79 research outputs found

    Single-longitudinal-mode Fiber Ring Lasers With Taper-coupled Double-microsphere-cavities

    Get PDF
    This letter proposes and demonstrates a fiber ring laser using taper-coupled double-microsphere-cavities (DMC) to achieve single-longitudinal-mode operation. Whispering-gallery-mode (WGM) intensity distributions and transmission spectra of the DMC with different microsphere diameters are investigated both theoretically and experimentally. Due to the Vernier effect, the DMC can produce WGM spectra with a higher extinction ratio, a higher side-mode-suppression ratio (SMSR), a larger FSR and a narrower bandwidth, as compared to a single-microsphere cavity. A single-longitudinal-mode fiber ring laser operating near 1.5 μm with a bandwidth of < 0.01 nm and a signal-to-background ratio of about 60 dB is demonstrated using the taper-coupled DMC as an all-fiber mode selector

    Evaluation and Research Analysis of Marine Ecological Suitability

    Get PDF
    Whether in the past, present and future, marine ecological environment is the most important part in the history of human development, we can call it the "patron saint" of mankind. It provides all kinds of resources and energy needed for social production, and plays an irreplaceable role in species diversity and ecological balance. However, the weakening of self-purification ability of marine ecosystem, the decline of pollution purification ability, the deterioration of marine ecological environment, and the decline of biological resources and biodiversity ,etc. all these bring fatal impact to coastal areas and even the whole terrestrial ecosystem, it is imminent to strengthen ecological protection. It is our bounden duty to protect the living environment of human. We have the right to enjoy the convenience brought by the natural environment, so we should fulfill the obligation to protect it.[Chinese Library Classification Number]   X31        [Document Code]  

    Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions

    Get PDF
    © 2015, Li et al. In this article, we study the existence of positive solutions for a class of singular nonlinear fractional differential equations with Riemann-Stieltjes integral boundary conditions. Using the properties of the Green function and the fixed point theory in cones, we obtain some results on the existence of positive solutions. Our results extend and improve many known results including singular and nonsingular cases

    Ship Abnormal Behavior Detection Method Based on Optimized GRU Network

    No full text
    Ship abnormal behavior detection is an essential part of maritime supervision. It can assist maritime departments to conduct real-time supervision on a certain sea area, avoid ship risks, and improve the efficiency of sea area supervision. Given the problems of complex detection methods, poor detection effectiveness, and low detection accuracy, a Gated Recurrent Unit (GRU) was proposed for ship abnormal behavior detection. Under the premise of introducing the attention mechanism into a GRU, the optimal GRU structure parameters were obtained through the intelligent algorithm to perform deeper feature extraction and train the ship abnormal behavior based on the optimized GRU neural network, so as to realize the detection and recognition of the trajectory data to be measured. Finally, based on the public data set and the trajectory data of the inward and outward ports of ships issued by Nanjing Section, Jiangsu Maritime Bureau, the TensorFlow frame was used to establish an abnormal behavior detection model. The simulation results demonstrated that the abnormal behavior detection model shortened the abnormal detection time. The abnormal behavior detection model used in the detection of ship abnormal behavior enhanced the accuracy and stability of the abnormal behavior identification and verified the validity and superiority of this method

    Study of the LQRY-SMC Control Method for the Longitudinal Motion of Fully Submerged Hydrofoil Crafts

    No full text
    The control system is one of the important components of the hydrofoil craft. By adjusting the navigation attitude of the craft, the hydrofoil craft can navigate stably and safely in the turbulent environment. Aiming at the problem that existing control algorithms have poor stability in the longitudinal motion control of hydrofoil craft, the longitudinal motion reduction is limited, and there are excessive requirements for accurate disturbance wave data. Based on the fully submerged hydrofoil craft model, this article proposes a joint control method LQRY-SMC combining linear-quadratic optimal control with output regulation (LQRY) and sliding-mode control (SMC), and adds genetic algorithm to optimize the weighting matrix parameters, get better control-feedback gain, improve the global optimal-control stability, thus improving the comfort of the crew, and prevent the attack of the hull, deck wetness and damage to instruments. The simulation results show that compared with the existing methods, the heave displacement and pitch angle obtained by LQRY-SMC under the turbulent flow of different significant wave heights are reduced by about 50%, and the influence of longitudinal motion on hydrofoil crafts is avoided to a large extent, which proves the effectiveness and superiority of the method proposed

    Study of the LQRY-SMC Control Method for the Longitudinal Motion of Fully Submerged Hydrofoil Crafts

