,ψ ′

0) twice,Route 5brings the state
back to the initial state without any global phase change (Fig. 21.3i, l).

Although the macroscopic thermal convection-conduction system can also be
effectively described by a non-Hermitian Hamiltonian (Eq. (21.9)), its properties
are distinct from wave systems. In the case of non-Hermitian wave systems, the
cyclic evolution around the exceptional point may interchange the instantaneous
eigenvectors [30]. However, the present eigenstates at the upper branch (especially
with small velocities) are metastable because of their large decay rates. Therefore,
they do not dominate the end of evolutions. In contrast, these metastable eigenstates
are more similar to a “wall”, which should be avoided when the velocity is smaller
than the exceptional point, thus determining the evolution route and final position.
When the velocity is larger than the exceptional point, it provides an opportunity
to cross the eigenstate corresponding to the eigenvalue ω+, once to accumulate an
extra phase difference of π . Therefore, the geometric property is reflected on |ψ+〉
to some extent.

We also conduct experiments to validate the theoretical analyses and finite-
element simulations. The different views of the experimental setup are shown in
Fig. 21.4a. The aluminum frames are wrapped with black tape to avoid the environ-
mental reflection of thermal radiation and ensure the accuracy of temperature profiles.
We also use small woodblocks (with thermal conductivity of 0.1Wm−1 K−1) to sep-
arate the rings and aluminum frames (with thermal conductivity of 218Wm−1 K−1)
to reduce thermal dissipation.With these preparations, the environmental dissipation
is small enough to be neglected. The two rings are driven by two motors with differ-
ent rotation directions, as shown by blue arrows. The two motors are controlled by
one circuit, thus ensuring the equal-but-opposite rotation speed. The slide rheostat
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Fig. 21.4 Experimental demonstration of the geometric phase. a Experimental setup. The sizes
of the two moving rings are r1 = 60, r2 = 65, and w = 2 mm, respectively. The rings are made
of polycaprolactam with D = 7.3 × 10−7 m2/s and ρc = 1.8 × 106 J m−3 K−1. The intermediate
layer is 1-mm-thick grease with κi = 0.1 W m−1 K−1. These parameters cause the exceptional
value of rotation speed (�EP) to be approximately 0.25 rmp. b and c Initial and final states with
rotation speed not crossing the exceptional point. d and e Initial and final states with the rotation
speed crossing the exceptional point. Adapted from Ref. [34]
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Fig. 21.5 Detailed
information of Fig. 21.4. In a
and c, dashed lines represent
the exceptional value of
rotation speed
(�EP = 0.25 rmp), and solid
lines exhibit the cyclic
evolutions of rotation speed
(�). The measured and
simulated results are
presented in b and d. The
phase difference is ϕ = 0 for
the cyclic evolution shown in
a, whereas it is ϕ = π for the
cyclic evolution shown in c.
Adapted from Ref. [34]

can manually adjust the rotation speed. We use the Flir E60 infrared camera to detect
temperature profiles and find maximum temperatures in a particular region.

We use a copper plate with one end heated to generate the initial temperature
profiles of the two moving rings (see Fig. 21.4b, d). We quickly remove the copper
plate and push the two rings together to observe the evolution. We further tune the
rotation speed (�) from zero to a small value (∼0.1 rpm) or a large one (∼1 rpm) and
then set it back to zero. If the rotation speed does not cross the exceptional point, the
final state (Fig. 21.4c) is precisely the same as the initial state (Fig. 21.4b). However,
if the rotation speed crosses the exceptional point, the final state (Fig. 21.4e) exhibits
a phase difference of π compared with the initial position (Fig. 21.4d).

We also analyze the experimental results and compare them with finite-element
simulations. For this purpose, we track the maximum temperature of the front ring.
The initial position is set as a rotation angle of 0, and ϕ is the rotation angle of the
maximum temperature of the front ring, which denotes the geometric phase of our
interest.When applying a cyclic evolution avoiding the exceptional point (Fig. 21.5a),
the final state goes back to the initial state exactly, resulting in ϕ = 0 (Fig. 21.5b).
When applying a cyclic evolution containing the exceptional point (Fig. 21.5c), the
final state has a geometric phase compared with the initial state, resulting in ϕ = π

(Fig. 21.5d).
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21.4 Conclusion

Besides various wave systems, macroscopic thermal convection-conduction systems
(essentially non-Hermitian systems) can also exhibit the geometric phase by encir-
cling an exceptional point. More relevant properties such as topological invariance
(or winding number) in thermotics can be further explored with a similar method
applied in non-Hermitian systems [38–42]. These results may also provide insights
into heat regulation with exceptional points.

21.5 Exercise and Solution

Exercise

1. Calculate the eigenvalues and eigenvectors of Eq. (21.8).

Solution

1. The eigenvalues of Eq. (21.8) can be expressed as

ω± = −i
[(
k2D + h

) ±
√
h2 + k4d2 − k2u2 + 2k3dui

]
, (21.17)

and the corresponding eigenstates are

|ψ±〉 =
[

1,
−h

k2d + kui ± √
h2 + k4d2 − k2u2 + 2k3dui

]τ

. (21.18)
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Chapter 22
Theory for Thermal Edge States:
Graphene-Like Convective Lattice

Abstract In this chapter, we reveal that edge states are not necessarily limited to
wave systems but can also exist in convection-diffusion systems that are essentially
different from wave systems. For this purpose, we study heat transfer in a graphene-
like (or honeycomb) lattice to demonstrate thermal edge stateswith robustness against
defects and disorders. Convection is compared to electron cyclotron, which breaks
space-reversal symmetry and determines the direction of thermal edge propagation.
Diffusion leads to interference-like behavior between opposite convections, prevent-
ing bulk temperature propagation. We also display thermal unidirectional interface
states between two latticeswith opposite convection. These results extend the physics
of edge states beyond wave systems.

Keywords Thermal edge state · Thermal interface state · Conduction and
convection

22.1 Opening Remarks

Topological insulators were initially revealed in quantum mechanics systems [1,
2], which are insulated in bulk but conductive on the surface. Since the foundation
of quantum physics is Schrödinger wave mechanics, there is a similarity between
quantum waves and classical waves in equation forms. Therefore, the concept of
topological insulators has also been extended to classical wave systems [3], includ-
ing but not limited to electromagnetics [4–11] and acoustics [12–21]. The related
research was commonly conducted in nonreciprocal systems with the broken time-
reversal symmetry induced by an external magnetic bias for electromagnetics [4–6]
or an external momentum bias for acoustics [12–16]. Regardless of the quantum or
classical description, topological insulators can support edge states on the surface,
with broad applications for isolators and sensors.

Although edge states have been intensively studied in wave systems, they have
received almost no attention in diffusion systems. Unlike wave systems with time-
reversal symmetry, diffusion systems feature space-reversal symmetry, indicating
that diffusion is identical in two opposite directions. Inspired by topological wave
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insulators [3]with the broken time-reversal symmetry, it is natural to consider the bro-
ken space-reversal symmetry of diffusion systems. Fortunately, several methods are
available to break space-reversal symmetry, such as applying asymmetric structures
and nonlinear materials [22–25] and considering spatiotemporal modulations [26–
29]. Besides symmetry differences, diffusion systems also lack the concept of phase
because diffusion generally occurs from high to low potentials, such as from high
to low temperatures for heat transfer and from high to low concentrations for mass
transfer. To solve the problem, we can introduce a periodic temperature [30–36]
for heat transfer or a periodic concentration [37] for mass transfer, which has been
experimentally validated [30, 31]. We can discuss thermal edge states with these
preliminary analyses by considering heat transfer with conduction and convection
for breaking space-reversal symmetry.

22.2 Theoretical Foundation

Two basic structures with counterclockwise and clockwise convection are presented
in Fig. 22.1a, b, respectively. Convection is an analog of electron cyclotron, which
determines the direction of thermal edge propagation, thus called thermal spin. We
regard counterclockwise convection as spin-up and clockwise convection as spin-
down for brevity. The vertex regions in Fig. 22.1 are solid pumps with high thermal
conductivities to drive fluids with a convective velocity of v. Besides fluids, con-
vection can also be effectively realized with spatiotemporal modulations of thermal
conductivity and density [26–29], which has been experimentally verified to break
space-reversal symmetry [28]. Therefore, what we discuss is a simple and practical
system of heat transfer whose governing equation is [39]

ρC
∂T

∂t
+ ∇ · (−κ∇T + ρCvT ) = 0, (22.1)

where ρ, C , κ , and v denote density, heat capacity, thermal conductivity, and con-
vective velocity, respectively. T and t represent temperature and time, respectively.
ρCv is the convective term that breaks space-reversal symmetry.

