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Chapter 1 )
Preface R

1.1 Traditional Thermodynamics Versus Theoretical
Thermotics

What you do not know always determines what you know. Unfortunately, what you
know often hinders you from knowing what you do not know yet. In this sense,
it is valuable for inheritance and innovation to systematize the existing scattered
knowledge. We believe now is the time to present “theoretical thermotics” as a
new discipline with systematic knowledge constructed by transformation thermotics
and its extended theories. See Fig. 1.1. Here, transformation thermotics is known to
originate from transformation optics [7], but the latter always handles wave systems
rather than diffusion systems (that serve as a focus of transformation thermotics).

If you want to be a big tree, compare yourself with other big trees, rather than
grass. Let us compare “theoretical thermotics” with “traditional thermodynamics”.
As shown in Table 1.1, theoretical thermotics distinctly differs from traditional ther-
modynamics. Certainly, as one of the most fundamental theoretical frameworks for
describing nature, traditional thermodynamics must also work for all the artificial
systems studied by theoretical thermotics. Nevertheless, theoretical thermotics has
its purposes, systems, and frameworks, thus distinguishing it from traditional ther-
modynamics (Table 1.1).

Though the word “thermotics” is not commonly used, I choose it for the new dis-
cipline, “theoretical thermotics”. Here, “thermotics” can always be translated into
“heat transfer (heat transfer theory)” and sometimes into ’thermodynamics”. But,
the reason why I do not choose to use “theoretical heat transfer” is two-folded: I
hope to add new concepts (say, those from condensed matter physics, optics, statis-
tical physics, etc.) to “thermotics”, which goes beyond traditional heat transfer; I do
not hope the existing knowledge of conventional “heat transfer” affects the under-
standing of the connotation of “theoretical thermotics”. These two reasons also hold
for another name, “theoretical thermodynamics”. If a name can be easily followed
without confusion, work can be accomplished, one of Confucius’s sayings. Anyway,
the future name is up to others, but what we can do now is up to us.

© The Author(s) 2023 1
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Theor\r of Function 1

Pr Extended Extended

Transformation Theory A 3 Theory B

Thermotics

Fig. 1.1 The new discipline of “theoretical thermotics” is constructed by the theory of transfor-
mation thermotics and its extended theories with different levels. All these theories are connected
with functions/properties/behaviors. For example, “theory of transformation thermotics for steady
state” [1, 2] = “thermal cloaking (Function 1)” [1, 2] <= “scattering cancellation (Extended The-
ory A)” [3, 4] = “thermal camouflage (Function 2)” [5] <= “effective medium theory (Extended
Theory B)” [6] = - - -

Table 1.1 Traditional thermodynamics versus theoretical thermotics. Here, the phrase “passive
description” means that people cannot change the heat phenomena of natural systems but under-
stand them according to the four thermodynamic laws. In contrast, the phrase “active control”
represents that people can change the heat phenomena at will by designing artificial systems based
on transformation thermotics and its extended theories. These theories also make theoretical ther-
motics different from the existing heat transfer theory (which is much more familiar to engineering
thermophysicists than physicists). Adapted from Ref. [8]

Main purpose Key systems Theoretical framework

Theoretical thermotics | Active control Artificial systems Transformation
thermotics and
extended theories

For transformation thermotics, the starting point of theoretical thermotics, its
foundations could be summarized as “four properties” in the following.

A. Invariance: Thermal equations have form invariance. Many thermal equations,
including those describing heat conduction, have the same form in different coordi-
nate systems;

B. Anisotropy: Thermophysical quantities can be anisotropic. The physical prop-
erties can be anisotropic, which are described by anisotropic thermophysical quan-
tities like thermal conductivity;

C. Inhomogeneity: Thermophysical quantities can be inhomogeneous. The phys-
ical properties can be non-uniformly distributed in space, which are described by
inhomogeneous thermophysical quantities like thermal conductivity;

D. Effectiveness: Thermophysical quantities have effective properties. The ther-
mophysical quantities described in B and C above can be equivalent to the composite
of isotropic homogeneous materials.