    No full text
    The control system is one of the important components of the hydrofoil craft. By adjusting the navigation attitude of the craft, the hydrofoil craft can navigate stably and safely in the turbulent environment. Aiming at the problem that existing control algorithms have poor stability in the longitudinal motion control of hydrofoil craft, the longitudinal motion reduction is limited, and there are excessive requirements for accurate disturbance wave data. Based on the fully submerged hydrofoil craft model, this article proposes a joint control method LQRY-SMC combining linear-quadratic optimal control with output regulation (LQRY) and sliding-mode control (SMC), and adds genetic algorithm to optimize the weighting matrix parameters, get better control-feedback gain, improve the global optimal-control stability, thus improving the comfort of the crew, and prevent the attack of the hull, deck wetness and damage to instruments. The simulation results show that compared with the existing methods, the heave displacement and pitch angle obtained by LQRY-SMC under the turbulent flow of different significant wave heights are reduced by about 50%, and the influence of longitudinal motion on hydrofoil crafts is avoided to a large extent, which proves the effectiveness and superiority of the method proposed

    Performance, Reaction Pathway and Kinetics of the Enhanced Dechlorination Degradation of 2,4-Dichlorophenol by Fe/Ni Nanoparticles Supported on Attapulgite Disaggregated by a Ball Milling–Freezing Process

    No full text
    Attapulgite (ATP) disaggregated by a ball milling–freezing process was used to support Fe/Ni bimetallic nanoparticles (nFe/Ni) to obtain a composite material of D-ATP-nFe/Ni for the dechlorination degradation of 2,4-dichlorophenol (2,4-DCP), thus improving the problem of agglomeration and oxidation passivation of nanoscale zero-valent iron (nFe) in the dechlorination degradation of chlorinated organic compounds. The results show that Fe/Ni nanoparticle clusters were dispersed into single spherical particles by the ball milling–freezing-disaggregated attapulgite, in which the average particle size decreased from 423.94 nm to 54.51 nm, and the specific surface area of D-ATP-nFe /Ni (97.10 m2/g) was 6.9 times greater than that of nFe/Ni (14.15 m2/g). Therefore, the degradation rate of 2,4-DCP increased from 81.9% during ATP-nFe/Ni application to 96.8% during D-ATP-nFe/Ni application within 120 min, and the yield of phenol increased from 57.2% to 86.1%. Meanwhile, the reaction rate Kobs of the degradation of 2,4-DCP by D-ATP-nFe/Ni was 0.0277 min−1, which was higher than that of ATP-nFe/Ni (0.0135 min−1). In the dechlorination process of 2,4-DCP by D-ATP-nFe/Ni, the reaction rate for the direct dechlorination of 2,4-DCP of phenol (k5 = 0.0156 min−1) was much higher than that of 4-chlorophenol (4-CP, k2 = 0.0052 min−1) and 2-chlorophenol (2-CP, k1 = 0.0070 min−1), which suggests that the main dechlorination degradation pathway for the removal of 2,4-DCP by D-ATP-nFe/Ni was directly reduced to phenol by the removal of two chlorine atoms. In the secondary pathway, the removal of one chlorine atom from 2,4-DCP to generate 2-CP or 4-CP as intermediate was the rate controlling step. The final dechlorination product (phenol) was obtained when the dechlorination rate accelerated with the progress of the reaction. This study contributes to the broad topic of organic pollutant treatment by the application of clay minerals

    Morphologically Controlled Synthesis of Cs<sub>2</sub>SnCl<sub>6</sub> Perovskite Crystals and Their Photoluminescence Activity

    No full text
    The Cs2SnX6 perovskites have attracted much attention due to excellent optoelectronic properties and high stability. In the present work, we have focused on the morphology control and photoluminescence characteristics of the Cs2SnCl6 perovskite crystals. The synthesis process of the Cs2SnCl6 crystals includes two stages composed of the formation of initial crystals and the growth of Cs2SnCl6; the later originated from the oxidization of CsSnCl3. This process has been confirmed by Scanning electron microscope (SEM) and X-rays diffraction (XRD). By controlling the concentration of the initial reactants and hydrochloric acid in the solution to change the supersaturation of the solution, different crystal morphologies, such as truncated octahedron, octahedron, hexapod, quasi-sphere, have been obtained. In relatively a low supersaturation solution, the amount of growth units dominates the crystal growth process to obtain the hexapod and self-assembly crystals. In contrast, in relatively high supersaturation solution, nucleation predominates to yield small size truncated octahedrons and near-spherical Cs2SnCl6 crystals. The synthesized Cs2SnCl6 crystals have shown a wide emission band peaking at 450 nm with full width at half maximum (FWHM) 63 nm due to the defects introduced by Sn2+. The photoluminescence intensities of crystals synthesized at various conditions exhibited considerable difference, which was about 60 times between the highest and the lowest
    corecore