We then need to introduce the concept of phase. For this purpose, we consider a
periodic temperature source whose temperature is

T = Ae−iωt + B, (22.2)

where A, ω, and B are the temperature amplitude, circular frequency, and refer-
ence temperature of the temperature source. The real part of Eq. (22.2) denotes the
actual temperature. The temperature source can generate a temperature profile with
spatiotemporal periodicity,

T = Aei(α·r−ωt) + B, (22.3)

with wave vector α and position vector r .
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Fig. 22.1 Two basic structures with inner radius r1 and outer radius r2. Vertex regions are solid
pumps to drive fluids with a counterclockwise velocity and b clockwise velocity of v. Adapted
from Ref. [38]

To understand the broken space-reversal symmetry induced by convection, we
discuss a one-dimensional case along the x axis. Since conduction has dissipation,
the wave vector should be a complex number, i.e., α = β + iγ with wave number β

and decay rate γ . The substitution of Eq. (22.3) into Eq. (22.1) yields

β =
√
2ε

4
, (22.4a)

γ = −8vω + 2
√
2v2ε + √

2D2ε3

16ωD
, (22.4b)

with definitions of ε =
√

−v2/D2 + √
v4/D4 + 16ω2/D2 and D = κ/ (ρC). When

v = 0, it is identical along two opposite directions. If v �= 0, a change from v to
−v yields the same ε and β but different γ , indicating different decay rates along
two opposite directions. Therefore, nonreciprocal temperature propagation can be
achieved with convection, which offers an opportunity to realize one-way temper-
ature propagation. Generally speaking, two parameters mainly affect temperature
propagation: thermal diffusivity determines the decay rate; and convective velocity
determines the temperature propagation speed. The chosen parameters are based on
water that has a relatively small thermal diffusivity, so dissipation is not that intense
and the expected phenomena can still be observed.

22.3 Finite-Element Simulation

We then design a graphene-like (or honeycomb) lattice composed of spin-up units,
as presented in Fig. 22.2a. We first discuss the bulk property and put a temperature
source in the center (Fig. 22.2a). Each side contains opposite convection in bulk,
so temperature propagation decays far more quickly, as described by Eq. (22.4b).
Therefore, the bulk cannot support temperature propagation and becomes insulated
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(Fig. 22.2b). We then discuss the surface property and put a temperature source at
the bottom left corner (Fig. 22.2c). Each side contains only unidirectional convection
on the surface, so the decay rate is far lower than the bulk. Since the graphene-like
lattice is composed of spin-up units, the surface can support only counterclockwise
temperature propagation (Fig. 22.2d), which is direct evidence of thermal edge states.
Unlike the edge states in wave systems, those in convection-diffusion systems have
diffusion-induced dissipation. A simple physical image to understand thermal edge
states is that the surface decay rate is far lower than the bulk decay rate, so temperature
propagation is allowed only on the surface. To confirm that thermal edge states
have directionality, we further construct a graphene-like lattice with spin-down units
(Fig. 22.2e). The simulation shows that thermal edge propagation still exists but with
a clockwise direction (Fig. 22.2f). The results in Fig. 22.2 are in accordance with
electron edge states whose propagation directions are determined by electron spins.
Therefore, it is reasonable to compare convection to electron spin despite different
mechanisms. In other words, the directions of thermal edge states are locked by
thermal spins (i.e., convective directions).

Since edge states are unidirectional, defects and disorders cannot cause backscat-
tering. Analogously, thermal edge states should also be robust against defects and
disorders.Weperformextended simulations based on the graphene-like lattice to con-
firm this robustness. We first change one unit from spin-up to spin-down (Fig. 22.3a).
The result indicates that the thermal edge state still exists (Fig. 22.3b), but it has
a slightly higher decay rate than Fig. 22.2d. We then stop one unit from rotating
(Fig. 22.3c), and the result is presented in Fig. 22.3d, demonstrating that the thermal
edge state remains unchanged. We finally remove six units from the graphene-like
lattice, as displayed in Fig. 22.3e. Temperature propagation is still allowed only on
the surface (Fig. 22.3f). Therefore, the results in Fig. 22.3 prove that thermal edge
states are robust against defects and disorders. Moreover, since thermal edge states
are robust, the graphene-like lattice is not mandatory, and other lattices are also
applicable, such as a square lattice.

We further discuss thermal interface states. In quantum mechanics and classical
wave systems, the interface between two materials with different topological phases
can support topological interface states. Therefore, similar properties should also
apply to convection-diffusion systems. To reveal thermal interface states, we combine
two graphene-like lattices composed of spin-up and spin-down units (Fig. 22.4a, c).
Since two lattices have different spin directions, unique sides exist at their interface
with the same convective directions. Therefore, the decay rate at the interface is the
smallest, which can support temperature propagation (Fig. 22.4b). We also prove
the unidirectionality of temperature propagation by putting the temperature source
at the output of Fig. 22.4b, and temperature propagation is forbidden (Fig. 22.4d).
Therefore, thermal interface states exist between two lattices with different spin
directions. The results in Fig. 22.4 also agree well with the understanding of electron
interface states that the interface of two materials with different topological phases
is conductive. The simulations in Figs. 22.2, 22.3 and 22.4 prove that the edge states
in convection-diffusion systems have properties similar to wave systems.
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Fig. 22.2 Thermal edge states. Left and right columns display the structures and simulations at
500s, respectively. The stars in a, c, and e denote the positions of periodic temperature sources
whose temperatures are T = 40 cos(−π t/5) + 323 K. The arrows in d and f show the direction
of temperature propagation. The fluids are water with a thermal conductivity of 0.6W m−1 K−1, a
heat capacity of 4200 J kg−1 K−1, and a density of 1000 kg/m3. The solid pumps are copper with
a thermal conductivity of 400W m−1 K−1, a heat capacity of 390J kg−1 K−1, and a density of
8900 kg/m3. r1 = 2 − 2

√
3/30 mm and r2 = 2 mm. Adapted from Ref. [38]

We finally discuss the transition of thermal edge states. For this purpose, we
change two parameters of the graphene-like lattice, i.e., the thermal conductivity
of the fluid and the circular frequency of the temperature source (Fig. 22.5a). We
first change the thermal conductivity of the fluid from 0.6W m−1 K−1 (water) to
0.001W m−1 K−1 and 400W m−1 K−1, and the results are shown in Fig. 22.5b, c,
respectively. Both cases become conductive in bulk, and thermal edge states no longer
exist. The decay rate explains this phenomenon.When the thermal conductivity of the
fluid is small (0.001W m−1 K−1), the heat exchange between opposite convection
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Fig. 22.3 Robustness against defects and disorders. a and b Reversing a unit. c and d Stopping a
unit. e and f Removing six units. The other parameters are the same as those in Fig. 22.2. Adapted
from Ref. [38]

is insufficient. Thus, the decay rate in bulk is similar to that on the surface, and
temperature propagation is allowed both in bulk and on the surface.When the thermal
conductivity of the fluid is large (400W m−1 K−1), the convective term becomes
relatively weak and can be ignored. In this way, the broken space-reversal symmetry
induced by convection is not obvious, so nonreciprocal propagation almost does not
exist. Therefore, the graphene-like lattice supports edge states and bulk states. We
further discuss the frequency of the temperature source. The periodicity in Fig. 22.5d–
f is 5, 50, and 100s, respectively.As predicted byEq. (22.4b), a smallerω (i.e., a larger
periodicity) yields a lower decay rate. Therefore, as ω decreases, the thermal edge
state has a larger penetration depth. When the periodicity reaches 100s, the bulk is
almost conductive (Fig. 22.5f). It can also be imagined that when the periodicity tends
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Fig. 22.4 Thermal interface states. a and b Temperature source at the bottom left corner. c and d
Temperature source at the top right corner. The other parameters are the same as those in Fig. 22.2.
Adapted from Ref. [38]

to infinity (ω → 0), the graphene-like lattice also supports bulk states, demonstrating
the necessity to consider the role of phase (or periodicity).

22.4 Discussion

Thermal edge states are closely related to three factors. (I) Convection strength,
which should be neither too weak nor too strong. If convection is too weak, the bro-
ken space-reversal symmetry is not apparent. If convection is too strong, conduction-
induced heat exchange between opposite convection is insufficient. (II) Temperature
frequency. The opposite convection can prevent temperature propagation due to the
interference-like behavior of two temperature waves. If a near-zero temperature fre-
quency is applied (tending to steady states without phase features), the interference-
like behavior is not obvious, and bulk states can be supported. (III) System size. Since
temperature amplitude features decay along the propagation direction, a large size
causes a large decay. Therefore, we should carefully design the convection strength,
temperature frequency, and system size. Meanwhile, thermal edge states are based
on practical materials like water and copper, which can be experimentally realized
in principle.

The edge states in convection-diffusion systems are also compared with those
in wave systems, and these two edge states show similar properties. Therefore, the
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Fig. 22.5 Transition of thermal edge states. a Schematic diagram. Temperature profile with the
thermal conductivity of the fluid being b 0.001W m−1 K−1 and c 400W m−1 K−1. Temperature
profile with the frequency of the temperature source being d 2π/5 rad/s, e π/25 rad/s, and f
π/50 rad/s. Adapted from Ref. [38]

fundamental origin of thermal edge states might also be topology. However, it is
not simple to calculate band structures or Chern numbers in convection-diffusion
systems because there is no obvious correspondence between the diffusion equation
and the Schrödinger equation. Recent interest in non-Hermitian topology [40–44]
may provide some insights. A common approach to a non-Hermitian Hamiltonian is
introducing gain and loss to the Hermitian Hamiltonian. In contrast, diffusion itself
features loss, so our system of heat transfer is essentially non-Hermitian [30], which
can also be confirmed by the spatial decay of temperature propagation in Figs. 22.2,
22.3, 22.4 and 22.5. For simplicity, further explorations on non-Hermitian thermal
topology might focus on one-dimensional systems at first.
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22.5 Conclusion

We reveal that robust one-way edge states can also exist in convection-diffusion
systems. Convection breaks space-reversal symmetry and contributes to one-way
temperature propagation. Convection can also be compared to electron cyclotron,
which determines the direction of thermal edge propagation. We further confirm the
robustness of thermal edge states against defects and disorders.Moreover,we identify
thermal interface states between two lattices with different spin directions. These
findingsmay also guide exploring topological properties with diffusive dynamics and
open a new topological diffusion research field, especially topological thermotics.

