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Phase-field modeling droplet dynamics with soluble

surfactants

Haihu Liu, Yonghao Zhang∗

Department of Mechanical Engineering, University of Strathclyde, Glasgow G1 1XJ, UK

Abstract

Using lattice Boltzmann approach, a phase-field model is proposed for sim-
ulating droplet motion with soluble surfactants. The model can recover the
Langmuir and Frumkin adsorption isotherms in equilibrium. From the equi-
librium equation of state, we can determine the interfacial tension lowering
scale according to the interface surfactant concentration. The model is able
to capture short-time and long-time adsorption dynamics of surfactants. We
apply the model to examine the effect of soluble surfactants on droplet defor-
mation, breakup and coalescence. The increase of surfactant concentration
and attractive lateral interaction can enhance droplet deformation, promote
droplet breakup, and inhibit droplet coalescence. We also demonstrate that
the Marangoni stresses can reduce the interface mobility and slow down the
film drainage process, thus acting as an additional repulsive force to prevent
the droplet coalescence.

Keywords:

Phase field model, lattice Boltzmann model, soluble surfactant, Marangoni
stress, Frumkin adsorption, droplet breakup and coalescence

1. Introduction

Surfactants are interfacially active agents that play an important role
in many industrial processes, ranging from crude oil recovery, manufacture
of cosmetics and pharmaceutical products, to food processing [1]. More re-
cently, surfactants have been widely used in microfluidic applications [2].
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1



Commonly-used surfactants are the molecules with polar head groups ap-
pended to hydrophobic tails, which selectively adhere to fluid interfaces form-
ing a buffer zone to reduce the system energy. In microfluidic systems, sur-
factants are often used to generate small droplets and make them kinetically
stable as emulsions even though water-in-oil and oil-in-water emulsions are
thermodynamically unstable [3]. Capillary effect usually plays a dominant
role in microfluidic system, and the presence of surfactants at interface will
greatly modify interfacial tension. Therefore, surfactants are expected to sig-
nificantly alter droplet dynamical behavior in the microfluidic devices [4, 5, 6].
A number of recent theoretical or numerical studies have reported to iden-
tify the mechanisms of droplet deformation, breakup and coalescence in the
presence of surfactants [7, 8, 9, 10, 11, 12, 13, 14].

Modelling interfacial dynamics with soluble surfactants in a multiphase
system is a daunting task. The surfactant molecules will self-assemble into
a monolayer at the oil/water interface, thereby lowering interfacial tension.
When the bulk concentrations are below the critical micelle concentration
(CMC) and the surfactant lateral interactions are not important, the Lang-
muir adsorption can describe the realistic equilibrium adsorption behavior of
non-ionic surfactants [15]. When the surfactant lateral interactions cannot
be neglected, the Frumkin adsorption is more appropriate. Both advection
and diffusion are important for surfactant transport at the interface and in
the bulk phases. Non-uniform surfactant concentration (mainly at the inter-
face) creates non-uniform interfacial tension forces and Marangoni stresses in
the fluid, which in turn affect the flowfield. Meanwhile, the flowfield will in-
fluence the surfactant distribution. The interaction between surfactants and
flowfield is highly non-linear, which poses a computational challenge. Most
previous numerical work [7, 16, 17, 18, 19, 12, 20, 21] on surfactants has uti-
lized the sharp interface models with an equilibrium equation of state relating
dynamic interfacial tension to local surfactant concentration. The sharp in-
terface models are built upon the conservation laws at the macroscopic level
for interfacial dynamics, which have been developed from the original model
proposed by Stone and Leal [7]. The models have been successfully applied to
simulate interfacial flows in an oil/water/surfactant system. However, these
sharp interface models suffer from several drawbacks:(i) dynamic interfacial
tension relies on an asserted equilibrium equation of state, which is also as-
sumed to be valid beyond the equilibrium state; (ii) for interfacial flows with
soluble surfactants, mass transfer between the interface and the bulk fluids
requires an external boundary condition, which cannot uniquely arise from
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the model itself; (iii) model extension for more complicated systems, such as
ionic surfactant solutions, is not easy [22]; (iv) numerical stability becomes a
problem for the flows with large topological changes, such as droplet breakup
and coalescence.