Based on the above A, we can deduce B and C, and the prior existence of B
and C also ensures the necessity of A’s existence. Therefore, A, B, and C lie in the
same column, supporting and guarding each other. More importantly, B and C make
the existence of D indispensable. Otherwise, the experiment cannot easily verify the
theoretical prediction based on A-C, thus blocking the engineering application.
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The four foundations (A-D) help construct the whole discipline of theoretical
thermotics by starting from transformation thermotics.

1.2 Theoretical Thermotics Meets Metamaterials: Inside
Versus Outside Metamaterials

Theoretical thermotics is interdisciplinary with three first-class disciplines, i.e.,
physics, engineering thermophysics, and materials science; see Fig. 1.2. On the other
hand, the mature discipline of metamaterials is also interdisciplinary with many
disciplines, say, optics, electromagnetics, acoustics, classical mechanics, quantum
mechanics, etc. When theoretical thermotics meets metamaterials, what will happen?
They give birth to a new direction, thermal metamaterials [9]; see Fig. 1.3. The first
monograph on thermal metamaterials was published in 2020 [10]. Thanks to Ref. [9],
the name “thermal metamaterials” was first used to cover the five works on thermal
cloaks for controlling thermal conduction [1, 2, 11-13]. The first monograph on ther-
mal cloaks was published in 2022 [14]. The connotation of thermal metamaterials
has been extended significantly from thermal conduction to convection and radiation.
As a result, so far, theoretical thermotics has been studied and developed from pure
science to technology and engineering; see Fig. 1.4. The biennial International Con-
ference on Thermodynamics and Thermal Metamaterials has been organized since
2020 to promote the development; see Fig. 1.5.

The key factor for treating an artificial structural material as a metamaterial is that
the construction unit should have a characteristic length. The concept of effective
media helps to understand the novel properties associated with metamaterials. For
example, the characteristic length of electromagnetic metamaterials is the incident
wavelength, that of thermal conduction metamaterials is the diffusion length, that
of thermal convection metamaterials is the migration length of fluids, and that of
thermal radiation metamaterials is the radiation wavelength.

Metamaterials can be classified in diverse ways: wave metamaterials versus dif-
fusion metamaterials, programmable metamaterials versus unprogrammable meta-
materials, bulk metamaterials versus metasurfaces, and so on. Figure 1.3 displays
that theoretical thermotics can be classified as “inside metamaterials” and “outside
metamaterials”. Currently, the part of “inside metamaterials” has received much
attention [8, 10, 20-25]. In the meantime, the part of “outside metamaterials” is
rapidly developing as well [26-28].
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Theoretical

Thermotics

Thermophysics

Fig. 1.2 Theoretical thermotics is interdisciplinary with three first-class disciplines, namely,
physics (thermodynamics and statistical physics), engineering thermophysics (heat transfer), and
materials science (material thermodynamics). A huge number of articles have appeared in the profes-
sional journals corresponding to these three disciplines (such as Physical Review Letters, Physical
Review E, Physical Review Applied, and Applied Physics Letters for physics; International Journal
of Heat and Mass Transfer for engineering thermophysics; and Advanced Materials for materi-
als science), besides those interdisciplinary journals (say, Science, Nature, and Proceedings of the
National Academy of Sciences of the United States of America)

Fig. 1.3 Theoretical
thermotics (an
interdisciplinary subject)
meets metamaterials (another
interdisciplinary subject),