22.6 Exercise and Solution

Exercise

1. Derive Eq. (22.4).

Solution

1. The substitution of Eq. (22.3) into Eq. (22.1) yields

− iωρC + α2κ + iαρCv = 0. (22.5)

The wave number α is a complex number, which can be written as α = β + iγ .
Therefore, Eq. (22.5) can be rewritten as

− iωρC + (β + iγ )2 κ + i (β + iγ ) ρCv = 0. (22.6)

Then, Eq. (22.6) can be divided into two parts

(
β2 − γ 2

)
κ − γρCv = 0, (22.7a)

−ωρC + 2βγ κ + βρCv = 0. (22.7b)

Solving these two equations, we can derive Eq. (22.4).
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Chapter 23
Summary and Outlook

Abstract In this chapter, we summarize this book and look to the future. In par-
ticular, we raise several key scientific questions for future directions of theoretical
thermotics and potential applications in heat regulation.

Keywords Theoretical thermotics · Engineering applications · Future
development

23.1 Summary

In this book, we present twenty theories of theoretical thermotics, divided into two
parts, i.e., inside and outsidemetamaterials. Themajor difference is the characteristic
length. There is an explicit characteristic length in heat transfer for those fourteen
theories inside metamaterials, (much) larger than the structural unit size. The other
six theories are beyond the scope of characteristic lengths (outside metamaterials).
Therefore, theoretical thermotics can guide the design of both metamaterial-based
and metamaterial-free phenomena and functions. Theoretical thermotics is not lim-
ited to theories, and we also present simulations and experiments for mutual confir-
mation. Practical applications, such as invisibility, camouflage, nonreciprocity, and
bistability, are also demonstrated. These results may provide insights into novel and
advanced thermal regulation.

23.2 Outlook

Although theoretical thermotics hasmade significant progress during the last decade,
many key scientific problems remain explored. For example, nonreciprocal heat
transfer is a recent focus. On the one hand, spatiotemporal modulation becomes
an intriguing mechanism for achieving diffusive nonreciprocity [1–4] due to the
advectionlike effect. On the other hand, an isolated thermal system with mass con-
servation prohibits the advectionlike effect [5]. Therefore, it becomes particularly
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elusive whether spatiotemporal modulation can yield nonreciprocity in heat transfer.
The answer may lie in transient heat transfer due to the novel mechanism of Willis
coupling [6]. Therefore, it is promising to reveal more asymmetric diffusion mech-
anisms in transient heat transfer, especially based on wavelike temperature fields.
Moreover, topological heat transfer is another research focus.Manypioneeringworks
related to thermal geometric phases [7], thermal Su-Schrieffer-Heeger models [8–
11], thermal edge states [12], thermal skin effects [13, 14], and thermal topological
transitions [15–17] have been proposed. However, compared with topological wave
propagation [18, 19], the related research in heat transfer is just getting started, and
much profound physics remains studied, such as high-order thermal topology.

Theoretical thermotics mainly includes fundamental theories, but we should
develop more practical applications. In particular, heat regulation is a critical issue
in daily life and industrial production. Hence, theoretical thermotics also needs to
focus on practical problems and provide guidance for heat regulation. For example,
with the miniaturization of chips, heat dissipation becomes increasingly significant
for device protection. Moreover, cooling with energy savings is also a crucial prob-
lem, and passive radiative cooling has become a powerful tool [20–22]. Therefore,
theoretical thermotics should also play a role in solving these urgent requirements.

Last but not least, though theoretical thermotics aims to solve thermal problems,
its influence should exceed thermotics. Since heat transfer is a branch of diffusion
systems, the research paradigms of theoretical thermotics can also be extended to
other diffusive systems, such as particle and plasma diffusions, thereby enriching the
means of diffusion regulation. Furthermore, could theoretical thermotics inspire the
research in wave systems? This question is very challenging but also very rewarding.
In fact, a considerable part of the existing content of theoretical thermotics is inspired
by the related research in wave systems, such as from transformation optics [23, 24]
to transformation thermotics [25, 26] and from photonic crystals to thermal crys-
tals [27]. It is worth pondering how tomake theoretical thermotics more enlightening
and impact non-thermal fields. For example, the pioneering attempt to control multi-
physical fields originates from theoretical thermotics (thermal plus DC fields [28]),
which has been extended to wave control, such as electromagnetic, acoustic, plus
water waves [29] and magnetic plus acoustic fields [30, 31]. More research could
be expected to extend the paradigms of theoretical thermotics to other non-thermal
fields.

Undoubtedly, the future of theoretical thermotics is promising, whether in terms
of fundamental research, practical applications, or potential impacts.
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Appendix A
Particle Diffusion: Exceptional Points,
Geometric Phases, and Bilayer Cloaks

Opening Remarks

The Berry phase [1] was revealed in quantum wave systems, resulting from an adi-
abatic evolution along a closed path in parameter space. A similar phase was also
explored in molecular physics with the Born-Oppenheimer approximation and per-
turbation theory [2]. Beyond these systems, the Berry phase also appears in diffusion
systems with quantum corrections [3, 4]. Meanwhile, varieties of novel phenomena
were found to be crucially associated with the Berry phase, such as topological mate-
rials [5, 6, 7, 8, 9, 10, 11, 12, 13], heat pumping [14], and geometric heat flux [15].

As a more general concept than the Berry phase, the geometric phase has also
attracted broad research interest, which also appears in diffusion systems related
to photons [16]. However, such a concept does not exist in macroscopic particle-
diffusion systems because of the difficulty in defining the frequency and phase in
such systems.

Here,we study amacroscopic particle-diffusion system to promote the exploration
of the geometric phase. For this purpose,we introduce frequency and phase properties
by applying twomoving channels [17, 18, 19, 20] with equal-but-opposite velocities,
connected by a stationary intermediate layer with permeability for particles (see the
top inset of Fig. A.1). Although this structure is similar to that adopted for heat-
diffusion systems in Ref. [20], a crucial difference is between energy transport (heat
diffusion) and mass transport (particle diffusion). A non-Hermitian Hamiltonian can
effectively describe themacroscopic particle-diffusion process. Concretely speaking,
the introduced frequency and phase properties act as a Hermitian term, and the
inherent diffusion properties serve as a non-Hermitian term [21, 22, 23, 24].

As a result, an exceptional point of velocity exists in the macroscopic particle-
diffusion system just like that in wave systems of optics and photonics [25]. If the
velocity exceeds the exceptional point, a stationary concentration profile will turn
into a moving one due to the broken anti-parity-time symmetry [20, 26, 27, 28, 29,
30] (see the left inset of Fig. A.1). Therefore, a cyclic velocity path containing the
exceptional point can give birth to an extra phase difference of π (say, the geometric
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Fig. A.1 Constructing a non-Hermitian Hamiltonian and an adiabatic cyclic path in a macroscopic
particle-diffusion system.The schematicmodel is shownon top.Theproposed structure involves two
moving channels separated by a permeable layer. Dependent on the velocity u, the concentration
profile can be unmoving or moving. After a cyclic path (brown lines) in the velocity space, the
particle concentration profile (shown in color from red to blue with reference to the color bar in
the upper right corner) may return to the inial state with or without a π -phase shift. Adapted from
Ref. [31]

phase). A schematic diagram can be seen in the bottom inset of Fig. A.1. Let us
start from the basic properties of the macroscopic particle-diffusion system, the
exceptional point of velocity.

Exceptional Point

We study a two-dimensional system as shown in Fig. A.2a. The perimeter and width
of the two moving channels are l and w, respectively. The particles in the upper
and lower channels move with equal-but-opposite velocities (+u and −u). A sta-
tionary permeable layer separates the two moving channels, whose thickness (d)
and diffusivity (Dm) determine the exchange rate of particles between the upper and
lower channels. Considering the concentration distributions in the upper channel,
lower channel, and intermediate layer (denoted as C1, C2, and Cm , respectively), the
macroscopic particle-diffusion process is dominated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂C1
∂t = D

(
∂2C1
∂x2 + ∂2C1

∂z2

)
− u ∂C1

∂x , d/2 ≤ z ≤ w + d/2

∂Cm
∂t = Dm

(
∂2Cm
∂x2 + ∂2Cm

∂z2

)
, −d/2 < z < d/2

∂C2
∂t = D

(
∂2C2
∂x2 + ∂2C2

∂z2

)
+ u ∂C2

∂x , −w − d/2 ≤ z ≤ −d/2

, (A.1)
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Fig. A.2 Emergence of the exceptional point. a The schematic diagram of the diffusion system
with r = 10, w = 0.5, and d = 0.1 cm. b and c Imaginary and real parts of the eigenvalues ω of
H (u) as a function of velocity u. Red lines are analytical results of Eq. (A.4), and black squares
are results from finite-element simulations. d–j Eigenstates at different positions indicated by blue
stars in (b) and (c). D = 10−6 m2/s and Dm = 10−8 m2/s. Adapted from Ref. [31]

where D is the diffusivity of the particles in the twomoving channels. Equation (A.1)
indicates the mass conservation of the macroscopic particle-diffusion process. The
intermediate layer allows the particles to exchange between the twomoving channels,
so the middle equation in Eq. (A.1) can be treated as two particle sources. Therefore,
Eq. (A.1) can be rewritten as