In contrast to sharp interface model, phase-field method, which can re-
solve the interface structure via an appropriate free energy functional, has
shown great potential to simulate the multiphase flow problems [23, 24, 25,
26, 27, 28, 29]. In a phase-field model, the free energy not only determines
the equilibrium properties, but also strongly influences the dynamics of the
multiphase system. The transport of physical quantities can be linked to the
free energy by a generalized hydrodynamic theory [30]. Hence, the phase-
field models have a firm physical basis for multiphase flows, which is contrast
to the traditional computational fluid dynamics (CFD) methods, e.g. the
volume-of-fluid, level-set and front-tracking methods. Although phase-field
models have shown promise for computation of binary mixture with surfac-
tants [31, 32, 33], significant effort is still required to improve the model for
realistic oil/water/surfactant systems. Here, we will present a generalized
phase-field model in a lattice Boltzmann (LB) framework to simulate the
adsorption of surfactants at the interface and its effect on droplet dynamics.

2. Phase-field model for immiscible fluids containing surfactants

The ternary system we consider consists of a nonionic surfactant solute
and two immiscible solvents, say, oil and water. We aim to develop an
improved phase-field model that is able to capture both thermodynamic and
hydrodynamic effects associated with surfactants in realistic ternary systems.

2.1. Free energy theory

The thermodynamics of a system is determined by its free energy func-
tional. The Landau-Ginzburg free energy functional has been commonly used
to describe a binary mixture [34]

F =

∫

d~x

[

−a
2
φ2 +

b

4
φ4 +

κ

2
(∇φ)2

]

, (1)

where φ = (ρo − ρw)/ρ represents the relative concentration of the local
compositions. As we aim to deal with two immiscible fluids, and oil and
water are most commonly used in microfluidic applications, we use oil and
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water to represent two immiscible fluids here. ρ = ρo+ρw is the total density,
while ρo and ρw are the densities of oil and water phases respectively. The first
two terms in Eq.(1) correspond to the bulk phase behaviour, with minima
φ = ±φb = ±

√

a/b for the oil and water respectively. The last term reflects
the cost of sustaining the oil/water interface. Hereafter, the subscripts ‘b’
and ‘0’ denote the bulk phases and interface, and the superscripts ‘+’ and ‘-’
represent the oil and water bulk phases respectively.

As surfactants favor to adhere to the oil/water interface and lower the in-
terfacial tension, and the interfacial tension lowering scale depends on the lo-
cal surfactant concentration. To account for the surfactant effect, additional
terms are introduced to the original Landau-Ginzburg free energy functional.
Laradji et al. [35] proposed the free energy functional in the form of

F =

∫

d~x

[

−a
2
φ2 +

b

4
φ4 +

κ

2
(∇φ)2 + c

2
ψ2 +

w

2
ψ2φ2 − d

2
ψ(∇φ)2

]

, (2)

where ψ is the surfactant local concentration in an oil/water/surfactant sys-
tem. The term c

2
ψ2 prevents the surfactants from forming clusters. The

local coupling term w
2
ψ2φ2 guarantees small local surfactant concentration

in the bulk phases, which is introduced to numerically stablise diffuse inter-
face model for microemulsions. The last nonlocal coupling term −d

2
ψ(∇φ)2

accounts for the energetic preference of surfactants when they are absorbed
at the oil/water interface, favoring the lowering of interfacial tension.

Theissen and Gompper [31] chose a slightly different form of free energy
functional to study the dynamics of spontaneous emulsification, where the
local coupling term is replaced by w

2
ψφ2 to deal with the same solubility

of surfactant in the bulk phases. Recently, Furtado et al. [33] applied a
simpler form of free energy functional to phenomenologically describe the
surfactant effect. In contrast to Eq. (2), the local coupling term vanishes
and κ is expressed as a function of ψ to relate the interfacial tension to the
surfactant concentration. We have derived the equilibrium equation of state
following the free energy functional presented by Theissen and Gompper [31]
(the details are shown in Appendix A), i.e.

σ(ψ0) =
4φ2

b

3ξ
(κ− dψ0), (3)

where ξ is a parameter proportional to the interface thickness, which is given
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by

ξ2 =
2(κ− dψ0)

φ2
b(b− w2

2c
)
=

2[κ− d(ψb +
φ2
b
w

2c
)]

φ2
b(b− w2

2c
)

. (4)

We note that the condition Ex = d
wξ2

≪ 1 should be satisfied to analyti-

cally obtain Eqs. (3) and (4). Obviously, the free energy model proposed by
Theissen and Gompper [31] cannot exhibit realistic adsorption isotherms
such as the Langmuir/Frumkin adsorption isotherms. Similarly, we can
show that the models proposed by Laradji et al. [35] and Furtado et al.
[33] fail to recover the Langmuir/Frumkin adsorption isotherms. As both
Langmuir/Frumkin adsorption isotherms are well developed for adsorption
of non-ionic surfactants under the equilibrium state with the bulk surfactant
concentrations below the CMC. It is important for any realistic model to
recover these adsorption isotherms under the thermodynamical equilibrium
state.