Lo Thermal

ielding a new central branch - i
zf therrial metamaterials. M eta m ate ria |S Metam- TheoretlFal
Metamaterials have a aterials Thermotics
characteristic length larger or Characteristic

much larger than the Length
construction unit

1.3 Acknowledgment and Some Additional Notes

Liu-Jun Xu, the first author of this monograph, would like to thank Prof. Ji-Ping
Huang for involving him in this book writing. Supervised by Prof. Huang, Liu-Jun
came into contact with and immersed in theoretical thermotics, making his five-year
Ph.D. career fulfilling and rewarding. Liu-Jun also appreciates Prof. Cheng-Wei
Qiu’s careful guidance when Liu-Jun spent one year at the National University of
Singapore. He has received a doctoral degree from the Department of Physics, Fudan
University, Shanghai, China, in June 2022. (Notes: Liu-Jun Xu wrote this paragraph
in the third person.)
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Fig. 1.4 Theoretical
thermotics contains the
research on the whole chain
from science (from zero to
one) to technology (from
virtual to real) and
engineering (from useless to
useful). This book focuses
on the part of science. The
parts of technology and
engineering exist in

Ref. [15-19]

Science

The content of this book mainly comes from the articles published by my group.
We add “Exercise and Solution” because we hope this book could be a monograph
for experts to read and a textbook for newcomers to practice (so that they could
engage in this new field as soon as possible). Incidentally, each chapter in the book
has its symbols to facilitate reading. In this sense, to read this book, the reader may
start with any chapter.

I am also grateful to my family members, especially my wife (Yan-Jiao Zhao)
and my two daughters (Ji-Yan Huang with the nickname of Qian-Qian and Ji-Yang
Huang with the nickname of Yue-Yue), for bringing me great happiness. Qian-Qian
also helped polish Figs. 1.1, 1.2, 1.3 and 1.4 in this preface. I have stayed at home or
the residential area due to COVID-19 between April 1, 2022 and May 31, 2022.
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Fig. 1.5 Group photo: 2020 International Conference on Thermodynamics and Thermal Metama-
terials, held on August 7-9, 2020, in Zoom (Online)

When writing this preface, I refer to my previous book Ref. [10].

Last, we acknowledge financial support from the National Natural Science Foun-
dation of China under Grants No. 11725521 and No. 12035004 and the Science and
Technology Commission of Shanghai Municipality under Grant No. 20JC1414700.

Shanghai, China Ji-Ping Huang
June 17, 2022
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Abstract In this chapter, we present the background and organization of this book.

Keywords Theoretical thermotics + Characteristic lengths - Metamaterials and
beyond

2.1 Theoretical Thermotics

Theoretical thermotics originates from the theory of transformation thermotics
[1, 2]. With the artificial heat regulation development, the connotation of theoretical
thermotics has been greatly extended, not limited to those theories for designing
thermal cloaks, concentrators, and rotators. Therefore, theoretical thermotics is the
summarization of “transformation thermotics and extended theories”. For clarity,
we mainly divide theoretical thermotics into three levels according to the historical
development.

The first level (LV1) is those transformation-related theories for designing cloak-
ing, concentrating, rotating, etc. Since the theory of transformation thermotics was
proposed for controlling steady and passive heat conduction in 2008 [1, 2], extended
transformation theories have been developed successively from steady and passive
to transient and active heat conduction [3]. Then, temperature-dependent (nonlin-
ear) thermal conductivities were considered for developing nonlinear transformation
thermotics [4]. These coordinate transformations were all time-independent, mak-
ing it challenging to deal with time-dependent coordinate transformations. Thus,
spatiotemporal coordinate transformations were discussed [5]. Beyond conduction,
convection is also a primary heat transfer mode, so researchers developed a trans-
formation theory for convection control [6]. Nevertheless, it was still challenging to
guide convective velocities directly. Therefore, the Darcy law in porous media was
introduced to transform convection and ensure feasibility [7, 8]. Another convec-
tive model with creeping flows was also explored [9]. The last basic heat transfer
scheme is radiation, and researchers also proposed a transformation theory to reg-
ulate the radiation described by the Rosseland diffusion approximation [10]. With
these efforts, conduction, convection, and radiation can be unified in the transfor-
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mation framework [11]. Besides, heat transfer may also be accompanied by other
physical processes, such as electric tra