⎧
⎨

⎩

∂C1
∂t = D ∂2C1

∂x2 − u ∂C1
∂x + Dm

wd (C2 − C1) , d/2 ≤ z ≤ w + d/2

∂C2
∂t = D ∂2C2

∂x2 + u ∂C2
∂x + Dm

wd (C1 − C2) , −w − d/2 ≤ z ≤ −d/2
, (A.2)
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where we have taken ∂2C1/∂z2 = ∂2C2/∂z2 = 0 because the width (w) is supposed
to be thin enough. By taking a periodic boundary condition on the left and right sides
of the structure, we can insert the ansatz Aei(kx−ωt) + B where A is the amplitude,
B is a reference value, k is the wave number, and ω is the frequency of the particle
concentration. Since particle concentrations cannot be complex, only the real part of
the ansatz makes sense. By substituting the ansatz into Eq. (A.2), we can reach an
eigenequation of the macroscopic particle-diffusion process Hψ = ωψ , whereψ =
[A1, A2]T is the eigenstate, thus yielding C1 ∼ A1ei(kx−ωt) and C2 ∼ A2ei(kx−ωt).
The superscript T denotes transpose, and we ignore the reference value B for brevity.
The effective Hamiltonian H reads

H =
[−i

(
k2D + h

) + ku ih
ih −i

(
k2D + h

) − ku

]

, (A.3)

where h = Dm/(w d) reflects the exchange rate of the particles between the upper
and lower channels. The eigenvalues of H are

ω = −i
[(
k2D + h

) ±
√
h2 − k2u2

]
. (A.4)

For clarity, we plot the real and imaginary parts of eigenvalues in the u-space, as
illustrated in Fig. A.2b, c. In the region u < uEP (= h/k), H occupies two branches
of purely imaginary eigenvalues, and the system is in the anti-parity-time symmetric
region [20]. Especially at the exceptional point u = uEP, the system marks the merg-
ing of the two eigenvalues. When u > uEP, the real part of eigenvalues appears due
to the broken anti-parity-time symmetry. Therefore, this point uEP (= h/k) serves as
an exceptional point of velocity.

For a vanishing exchange rate (h = 0), the eigenvalues always possess nonzero
real parts at u �= 0, so there is only one moving profile. That is, the two concentration
profiles in the upper and lower channels propagate independently. Differently, when
the two channels are coupled together (h �= 0), the system exhibits two different pro-
files as u varies. Therefore, the particle exchange between the twomoving channels is
the key factor which can be regarded as the interference in the macroscopic particle-
diffusion system. When u < h/k, the eigenvalues are purely imaginary, indicating
that concentration profiles always decay and do not propagate. The corresponding
eigenstates are

ψ+ = [
1, ei(π−θ)

]T
, ψ− = [

1, eiθ
]T

, (A.5)

where θ = sin−1 (ku/h). The concentration profiles in the two moving channels
maintain a constant phase difference (π − θ for ω+ and θ for ω−) and decay motion-
lessly. When u > h/k, the real parts of eigenvalues appear, indicating that concen-
tration profiles not only decay but also propagate. The corresponding eigenstates
are

ψ+ = [
e−φ, eiπ/2−2φ

]T
, ψ− = [

e−φ, eiπ/2
]T

, (A.6)
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where φ = cosh−1 (ku/h). The concentration profiles in the two moving channels
also maintain a constant phase difference (π/2 for both ω+ and ω−), but decay with
motion.

To confirm the theory, we use COMSOL Multiphysics to perform finite-element
simulations. Due to the periodic boundary condition, the two moving channels with
length l = 2πr allow only discrete wave numbers k = nl/2π = nr−1 with n being
any positive integers. We focus on the fundamental modes (n = 1) which have the
lowest decay rates. The simulation eigenvalues are obtainedby setting the initial states
to be exactly the corresponding eigenstates, say, C1 = A1 cos (kx) + B1 and C2 =
A2 cos (kx + θ) + B2 corresponding toω− [orC2 = A2 cos (kx + π − θ) + B2 cor-
responding toω+] with A1 = A2 = 200, B1 = B2 = 300, and θ = sin−1 (ku/h).We
fit the amplitude decaying from250 to 60000 swith the function of Ae−λt + B, where
λ =-Imag(ω) is decay rate. When the velocity exceeds the exceptional point, we also
track the motion before 2000 s and calculate the frequency [Real(ω)]. The simulation
results are plotted by discrete dots in Fig. A.2b, c which agree with the solid lines pre-
dicted by Eq. (A.4). Since the eigenstates at the upper branch of -Imag(ω) have larger
decay rates, they are metastable, resulting in the smaller simulation eigenvalues of
-Imag(ω) than the theoretical ones.

We also plot the eigenstates indicated by the stars in Fig. A.2b, c (see Fig. A.2d–
j). When plotting the eigenstates, we adjust the length l and width w to keep an
appropriate ratio for the clarity of presentation.When u = 0, the phase differences are
θ1 = 0 for the eigenstate E−

1 and π − θ1 = π for the eigenstate E+
1 . As u increases to

the exceptional point, θ = sin−1 (ku/h) also increases to π/2. Thus, the two profiles
ofC1 andC2 coincide with each other with a phase difference ofπ/2. The eigenstates
in Fig. A.2d–h decay motionlessly. When u > uEP, the concentration profiles keep a
phase difference ofπ/2 andpropagate together. Thepropagation follows the direction
of the velocity of the channel with a larger concentration amplitude, say, backward
in Fig. A.2i and forward in Fig. A.2j. The finite-element simulations agree with the
eigenstates predicted by Eqs. (A.5) and (A.6).

We also care about the dynamics of particle concentrations. Here we use annu-
lar channels to perform finite-element simulations which can naturally satisfy the
periodic boundary condition adopted in Fig. A.2. We also define C1 and C2 as the
concentration distributions along the upper and lower interior edges of the chan-
nels. The initial states are set to be the five eigenstates indicated by the stars in
Fig. A.2b with the forms in the Cartesian coordinates as C1 = A1y/

√
x2 + y2 +

B1 and C2 = A2(y/
√
x2 + y2 cos θ − x/

√
x2 + y2 sin θ) + B2 for ω− (or C2 =

A2(−y/
√
x2 + y2 cos θ − x/

√
x2 + y2 sin θ) + B2 for ω+) with A1 = A2 = 200,

B1 = B2 = 300, and θ = sin−1 (ku/h). Then, we set the velocities to be 100 (< uEP)
and 300 (> uEP) μm/s and study the evolutions. The directions of the velocities are
clockwise for the upper ring and anticlockwise for the lower ring. The theoretical
phase differences with u = 100 μm/s are π/6 for ω− and 5π/6 for ω+. We track
the evolutions of C1 and C2 by following their maximum points. The initial and
final states are shown in the left column of Fig. A.3. The trajectories of Max(C1)



326 Appendix A: Particle Diffusion: Exceptional Points, Geometric Phases …

and Max(C2) with two different velocities are plotted in the right two columns of
Fig. A.3.

Since the initial states are not the eigenstates corresponding to u = 100 μm/s,
these noneigenstates start moving to eigenstates. Finally, all five initial states move
to the same final state with θ ≈ π/6, which is the eigenstate corresponding to the
eigenvalue ω−. This occurs because of the nonorthogonality of the two eigenstates at
different branches (for example, the eigenstates E+

1 and E−
2 are not orthogonal) [21].

Meanwhile, the decay rate of the upper branch is much larger than that of the lower
branch, so the eigenstate at the lower branch becomes the final observable one asso-
ciated with the eigenvalue ω−.

Besides the final eigenstate, we also care about the evolution route. For example,
the moving directions of the maximum points in Fig. A.3h, k, n are all against the
velocities of respective channels. This phenomenon occurs because the evolution
route should avoid going through the eigenstate corresponding to the eigenvalue
ω+ (with a far larger decay rate) to survive longer. Therefore, when the velocity
is smaller than the exceptional point, the final state is always the eigenstate at the
lower branch corresponding to ω−, and the evolution route should try to avoid going
through the eigenstate corresponding to the eigenvalue ω+. A principle is to ensure
concentration profiles survive as long as possible. When the velocity is larger than
the exceptional point, the concentration profiles are always moving because the real
parts of eigenvalues ω appear (see the right column in Fig. A.3).