Diamant and Andelman [22] developed a sharp interface free energy model
to describe the surfactant adsorption at the interface between an aqueous
solution and another fluid phase. They introduced the ideal entropy of mixing
into the model and treated the bulk solution and the interface as two coupled
subsystems. The model can lead to the Frumkin adsorption isotherm in
thermodynamic equilibrium. However, hydrodynamics was not considered
in their model, so it cannot be applied to simulate droplet dynamic behavior
with soluble surfactants.

Recently, van der Sman and van der Graaf [32] developed a diffuse in-
terface model for surfactant adsorption onto the interface of two immiscible
fluids. The free energy functional is partly adapted from the sharp interface
model of Diamant and Andelman [22]. The model couples the surfactant
adsorption to hydrodynamics, which demonstrates promising potential for
phase-field model to simulate droplet dynamics in the presence of surfactants.
However, the model is restricted to the Langmuir adsorption with equal sol-
ubility of the surfactants in both bulk phases. Although the model showed
that the interfacial tension lowering ∆σ is proportional to kBT ln(1−ψ0) due
to surfactant adsorption onto the interface, the dependence of the propor-
tionality factor on the parameters used in the model is still unclear. Finally,
the model capability is required to be further examined and demonstrated
by simulating droplet dynamics with large topology changes.

To describe a ternary system including nonionic surfactant solute, we
propose to extend the free energy functional given by van der Sman and van
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der Graaf [32] to incorporate additional functionalities, e.g. the Frumkin
adsorption isotherm, different solubility of the surfactants. Therefore, our
free energy functional becomes:

F =

∫

d~x

{

−a
2
φ2 +

b

4
φ4 +

κ

2
(∇φ)2 + w

2
ψφ2 − d

2
ψ(∇φ)2

+ kBT [ψ lnψ + (1− ψ) ln(1− ψ)]− c

2
ψ2 − eφψ + ρT ln ρ

}

, (5)

where the term involving the Boltzmann constant kB is the ideal entropy of
mixing of surfactant and solvent (i.e. steric effects), and solute and solvent
molecules are assumed to have the same size [36]. The term − c

2
ψ2 is the

energy of lateral interaction between two adjacent surfactants, where c > 0
is assumed to express an overall attractive interaction [22]. Note that this
term plays a different role here as it appears in Eq. (2). The value of c cannot
be 0 in Eq. (2), whereas in Eq. (5) c can be 0 when the lateral interaction
is absent. The asymmetric term proportional to e accounts for different
solubility of surfactants in the oil and water phases. The final term does not
affect the phase behavior, but it is required to enforce incompressibility of the
fluid in lattice Boltzmann model [37]. A suitable choice, based on improving
numerical stability and accuracy, is T = 1/3.

The chemical potentials µφ and µψ can then be obtained via the varia-
tional derivatives of the free energy functional Eq. (5) with respect to φ and
ψ:

µφ =
δF

δφ
= −aφ+ bφ3 − (κ− dψ)∇2φ+ d∇φ · ∇ψ + wφψ − eψ, (6)

µψ =
δF

δψ
= kBT [lnψ − ln(1− ψ)]− cψ +

w

2
φ2 − d

2
(∇φ)2 − eφ. (7)

Excess chemical potential gradients give rise to a thermodynamic force (per
unit volume) that can be expressed as the divergence of pressure tensor from
the Gibbs-Duhem equality:

~fV = −∇ ·P = −φ∇µφ − ψ∇µψ, (8)

with the pressure tensor P given by

P = p0I+ (κ− dψ)(∇φ)(∇φ)T, (9)
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where I is the second-order unit tensor, p0 is the scalar part of the pressure
tensor which can be calculated by the thermodynamic relation as [31]

p0 = ρ
δF

δρ
+ φµφ + ψµψ − f(ρ, φ,∇φ, ψ). (10)

Here, f(ρ, φ,∇φ, ψ) is the free energy density, i.e. the integrand in Eq. (5).
Using Eqs. (5) and (10), we can get

p0 = ρT − a

2
φ2 +

3b

4
φ4 − κ

2
(∇φ)2 − kBT ln(1− ψ)− c

2
ψ2

−(κ− dψ)φ∇2φ+ dφ∇φ · ∇ψ + wψφ2 − eφψ. (11)

2.2. Hydrodynamics

A dynamic multiphase system needs to be described by not only ther-
modynamics but also hydrodynamics. Local conservation of fluid mass and
momentum leads to the Navier-Stokes equations for Newtonian fluids:

∂tρ+∇ · (ρ~u) = 0, (12)

∂t(ρ~u) +∇ · (ρ~u~u) = ∇ ·
[

ρν(∇~u + (∇~u)T)
]

+ ~fV , (13)

which describe the time evolution of the hydrodynamic variables, i.e. the
fluid density ρ and the fluid velocity ~u. Here, ν = η/ρ is the kinematic

viscosity and ~fV is the thermodynamic force given by Eq. (8). In principle,
this model can introduce a composition-dependent viscosity [24, 29].

