394,304 research outputs found
A Quasi-Spherical Gravitational Wave Solution in Kaluza-Klein Theory
An exact solution of the source-free Kaluza-Klein field equations is
presented. It is a 5D generalization of the Robinson-Trautman quasi-spherical
gravitational wave with a cosmological constant. The properties of the 5D
solution are briefly described.Comment: 10 pages Latex, Revtex, submitted to GR
Recommended from our members
Longitudinal association between smoking abstinence and depression severity in those with baseline current, past, and no history of major depressive episode in an international online tobacco cessation study
What can gauge-gravity duality teach us about condensed matter physics?
I discuss the impact of gauge-gravity duality on our understanding of two
classes of systems: conformal quantum matter and compressible quantum matter.
The first conformal class includes systems, such as the boson Hubbard model
in two spatial dimensions, which display quantum critical points described by
conformal field theories. Questions associated with non-zero temperature
dynamics and transport are difficult to answer using conventional field
theoretic methods. I argue that many of these can be addressed systematically
using gauge-gravity duality, and discuss the prospects for reliable computation
of low frequency correlations.
Compressible quantum matter is characterized by the smooth dependence of the
charge density, associated with a global U(1) symmetry, upon a chemical
potential. Familiar examples are solids, superfluids, and Fermi liquids, but
there are more exotic possibilities involving deconfined phases of gauge fields
in the presence of Fermi surfaces. I survey the compressible systems studied
using gauge-gravity duality, and discuss their relationship to the condensed
matter classification of such states. The gravity methods offer hope of a
deeper understanding of exotic and strongly-coupled compressible quantum
states.Comment: 34 pages, 11 figures + 16 pages of Supplementary Material with 4
figures; to appear in Annual Reviews of Condensed Matter Physics; (v2) add a
figure, and clarifications; (v3) final version; (v4) small correction
Phase-field modeling droplet dynamics with soluble surfactants
Using lattice Boltzmann approach, a phase-field model is proposed for simulating droplet motion with soluble surfactants. The model can recover the Langmuir and Frumkin adsorption isotherms in equilibrium. From the equilibrium equation of state, we can determine the interfacial tension lowering scale according to the interface surfactant concentration. The model is able to capture short-time and long-time adsorption dynamics of surfactants. We apply the model to examine the effect of soluble surfactants on droplet deformation, breakup and coalescence. The increase of surfactant concentration and attractive lateral interaction can enhance droplet deformation, promote droplet breakup, and inhibit droplet coalescence. We also demonstrate that the Marangoni stresses can reduce the interface mobility and slow down the film drainage process, thus acting as an additional repulsive force to prevent the droplet coalescence
- …