Geometric Phase

We can check that the non-Hermitian Hamiltonian H satisfies H†ψ± = ω±ψ±,
where H† is the Hermitian transpose of H .ψ± and ω± are the complex conjugate of

ψ± and ω±, respectively. The eigenstates satisfy
〈
ψ±, ψ∓

〉
= 0, where

〈
ψ±, ψ∓

〉

denotes the complex inner product of vectors ψ± and ψ∓. Considering a time-
varying velocity u, we can write down the complex geometric phase under adiabatic
approximation as

γ± = i
∫

〈
ψ±(u), dψ±(u)

〉

〈
ψ±(u), ψ±(u)

〉 , (A.7)

which agrees with the results of non-Hermitian quantum systems [32]. Then, the

exceptional point yields
〈
ψ±(uEP), ψ±(uEP)

〉
= 0 due to the coalescence of the two

eigenstates. As a result, the exceptional point serves as a pole in the complex integral.
We can rewrite Eq. (A.7) in a closed loop around the exceptional point as [33]

γ± = i

2

∮

d ln
〈
ψ±(u), ψ±(u)

〉
. (A.8)
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Fig. A.3 Evolution of eigenstates. The snapshots of initial and final states with two different
velocities are presented in the left column, where the red (or blue) color represents the large (or
small) concentration. The trajectories of Max(C1) and Max(C2) along the interior edges of the
channels with u = 100 and u = 300 μm/s are shown in the middle and right columns, respectively.
The width of the two channels is 0.5 cm, the thickness of the intermediate layer is 0.1 cm, and
the inner and outer radii are 10 and 11 cm. D = 10−6 m2/s and Dm = 10−8 m2/s. Adapted from
Ref. [31]
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The geometric phase takes γ± = π or −π according to the residue theorem, and
the direction of the closed loop determines the sign. If the evolution route does not
contain the exceptional point, the integral or geometric phase in a closed loop is
naturally equal to zero.

We also perform finite-element simulations to visualize the geometric phase. We
firstly consider a cyclic path of velocity without including the exceptional point. The
initial velocity is u = 100μm/s, and the initial state is set at the eigenstate associated
with ω− (say, a phase difference of π/6). Then, we evolve the velocity according
to the curve shown in Fig. A.4a. In this process, the eigenvalue is always purely
imaginary, indicating that no extra phase difference is accumulated. As a result,
this path brings the final state back to the initial concentration profile exactly (see
Fig. A.4b, c).

However, it is different when the path of velocity includes the exceptional point
[see Fig. A.4d–f, g–i. As the velocity increases and exceeds the exceptional point,
the real parts of eigenvalues appear, indicating that an extra phase difference starts
to accumulate. Meanwhile, the initial state moves smoothly from one branch to
the other. When the accumulated phase difference makes the profile go through the
eigenstate corresponding to another eigenvalueω+ (with a phase difference of 5π/6),
the profile can no longer go back to the initial position, as discussed in Fig. A.3. Then,
the phase difference continuously increases to reach a different position associated
with eigenvalueω− and phase difference π/6. Fortunately, the particle concentration
profile is flipped after one loop, and a phase of π is accumulated (see Fig. A.4e, f or
Fig. A.4h, i). This case is just the indicator of the geometric phase.

Finally, when the cyclic evolution crosses the exceptional point twice (see
Fig. A.4j, say, crossing the eigenstate corresponding to the eigenvalue ω+ twice),
it brings back to the initial state without any global phase change (see Fig. A.4k, l),
as one can imagine from the geometric phase.

Bilayer Cloak

We also use this structure for practical applications to design a particle-diffusion
cloak [34, 35, 36, 37]. Cloaking is one of the most attractive functions to protect
objects from being detected. Particle-diffusion cloaking also has potential applica-
tions in various physical systems, such as chemical and biological systems, where
mass transport is one of the most basic mechanisms. The feasibility of this idea
results from the unique property of the present structure. On the one hand, the inter-
mediate layer allows the particles to exchange between the twomoving channels. On
the other hand, the two moving channels also drive the particles in the intermediate
layer, thus resulting in a larger effective diffusivity. Therefore, the diffusivity of the
intermediate layer can be significantly enhanced due to the two moving channels.
The detailed design is as follows.

We combine our structure with a square plate with the same thickness (d) and
diffusivity (Dm) as the intermediate layer, whose different views are presented in
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Fig. A.4 Emergence of the geometric phase. The left column describes the paths of the time-
varying velocity. The middle column shows the initial and final states. The right column illustrates
the trajectories of Max(C1) and Max(C2) along the interior edges of the channels. The parameters
are the same as those for Fig. A.3. Adapted from Ref. [31]
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Fig. A.5 Particle-diffusion cloak. a and b Schematic diagrams with different views. The whole
size is 44 × 44 cm2, and the other sizes are the same as those adopted in Fig. A.3. D = 10−8 m2/s
and Dm = 10−6 m2/s. c Simulation result with u = 0 μm/s. d Simulation result with u = 37 μm/s.
Adapted from Ref. [31]

Fig.A.5a, b. The left and right sides arefixed at high and lowconcentrations. Theother
two sides are associated with no-particle conditions. When the velocity of the upper
and lower channels is zero, the intermediate layer has no diffusivity enhancement.
In this case, the concentration profile in the background is contracted, and cloaking
cannot appear (see Fig. A.5c). Given the design of bilayer cloaks in thermotics [38,
39, 40, 41, 42], if we enhance the diffusivity of the intermediate layer up to D′

m =
Dm

(
1 + r2/r ′2) /

(
1 − r2/r ′2) (where r and r ′ are respectively the inner and outer

radii of the moving channels, and D′
m is the enhanced diffusivity), the cloaking

effect can be achieved. For this purpose, we set the velocity of two moving channels
as 37 μm/s, and the enhanced diffusivity can satisfy the requirement of a bilayer
cloak. As a result, a particle-diffusion cloak is realized (see Fig. A.5d). Now, one
can place any object inside the cloak without distorting the concentration profile in
the background. Such a scheme can avoid anisotropic, singular, and inhomogeneous
parameters derived from transformation theory [34, 35, 36, 37].Meanwhile, cloak-on
and cloak-off can be controlled easily by adjusting the velocity.

Incidentally, all the parameters adopted in the finite-element simulations above
are delicately chosen to match practical conditions. For example, the diffusivity of
the two moving channels is set at the magnitude of pure gas diffusion, and that of
the intermediate layer is at the magnitude of gas diffusion in porous media. A larger
porosity means a stronger exchange rate since gas can penetrate the two moving
channels more efficiently. Additionally, the gas in the channels can be driven to
rotate by connecting rotary motors to the channels.
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Conclusion

In summary, macroscopic particle-diffusion systems can exhibit exceptional points
and geometric phases besides existing systems. Certainly, these results may also be
extrapolated to other macroscopic diffusion systems like electrostatics and magne-
tostatics. We have also designed a particle-diffusion cloak with the present structure,
extending the geometric phase to cloaking. These properties may pave a new way
for studying topologically protected phenomena by designing the particle-diffusion
counterparts of quantum Hall effects or topological insulators/superconductors.
Many relevant open questions can be immediately prompted, such as those related
to the ion-exchange behavior between membranes or the manipulation of particle
diffusion.
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Appendix B
Plasma Diffusion: Transformation Scheme

Opening Remarks

Plasma, the fourth state of matter, is a gaseous mixture of unbound ions, electrons,
and reactive radicals that becomes highly electrically conductive [1]. Although it is
not common on the earth’s surface, plasma can be obtained artificially by charging
gases with direct/alternating current or radio/microwave sources. Due to the unique
composition of the plasma, plasma technology plays a vital role in many fields
spanning micro/nanoelectronics, chemistry, bio-medicine, aerospace, and material
science [2, 3, 4, 5].

Despite large quantities of theoretical and experimental studies, manipulating
plasma transport still faces critical challenges. Conventional control of charged par-
ticles depends on external magnetic fields. This simple method may limit the accu-
racy of manipulation. Since the past decade, transformation theory, an approach to
replace space transformation with material transformation, has attracted wide atten-
tion in wave and diffusion systems as a reliable and powerful method of controlling
matter [6, 7, 8] or energy flow [9, 10, 11, 12, 13, 14, 15, 16, 17]. However, it has not
yet been introduced to plasma transport which can be regarded as a unique diffusion
process. A possible reason might lie in the particularly complex motion process in
plasmas.

We utilize a toy model (diffusion-migration model) to describe plasma transport
and design three conceptual devices, i.e., cloak, concentrator, and rotator, to control
transient plasma flow based on the transformation theory. Here, a “cloak” can provide
a zero-density gradient inside the device; a “concentrator” gives a larger density
gradient inside the device; a “rotator” can deflect the transport direction of the plasma
inside the device. Most importantly, the devices do not disturb the density profiles of
plasmas in the background. Our results might broaden the horizon of manipulating
transient plasma transport and might be helpful to inspire further improvements in
plasma physics.

© The Editor(s) (if applicable) and The Author(s) 2023
L.-J. Xu and J.-P. Huang, Transformation Thermotics and Extended Theories,
https://doi.org/10.1007/978-981-19-5908-0

335

https://doi.org/10.1007/978-981-19-5908-0
 -2047 61852 a -2047 61852 a
 
https://doi.org/10.1007/978-981-19-5908-0


336 Appendix B: Plasma Diffusion: Transformation Scheme

Theoretical Foundation

Compared to the conventional diffusion system, the realistic plasma transport ismuch
more complicated. Because the interaction between charged particles and intrinsic
local electromagnetic fields affects the transport process a lot. In addition, the ioniza-
tion reaction in plasma can also have a significant effect on the momentum and the
energy transfer of particles. In general, the transport of charged particles in plasma
is dominated by [18]

∂t n − ∇ · (D∇n) ± ∇ ·
(
μ 	En

)
+ ∇ · (	vn) = S, (B.1)

where n, D, μ, 	E , 	v, and S are the density, diffusivity, mobility, electric field, advec-
tive velocity, and external source, respectively. In particular, the sign of the third
term (i.e., migration term) is positive for positive particles and negative for negative
particles. For brevity, we only considered electric fields with ignoring the advective
process and the gaseous reaction [19]. Hence, the plasma transport can be simplified
as a diffusion-migration process. Then according to the Einstein relation, Eq. (B.1)
could be written as

∂t n − ∇ · (D∇n) ± ∇ ·
[(

D 	E
T

)

n

]

= S, (B.2)

in which T (in the unit of V) is assumed to be a constant plasma temperature.
Then according to the transformation theory, when the controlling equation is form-
invariant under a coordinate transformation, the plasma flow can be manipulated by
transforming the corresponding parameters. Next, we will demonstrate that Eq. (B.2)
at steady state strictly keeps form invariance after transforming coordinates.