The evolution of the solvent composition φ and the local concentration of
surfactant solute ψ are described by the Cahn-Hilliard equations, where the
diffusion of φ and ψ is driven by gradients of chemical potentials µφ and µψ:

∂tφ+∇ · (φ~u) = ∇ · (Mφ∇µφ), (14)

∂tψ +∇ · (ψ~u) = ∇ · (Mψ∇µψ), (15)

where Mφ and Mψ are the respective mobilities of the two order parameters,

which are taken to be constants. Following Eq. (15), the surfactant flux ~jψ
can be written as

~jψ = −Mψ∇µψ. (16)

To obtain the surfactant diffusion coefficient Dψ, we can rewrite Eq. (16)
into

~jψ = −Mψ
∂µψ
∂ψ

∇ψ = −Mψ

[

kBT

ψ(1− ψ)
− c

]

∇ψ, (17)
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with Dψ = Mψ

[

kBT
ψb(1−ψb)

− c
]

in the bulk phases. Here, ψb is the surfactant

concentration in the bulk phase. Once Dψ is defined, Eq. (15) can recover
the usual convection-diffusion equation

∂tψ +∇ · (ψ~u) = ∇ · (Dψ∇ψ), (18)

which has been widely used for bulk surfactant transport in the sharp inter-
face model [38, 21, 14].

Similarly, the diffusivity of the interface can be defined as

Dφ =Mφa(3φ
2 − 1 + wψ) ≈ −Mφa, (19)

with φ ≈ 0 and wψ ≪ 1 near the interface, as the relevant diffusion only takes
place at the phase interface. Note that this “negative diffusion” maintains
the solvent composition jump across the interface.

2.3. Thermodynamic equilibrium

In equilibrium, the thermodynamic force ~fV becomes zero, and thereby
the chemical potentials are equal throughout the entire system. We analyze
whether the model can predict the equilibrium properties of the surfactant
adsorption in oil/water solvents as described by the Langmuir and Frumkin
isotherms. In a dilute solution, the bulk surfactant concentration is much
smaller than unity, i.e. ψb ≪ 1. We assume that the solvent composition
profile is independent of the surfactant loading in equilibrium, which can be
represented as

φ(x) = φb tanh

(

x

ξ

)

, (20)

where ξ is a measure of the interface thickness as described by Eq. (A.14).
From Eq. (7), we can obtain the chemical potentials µ+

ψ,b and µ
−
ψ,b in the

oil and water bulk phases respectively:

µ+
ψ,b ≈ kBT lnψ+

b +
1

2
wφ2

b − eφb, (21)

µ−
ψ,b ≈ kBT lnψ−

b +
1

2
wφ2

b + eφb, (22)

where the magnitude of c is up to O(kBT ) [22]. The chemical potential at
the interface is:

µψ,0 = kBT [lnψ0 − ln(1− ψ0)]− cψ0 −
d

2ξ2
φ2
b , (23)
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where we have used ∂xφ = φb/ξ at the interface x = 0 following Eq. (20).
In equilibrium, we have µ+

ψ,b = µ−
ψ,b = µψ,0. So from Eqs. (21), (22) and

(23) for the chemical potentials, we can obtain the surfactant concentration
ratio β in the oil and water bulk phases

β =
ψ+
b

ψ−
b

= e
2eφb
kBT , (24)

and the equilibrium adsorption isotherm

ψ0 =
ψ±
b

ψ±
b + ψ±

c e
− c
kBT

ψ0

, (25)

with

ψ±
c = exp

{

− 1

2kBT

(

d

ξ2
+ w

)

φ2
b ±

e

kBT
φb

}

. (26)

Therefore, the model can recover the Frumkin adsorption isotherm (see
Eq. (25)), which reduces to the well-known Langmuir adsorption isotherm if
c = 0. Also, it can be clearly seen from Eq. (24) that we can use the param-
eter e to control the solubility of surfactant in oil-rich phase and water-rich
phase. For the sake of simplicity, we assume the same solubility of surfactant
in both phases, i.e. e = 0, in the following analysis.

