2,600 research outputs found

    On transverse momentum event–by–event fluctuations in string hadronic models

    Get PDF
    Transverse momentum event-by-event fluctuations are studied within the string-hadronic model of high energy nuclear collisions, LUCIAE. Data on non-statistical pT fluctuations in p+p interactions are reproduced. Fluctuations of similar magnitude are predicted for nucleus-nucleus collisions, in contradiction to the preliminary NA49 results. The introduction of a string clustering mechanism (Firecracker Model) leads to a further, significant increase of pT fluctuations for nucleus-nucleus collisions. Secondary hadronic interactions, as implemented in LUCIAE, cause only a small reduction of pT fluctuations

    Presymptomatic change in microRNAs modulates Tau pathology.

    Get PDF
    MicroRNAs (miRs) are 18~23 nucleotides long non-coding RNAs that regulate gene expression. To explore whether miR alterations in tauopathy contribute to pathological conditions, we first determined which hippocampal miRs are altered at the presymptomatic and symptomatic stages of tauopathy using rTg4510 mice (Tau mice), a well-characterized tauopathy model. miR-RNA pairing analysis using QIAGEN Ingenuity Pathway Analysis (IPA) revealed 401 genes that can be regulated by 71 miRs altered in Tau hippocampi at the presymptomatic stage. Among several miRs confirmed with real-time qPCR, miR142 (-3p and -5p) in Tau hippocampi were significantly upregulated by two-weeks of age and onward. Transcriptome studies by RNAseq and IPA revealed several overlapping biological and disease associated pathways affected by either Tau or miR142 overexpression, including Signal Transducer and Activator of Transcription 3 (Stat3) and Tumor Necrosis Factor Receptor 2 (Tnfr2) signaling pathways. Similar to what was observed in Tau brains, overexpressing miR142 in wildtype cortical neurons augments mRNA levels of Glial Fibrillary Acidic Protein (Gfap) and Colony Stimulating Factor 1 (Csf1), accompanied by a significant increase in microglia and reactive astrocyte numbers. Taken together, our study suggests that miR alterations by Tau overexpression may contribute to the neuroinflammation observed in Tau brains

    Exact soliton solution and inelastic two-soliton collision in spin chain driven by a time-dependent magnetic field

    Full text link
    We investigate dynamics of exact N-soliton trains in spin chain driven by a time-dependent magnetic field by means of an inverse scattering transformation. The one-soliton solution indicates obviously the spin precession around the magnetic field and periodic shape-variation induced by the time varying field as well. In terms of the general soliton solutions N-soliton interaction and particularly various two-soliton collisions are analyzed. The inelastic collision by which we mean the soliton shape change before and after collision appears generally due to the time varying field. We, moreover, show that complete inelastic collisions can be achieved by adjusting spectrum and field parameters. This may lead a potential technique of shape control of soliton.Comment: 5 pages, 5 figure

    Simulation of local contact conditions in the secondary shear zone in dry and wet metal cutting

    Get PDF
    Cutting fluids significantly influence the contact conditions in metal cutting, e.g. stresses or contact areas. Due to the limited accessibility of the chip-tool contact, the identification of contact conditions is challenging. In this paper, a simulation model is created and used to identify the real contact area in dry and wet cutting. Experimentally identified normal stresses and chip-tool roughness serve as input parameters. The results show higher normal stresses in wet cutting, which results in a higher real contact area between rake face and chip

    Multiple abiotic and biotic drivers of long-term wood decomposition within and among species in the semi-arid inland dunes:A dual role for stem diameter

    Get PDF
    Litter decomposition in sunny, semi-arid and arid ecosystems is controlled by both biotic factors including litter traits and abiotic factors including UV light, but for wood decomposition it still remains uncertain which of these environmental factors are the predominant controls among different woody species. In these dry ecosystems, it is likely that the stem diameter and spatial position of the dead wood are of particular importance especially where wood can be buried versus exposed due to substrate displacement by wind. Here we focus on the fact that stem diameter can affect decomposition rates both via the relative surface exposure to sunlight or soil and via higher resource quality of narrower stems to decomposers. In a field manipulation experiment, we investigated the relative importance of litter position (sand burial vs. surface vs. suspended above the surface), UV radiation (block versus pass) and stem diameter class (<2, 2–4, 4–8, 8–13 and 13–20 mm) on the mass loss of woody litters of four shrub species in an inland dune ecosystem in northern China. We found that after 34 months of in situ incubation, the mass loss of buried woody litters was three times faster than those of suspended and surface woody litters (53.5 ± 2.7%, 17.0 ± 1.0% and 14.4 ± 1.2%, respectively). In surface and suspended positions, litter decomposition rates were almost equally low and most mass loss was during the first 2 years, when bark was still attached and UV radiation had no significant effect on woody litter mass loss. These findings suggest that sand burial is the main environmental driver of wood decomposition via its control on microbial activity. Moreover, wood N and diameter class were the predominant factors driving woody litter decomposition. A key finding was that wider stems had slower litter decomposition rates not only directly (presumably via greater relative surface exposure) but also indirectly via their higher wood dry matter content or lower wood N; these effects were modulated by litter position. Our findings highlight a dual role of stem diameter on wood decomposition, that is, via relative surface exposure and via wood traits. The accuracy and confidence of global carbon cycling models would be improved by incorporating the different effects of stem diameter on woody litter decomposition and below-ground wood decomposition processes in drylands
    • 

    corecore