For the steady state, the equation is

− ∇ · (D∇n) ± ∇ ·
[(

D 	E
T

)

n

]

= S, (B.3)

where we have replaced mobility with diffusivity. Then to obtain intuitive trans-
formed results, we write down the component form of the diffusion-migration equa-
tion in a curvilinear space with the corresponding coordinate xi [20],

− ∂i
(√

gDi j∂ j n
) ± ∂i

[(√
gDi j 	E j

T

)

n

]

= √
gS, (B.4)

where g is the determinant of gi · g j , with gi and g j being covariant bases of the
curvilinear space. Then we write Eq. (B.4) in the physical space with coordinate x ′

i ,
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− ∂i ′
∂x ′

i

∂xi

[
√
gDi j

∂x ′
j

∂x j

∂ j ′n ∓
(√

gDi j 	E j

T

)

n

]

= √
gS, (B.5)

in which ∂x ′
i
/∂xi and ∂x ′

j
/∂x j are the components of the Jacobian matrix J whose

determinant det J is equal to 1/
√
g. Hence, we may reduce Eq. (B.5) to [22]

− ∇′ · (
D′∇′n

) ± ∇′ ·
[(

D′ 	E ′

T

)

n

]

= S′, (B.6)

with D′ = J DJ τ / det J and 	E ′ = J−τ 	E , and S′ = S/ det J . Here, ∇′ refers to the
differential in the new coordinates x ′

i . J is the Jacobian matrix with components
Ji j = ∂x ′

i/∂x j , J τ is the transpose of J , while J−τ is the inverse transpose of J .
det J equals the determinant of J . Thus, the steady diffusion-migration equation
strictly keeps form-invariance for arbitrary coordinate transformations.

However, the case is distinctly different in transient state. Eq. (B.2) at transient
state could be reduced to

1

det J
∂t n − ∇′ · (

D′∇′n
) ± ∇′ ·

[(
D′ 	E ′

T

)

n

]

= S′. (B.7)

Compared with Eq. (B.2), the metric induced by the coordinate transformation in
front of ∂t n in Eq. (B.7) can not be absorbed by materials or field parameters. There-
fore, the transient plasma transport is not strictly form-invariant under a coordinate
transformation except for det J = 1. Nevertheless, by taking an approximation, we
can remove the unwanted metric and rewrite Eq. (B.7) as

∂t n − ∇′ · (
D′′∇′n

) ± ∇′ ·
[(

D′′ 	E ′′

T

)

n

]

= S′′, (B.8)

whose transformation rules are D′′ = J DJ τ , 	E ′′ = J−τ 	E , and S′′ = S. In this way,
the transformed equation could keep form-invariant. It should be noted that Eq. (B.8)
is generally an approximation of Eq. (B.7) because det J is position-dependent.
To clearly understand this approximation, we rewrite its original transformed form
Eq. (B.7) as

1

det J
∂t n − ∇′ ·

(
J DJ τ

det J
∇′n

)

± ∇′ ·
[(

J DJ τ

det J

J−τ 	E
T

)

n

]

= S

det J
, (B.9)

Then we multiply det J to both sides of Eq. (B.9) and decompose it,

∂t n − ∇′ · (
J DJ τ∇′n

) ± ∇′ ·
[(

J DJ τ J−τ 	E
T

)

n

]

± 
 = S, (B.10)
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Fig. B.1 Schematic diagrams of conceptual devices. The solid blue line represents the plasma
flow. We set the side length of the background matrix as l = 0.12 m. Other parameters: D0 =
9.2 × 10−7 m s−1, 	E0 = [1.04 × 104, 0] V m−1, r1 = 0.020 m, r2 = 0.030 m, rm = 0.025 m,
θ0 = π/3, and T0 = 2.0 V. Adapted from Ref. [21]

where
 = det J∇′ (1/ det J )
[
J D 	E/T ∓ J DJ τ∇′n

]
. Comparing Eq. (B.10) with

Eq. (B.8), the error caused by the approximation exactly depends on 
. the error 


is closely related to det J and cannot be eliminated if det J �= 1. Thus, the values of
diffusivity and electric field intensity become crucial to the effect of the theory. As a
result, small values of diffusivity and electric field intensity help prevent the devices
from seriously disturbing the background plasma. Thus, the quantities of D and 	E
need to be small enough to avoid a large error. The following simulation results show
that this approximation is feasible and reasonable.

To confirm the theory, we propose three conceptional model devices to realize
cloaking, concentrating, and rotating transient plasma transport without (obviously)
disturbing the plasma distribution in the background. See Fig. B.1. When the plasma
is input from the left-hand side, it remains unchanged on the right-hand side, as if
there were no device in the middle. Concretely, the cloak can hide objects in the
central region. The concentrator can increase the density gradient in the core region,
while the rotator can flexibly rotate the propagation direction of plasma flow [23].
Next, we introduce the cloak first.
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To realize the plasma cloak, the coordinate transformation from a virtual space ri
to the physical space r ′

i is set as [23]

⎧
⎨

⎩

r ′ = r2 − r1
r2

r + r1,

θ ′ = θ.

(B.11)

See Fig. B.1. Here, r1 and r2 are the radii of the inner and outer boundaries of the
cloak, respectively. This coordinate transformation can be physically explained as
stretching the center dot into a circle with a radius of r1 in the virtual space. Then
we derive transformed parameters to achieve the cloaking of plasma flow according
to the transformation rules.

Similarly, the coordinate transformations for realizing plasma concentrator and
rotator can be written mathematically as [23]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r ′ = r1
rm

r, r < rm

r ′ = r1 − rm
r2 − rm

r2 + r2 − r1
r2 − rm

r, rm < r < r2

θ ′ = θ.

(B.12)

⎧
⎪⎪⎨

⎪⎪⎩

r ′ = r,

θ ′ = θ + θ0, r < r1

θ ′ = θ + θ0
r − r2
r1 − r2

, r1 < r < r2

(B.13)

where rm (r1 < rm < r2) and θ0 are the constant radius and angle, respectively. Equa-
tion (B.12) describes a physical picture that compresses a circle with a radius of rm to
a smaller circle with a radius of r1 in the virtual space. In contrast, Eq. (B.13) gives a
picture that in the virtual space, a series of circles with different radii are twisted by
different angles determined by the values of the corresponding radii. Therefore, we
obtain transformed parameters to converge or rotate plasma flow.Moreover, it should
be noted that Eq. (B.8) for rotator is an accurate form instead of an approximation
because of det J = 1 in this case.

Results and Discussion

Now we are in a position to employ COMSOL Multiphysics to perform finite
element simulations. As reflected in Fig. B.1, a periodic plasma source, set as
n = n1 cosω0t + n0, is applied to the left boundary (the red one) of the background
matrix. Here n1 = 5.0 × 1015 m−3, ω0 = 2π/10 s−1, and n0 = 1.0 × 1017 m−3. We
set the opposite (right) side as an outflow boundary (the blue one). The upper and
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Fig. B.2 Simulation results of the cloak at transient states. a1–a3 Density profiles for pure back-
ground at 10 s, 22 s, and 40 s, respectively. b1–b3Density profiles for background with an obstacle
at 10 s, 22 s, and 40 s, respectively. c1–c3 Density profiles for background with the cloak at 10 s,
22 s, and 40 s, respectively. Adapted from Ref. [21]

lower sides (boundaries) are set with zero-flux conditions. Besides, the zero-flux
condition is additionally applied to the inner circle boundary of the cloak. The whole
background matrix possesses a constant diffusivity D0 and a uniform electric field
	E0. Then all the parameters can be designed according to the above transformation
rules, and the simulation results of cloaking, concentrating, and rotating are shown
in Figs. B.2, B.3 and B.4, respectively.

Figure B.2 illustrates the transient simulation of plasma transport under three
conditions, namely, transporting in a pure background medium (set as the reference),
in a background medium with a bare obstacle, and in a background medium with
an obstacle covered by the cloak. The columns from left to right are screenshots
of distributions of the plasma density at 10 s, 22 s, and 40 s, respectively. Due
to the boundary condition of harmonically oscillating density, the plasma streams
forward in a wave-like form. Moreover, the amplitude attenuation of the plasma flow
reflected from the figures is caused by the diffusion,whose decay rate is codetermined
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Fig. B.3 Simulation results of concentrator and rotator at transient states. a1–a3 Density profiles
for the concentrator at 10 s, 22 s, and 40 s, respectively. b1–b3 Density profiles for the rotator at
10 s, 22 s, and 40 s, respectively. Adapted from Ref. [21]

by the oscillation frequency, diffusivity, and electric field. As a result, we carefully
choose suitable values to make the results more intuitive. The cloak designed with
the transformation theory helps to cancel the scattering induced by the obstacle.
Therefore, the density profiles of the background plasma keep nearly undisturbed,
which shows the validity of the theory.

The transient simulation results for the concentrator and rotator are shown in
Fig. B.3. The first row of snapshots shows the converging effect of the plasma density
gradient. In addition, as a determinant of the converging effect, a bigger ratio (rm/r1)
would bring a higher converging effect. And the maximum ratio is r2/r1. For the
rotator, the rotation of plasma flow appears in Fig. B.3b1–b3. Linearly deflecting
concentric circles in the virtual space can account for the gradual deflection of the
density profiles. The target rotation angle in the core region is determined by ω0

in Eq. (B.13). Particularly, det J = 1 for rotators helps eliminate the disturbance to
background plasma density.

To further explore the performance of the devices, we extract the density values
along a horizontal line (denoted by the yellow dashed lines in Fig. B.4) from the
results at 40 s and compare the density distribution of functional devices with that
of reference. See Fig. B.4b1–b3. Two regions should be remarked. One is the core
region of the device, and the other is the background. All the red dashed lines in
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Fig. B.4 a1–a3 Color mapping of density profiles at 40 s with a cloak, concentrator, and rotator,
respectively. b1–b3 Comparisons between density profiles in the pure background (reference) and
those with a cloak, concentrator, and rotator, respectively. The grey dashed lines denote the position
of the devices. The data are extracted along the yellow dashed line (y = 0) in (a1)–(a3). Adapted
from Ref. [21]

Fig. B.4b1–b3 denote the data of the reference, while the blue dotted lines represent
the data of the cloak, concentrator, and rotator, respectively. In Fig. B.4b1, it is clear
that the data are well overlapped in the background, and the plasma is excluded
well from the core region. Moreover, the relative difference in the plasma density
in the background region was less than 0.15%. In Fig. B.4b2, the dotted line is
denser than the dashed line in the core region without being seriously dislocated
in the background. And the relative difference was less than 0.13%. In Fig. B.4b3,
the relative difference was less than 0.01%, which is far smaller than the value of
the cloak or concentrator. As mentioned above, the accurate transformation form of
Eq. (B.8) may account for this nearly zero difference. Overall, the simulation can
confirm the feasibility and reliability of the theory.

Next, we can foresee some potential applications of the devices designed accord-
ing to the transformation theory. For example, the cloak,whose core region is isolated,
can be used to protect healthy tissue in plasma-curing infected wounds. In the field
of catalyst preparation, converged plasma flow, which usually has a denser density
of the active particle clusters, is beneficial to the interaction between plasma and cat-
alyst. Hence, the concentrator can be used to improve catalytic efficiency. Or, in the
aerospace industry, the concentrator possesses possibly an ability to improve the per-
formance of plasma-assisted engines. Besides potential functions discussed above,
separating or guiding plasma [24] could also be achieved by constructing appropri-
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ate coordinate transformation, which might be applicable to control plasma etching
or plasma depositing. Moreover, the transformation theory might also help design
plasma metamaterial, which is proposed to adjust electromagnetic waves [25, 26].
Consequently, the proposed methodology based on the transformation theory does
make sense. Furthermore, despite the difficulties of achieving the transformed diffu-
sivities and electric fields, it is still possible to realize the same effect by employing
other methods. There are many kinds of research about customizing particle diffu-
sivities. For example, using the scattering cancellation method, a bilayer diffusive
cloak can be fabricated by two homogenous materials [27]. The complex diffusivity
may also be realized according to the effective medium theory [28] or the machine
learning method [29]. As for manipulating electric fields, studies of the electrostatic
cloak and magnetic cloak could offer helpful inspiration [30, 31].

Many newmechanisms need to be studied despite unavoidable challenges. Under
more general conditions, the influence of magnetic field and gas-phase reaction in
plasma should be considered accordingly. It is full of difficulties to manipulate diffu-
sivities and electric fields flexibly since the complicated interactions between charged
particles and electromagnetic fields are too hard to control at will. Therefore, it
is essential to introduce additional theories or methods, like particle-in-cell/Monte
Carlo collision model [32] or nonequilibrium Green’s function approach [33]. Addi-
tionally, the temperature of plasmas is usually time-varied or space-varied at transient
states, thus leading to different transformation rules. In some cases, the advection
might also happen in the plasma transport. Considering the advection termwill make
the regulation of plasmas more diverse. Moreover, the spatiotemporal modulation,
a recent hot spot in heat diffusion [34], may bring fruitful properties to plasma
physics. In short, improving the transformation theory for plasmas deserves more
studies, attention, and effort.

Conclusion

We have employed a toy model, i.e., the diffusion-migration model, to describe
plasma transport. We have shown the feasibility of the transformation theory. As a
result, we have found that the transformed diffusion-migration equation is strictly
form-invariant at steady states but not at transient states. Nevertheless, we have
demonstrated that the transformed transient equation can be approximately form-
invariant by setting small diffusivities. Then we designed three conceptual model
devices, which function as a plasma cloak, concentrator, or rotator for transient
plasma transport. Our results may broaden the approach to manipulating plasma
flow and have potential applications in various fields, like medicine, the aerospace
industry, etc.



344 Appendix B: Plasma Diffusion: Transformation Scheme

References

1. Lieberman, M.A., Lichtenberg, A.J.: Principles of Plasma Discharges and Materials Process-
ing. Wiley Interscience, New Jersey (2005)

2. Li, M., Wang, Z., Xu, R., Zhang, X., Chen, Z., Wang, Q.: Advances in plasma-assisted
ignition and combustion for combustors of aerospace engines. Aerosp. Sci. Technol. 117,
106952 (2021)

3. Liang, H.,Ming, F., Alshareef, H.N.: Applications of plasma in energy conversion and storage
materials. Adv. Energy Mater. 8, 1801804 (2018)

4. Samal, S.: Thermal plasma technology: the prospective future in material processing. J. Clean
Prod. 142, 3131 (2017)

5. Tamura, H., Tetsuka, T., Kuwahara, D., Shinohara, S.: Study on uniform plasma generation
mechanism of electron cyclotron resonance etching reactor. IEEE T. Plasma Sci. 48, 3606
(2020)

6. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780
(2006)

7. Leonhardt, U.: Optical conformal mapping. Science 312, 1777 (2006)
8. Guenneau, S., Puvirajesinghe, T.M.: Fick’s second law transformed: one path to cloaking in

mass diffusion. J. R. Soc. Interface 10, 20130106 (2013)
9. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal

conductivity. Appl. Phys. Lett. 92, 251907 (2008)
10. Chen, T., Weng, C., Chen, J.-S.: Cloak for curvilinearly anisotropic media in conduction.

Appl. Phys. Lett. 93, 114103 (2008)
11. Xu, L.-J., Huang, J.-P.: Active thermal wave cloak. Chin. Phys. Lett. 37, 120501 (2020)
12. Xu, L., Huang, J.: Negative thermal transport in conduction and advection. Chin. Phys. Lett.

37, 080502 (2020)
13. Huang, J.: Thermal metamaterials make it possible to control the flow of heat at will. ES

Energy Environ. 7, 1 (2020)
14. Xu, L., Yang, S., Dai, G., Huang, J.: Transformation omnithermotics: simultaneous manipu-

lation of three basic modes of heat transfer. ES Energy Environ. 7, 65 (2020)
15. Hu, R., Zhou, S., Li, Y., Lei, D.Y., Luo, X., Qiu, C.W.: Illusion thermotics. Adv. Mater. 30,

1707237 (2018)
16. Hu, R., Huang, S., Wang, M., Luo, X., Shiomi, J., Qiu, C.W.: Encrypted thermal printing with

regionalization transformation. Adv. Mater. 31, 1807849 (2019)
17. Zhang, J., Huang, S., Hu, R.: Adaptive radiative thermal camouflage via synchronous heat

conduction. Chin. Phys. Lett. 38, 010502 (2021)
18. Chen, F.F: Introduction to Plasma Physics and Controlled Fusion. Springer, Switzerland

(1974)
19. Cui, S., Wu, Z., Lin, H., Xiao, S., Zheng, B., Liu, L., An, X., Fu, R.K.Y., Tian, X., Tan,

W., Chu, P.K.: Hollow cathode effect modified time-dependent global model and high-power
impulse magnetron sputtering discharge and transport in cylindrical cathode. J. Appl. Phys.
125, 063302 (2019)

20. Dai, G.-L.: Designing nonlinear thermal devices and metamaterials under the Fourier law: a
route to nonlinear thermotics. Front. Phys. 16, 53301 (2021)

21. Zhang, Z.R., Huang, J.P.: Transformation plasma physics. Chin. Phys. Lett. 39, 075201 (2022)
22. Zhang, Z., Xu, L., Huang, J.: Controlling chemical waves by transforming transient mass

transfer. Adv. Theory Simul. 5, 2100375 (2021)
23. Huang, J.P.: Theoretical Thermotics: Transformation Thermotics and Extended Theories for

Thermal Metamaterials. Springer, Singapore (2020)



Appendix B: Plasma Diffusion: Transformation Scheme 345

24. Lu, X., Ostrikov, K.: Guided ionization waves: the physics of repeatability. Appl. Phys. Rev.
5, 031102 (2018)

25. Rodríguez, J.A., Cappelli, M.A.: Inverse design of plasma metamaterial devices with realistic
elements (2022). https://arxiv.org/arXiv:2203.02572v1

26. Inami, C., Kabe, Y., Noyori, Y., Iwai, A., Bambina, A., Miyagi, S., Sakai, O.: Experi-
mental observation of multi-functional plasma-metamaterial composite for manipulation of
electromagnetic-wave propagation. J. Appl. Phys. 130, 043301 (2021)

27. Zhou, X., Xu, G.Q., Zhang, H.Y.: Binary masses manipulation with composite bilayer meta-
material. Compos. Struct. 267, 113866 (2021)

28. Restrepo-Flórez, J.M., Maldovan, M.: Mass separation by metamaterials. Sci. Rep. 6, 21971
(2016)

29. Hu, R., Iwamoto, S., Feng, L., Ju, S., Hu, S., Ohnishi, M., Nagai, N., Hirakawa, K., Shiomi,
J.: Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat con-
duction. Phys. Rev. X 10, 021050 (2020)

30. Narayana, S., Sato, Y.: DC magnetic cloak. Adv. Mater. 24, 71 (2012)
31. Lan, C., Yang, Y., Geng, Z., Li, B., Zhou, J.: Electrostatic field invisibility cloak. Sci. Rep. 5,

16416 (2015)
32. Huang,C.-W.,Chen,Y.-C.,Nishimura,Y.: Particle-in-cell simulationof plasma sheath dynam-

ics with kinetic ions. IEEE T. Plasma Sci. 43, 675 (2015)
33. Yu, Z.-Z., Xiong, G.-H., Zhang, L.-F.: A brief review of thermal transport in mesoscopic

systems from nonequilibrium Green’s function approach. Front. Phys. 16, 43201 (2021)
34. Xing, G., Zhao, W., Hu, R., Luo, X.: Spatiotemporal modulation of thermal emission from

thermal-hysteresis vanadium dioxide for multiplexing thermotronics functionalities. Chin.
Phys. Lett. 38, 124401 (2021)

https://arxiv.org/arXiv:2203.02572v1
 6726 2906 a 6726 2906 a
 
https://arxiv.org/arXiv:2203.02572v1

	Contents
	1 Preface
	1.1 Traditional Thermodynamics Versus Theoretical Thermotics
	1.2 Theoretical Thermotics Meets Metamaterials: Inside Versus Outside Metamaterials
	1.3 Acknowledgment and Some Additional Notes
	References

	2 Introduction
	2.1 Theoretical Thermotics
	2.2 Characteristic Length
	2.3 Book Organization
	References

	Part I Inside Metamaterials
	3 Theory for Thermal Wave Control: Transformation Complex Thermotics 
	3.1 Opening Remarks
	3.2 Theoretical Foundation
	3.3 Model Application
	3.4 Experimental Suggestion
	3.5 Conclusion
	3.6 Exercise and Solution
	References

	4 Theory for Thermoelectric Effect Control: Transformation Nonlinear Thermoelectricity 
	4.1 Opening Remarks
	4.2 Theoretical Foundation
	4.3 Finite-Element Simulation
	4.4 Model Application
	4.5 Discussion
	4.6 Conclusion
	4.7 Exercise and Solution
	References

	5 Theory for Zero-Index Conductive Cloaks: Constant-Temperature Scheme
	5.1 Opening Remarks
	5.2 Thermal Zero Index Connotation
	5.3 Zero-Index Thermal Cloak
	5.4 Finite-Element Simulation
	5.5 Laboratory Experiment
	5.6 Conclusion
	5.7 Exercise and Solution
	References

	6 Theory for Hele-Shaw Convective Cloaks: Bilayer Scheme 
	6.1 Opening Remarks
	6.2 Governing Equation
	6.3 Bilayer Scheme and Scattering-Cancellation Technology
	6.4 Convective Cloak Condition
	6.5 Finite-Element Simulation
	6.6 Discussion
	6.7 Conclusion
	6.8 Supporting Information
	6.9 Exercise and Solution
	References

	7 Theory for Coupled Thermoelectric Metamaterials: Bilayer Scheme 
	7.1 Opening Remarks
	7.2 Theoretical Foundation
	7.3 Finite-Element Simulation
	7.4 Discussion
	7.5 Conclusion
	7.6 Exercise and Solution
	References

	8 Theory for Enhanced Thermal Concentrators: Thermal Conductivity Coupling
	8.1 Opening Remarks
	8.2 Monolayer Scheme with Isotropic Thermal Conductivity
	8.3 Monolayer Scheme with Anisotropic Thermal Conductivity
	8.4 Bilayer Scheme with Isotropic Thermal Conductivity
	8.5 Finite-Element Simulation
	8.6 Experimental Suggestion
	8.7 Conclusion
	8.8 Exercise and Solution
	References

	9 Theory for Chameleonlike Thermal Rotators: Extremely Anisotropic Conductivity
	9.1 Opening Remarks
	9.2 Chameleonlike Behavior Origin
	9.3 Finite-Element Simulation
	9.4 Laboratory Experiment
	9.5 Discussion
	9.6 Conclusion
	9.7 Exercise and Solution
	References

	10 Theory for Invisible Thermal Sensors: Bilayer Scheme
	10.1 Opening Remarks
	10.2 Linear and Geometrically Isotropic Case
	10.3 Linear and Geometrically Anisotropic Case
	10.4 Nonlinear Case
	10.5 Finite-Element Simulation
	10.6 Conclusion
	10.7 Exercise and Solution
	References

	11 Theory for Invisible Thermal Sensors: Monolayer Scheme
	11.1 Opening Remarks
	11.2 Theoretical Foundation
	11.3 Finite-Element Simulation
	11.4 Laboratory Experiment
	11.5 Conclusion
	11.6 Exercise and Solution
	References

	12 Theory for Invisible Thermal Sensors: Optimization Scheme
	12.1 Opening Remarks
	12.2 Theoretical Foundation
	12.3 Optimization Problem Description
	12.4 Finite-Element Simulation
	12.5 Laboratory Experiment
	12.6 Conclusion
	12.7 Exercise and Solution
	References

	13 Theory for Omnithermal Illusion Metasurfaces: Cavity Effect
	13.1 Opening Remarks
	13.2 Theoretical Foundation
	13.3 Finite-Element Simulation
	13.4 Laboratory Experiment
	13.5 Discussion
	13.6 Conclusion
	13.7 Exercise and Solution
	References

	14 Theory for Effective Advection Effect: Spatiotemporal Modulation
	14.1 Opening Remarks
	14.2 Theoretical Foundation
	14.3 Finite-Element Simulation
	14.4 Conclusion
	14.5 Exercise and Solution
	References

	15 Theory for Diffusive Fizeau Drag: Willis Coupling
	15.1 Opening Remarks
	15.2 Theoretical Foundation
	15.3 Finite-Element Simulation
	15.4 Experimental Suggestion
	15.5 Conclusion
	15.6 Exercise and Solution
	References

	16 Theory for Thermal Wave Refraction: Advection Regulation
	16.1 Opening Remarks
	16.2 Theoretical Foundation
	16.3 Finite-Element Simulation
	16.4 Model Application
	16.5 Conclusion
	16.6 Exercise and Solution
	References

	Part II Outside Metamaterials
	17 Theory for Active Thermal Control: Thermal Dipole Effect
	17.1 Opening Remarks
	17.2 Thermal-Dipole-Based Thermotics
	17.3 Finite-Element Simulation
	17.4 Laboratory Experiment
	17.5 Discussion
	17.6 Conclusion
	17.7 Exercise and Solution
	References

	18 Theory for Thermal Bi/Multistability: Nonlinear Thermal Conductivity
	18.1 Opening Remarks
	18.2 Theoretical Foundation
	18.3 Numerical Analysis and Simulation
	18.4 Experimental Suggestion
	18.5 Discussion
	18.6 Conclusion
	18.7 Exercise and Solution
	References

	19 Theory for Negative Thermal Transport: Complex Thermal Conductivity
	19.1 Opening Remarks
	19.2 Complex Thermal Conductivity
	19.3 Negative Thermal Transport
	19.4 Experimental Suggestion
	19.5 Conclusion
	19.6 Exercise and Solution
	References

	20 Theory for Thermal Wave Nonreciprocity: Angular Momentum Bias
	20.1 Opening Remarks
	20.2 Thermal Zeeman Effect
	20.3 Thermal Wave Nonreciprocity
	20.4 Scalar Interference
	20.5 Conclusion
	20.6 Exercise and Solution
	References

	21 Theory for Thermal Geometric Phases: Exceptional Point Encirclement
	21.1 Opening Remarks
	21.2 Exceptional Point
	21.3 Thermal Geometric Phase
	21.4 Conclusion
	21.5 Exercise and Solution
	References

	22 Theory for Thermal Edge States: Graphene-Like Convective Lattice
	22.1 Opening Remarks
	22.2 Theoretical Foundation
	22.3 Finite-Element Simulation
	22.4 Discussion
	22.5 Conclusion
	22.6 Exercise and Solution
	References

	23 Summary and Outlook
	23.1 Summary
	23.2 Outlook
	References

	Appendix A Particle Diffusion: Exceptional Points, Geometric Phases, and Bilayer Cloaks
	Opening Remarks
	Exceptional Point
	Geometric Phase
	Bilayer Cloak
	Conclusion
	Appendix B Plasma Diffusion: Transformation Scheme
	Opening Remarks
	Theoretical Foundation
	Results and Discussion
	Conclusion