In Appendix A, the equilibrium solvent composition profile is analyti-
cally demonstrated to be independent of the surfactant loading. With the
solvent composition profile φ given by Eq. (20), we can obtain an analytical
expression for the surfactant concentration at an arbitrary position x from
Eq. (7):

ψ(x) =
1

1 + e
− 1

kBT
[µψ−w

2
φ2+ d

2
(∂xφ)2]e

− c
kBT

ψ
, (27)

where µψ is determined by Eq. (21) or Eq. (22).
In the sharp interface models, the equilibrium equation of state can be

derived via integration of the Gibbs equation:

dσ = −ψ0dµψ. (28)

For the diffuse interface model, the excess surfactant concentration has to be
obtained by the integration over the whole diffuse interface [39], and thus the
equilibrium equation of state cannot be analytically obtained. Following van
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der Sman and van der Graaf [32], we also assume that the excess surfactant
concentration is proportional to ψ0, so that the interfacial tension lowering
is proportional to that of the sharp interface with a coefficient α, i.e.

dσ = −αψ0dµψ,0. (29)

Substituting Eq. (23) into Eq. (29), we can obtain the equilibrium equation
of state:

∆σ = σ − σ0 = α[kBT ln(1− ψ0) +
c

2
ψ2
0], (30)

where σ0 = 4κφ2
b/3ξ is the interfacial tension of “clean” droplet i.e. ψ = 0.

We find that the coefficient α is a model-dependent constant in Eq. (30).
In the sharp interface model, α = 1, whereas in the diffuse interface model,
α 6= 1, due to the finite interface thickness. Therefore, α should depend on
the excess of surfactant, while it is independent of ψ0 and c/kBT . For the
given values of ψc and β, the excess surfactant concentration ψex is a function
of Ex, ψ0 and ξ. As α is independent of ψ0, α only depends on Ex = d

wξ2
once

ξ is specified. Note, unlike the widely-used sharp interface model proposed by
Stone and Leal [7], the phase-field method can also describe non-equilibrium
effect of surfactant adsorption.

3. Lattice Boltzmann method

Lattice Boltzmann (LB) method has been widely used by researchers [40,
41, 42, 43] to model multiphase flows. As a pseudo-molecular method, it
solves a discretized version of the Boltzmann equation to track evolution of
the distribution function of an assembly of molecules [44]. Here, we will use
LB method to simulate multiphase flows described by Eqs. (12)-(15). For a
ternary fluid, we define three particle distribution functions fi, gi and hi on
each site of a two-dimensional square lattice with spacing δx. The subscript
i denotes a particular lattice velocity vector ~ei, defined by ~e0 = (0, 0), ~e1,3 =
(±c, 0), ~e2,4 = (0,±c), ~e5,7 = (±c,±c) and ~e6,8 = (∓c,±c). The lattice
velocity parameter c is defined as c = δx/δt with δt being the simulation time
step.

The macroscopic physical variables are obtained as moments of the par-
ticle distribution functions

φ =
∑

i

gi, ψ =
∑

i

hi,

ρ =
∑

i

fi, ρ~u =
∑

i

fi~ei. (31)
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The time evolution equation for the particle distribution functions, using
the standard Bhatnagar-Gross-Krook (BGK) approximation, can be written
as

fi(~x+ ~eiδt, t+ δt)− fi(~x, t) =
1

τf
[f eqi (~x, t)− fi(~x, t)], (32)

gi(~x+ ~eiδt, t+ δt)− gi(~x, t) =
1

τg
[geqi (~x, t)− gi(~x, t)], (33)

hi(~x+ ~eiδt, t+ δt)− hi(~x, t) =
1

τh
[heqi (~x, t)− hi(~x, t)], (34)

where τf , τg and τh are independent scalar relaxation parameters, and f eqi ,
geqi and heqi are the equilibrium distribution functions for each distribution
function.

The equilibrium distribution functions satisfy the conditions of mass and
momentum conservation, as well as the additional constraints with the higher
order moments:

∑

i

f eqi = ρ,
∑

i

geqi = φ,
∑

i

heqi = ψ,

∑

i

f eqi ~ei = ρ~u,
∑

i

geqi ~ei = φ~u,
∑

i

heqi ~ei = ψ~u,

∑

i

f eqi ~ei~e
T
i = P+ ρ~u~uT,

∑

i

geqi ~ei~e
T
i = ΓφµφI+ φ~u~uT,

∑

i

heqi ~ei~e
T
i = ΓψµψI+ ψ~u~uT. (35)

Therefore, the dynamics of system is governed by the appropriate set of
continuum equations. Explicit expressions for f eqi , geqi and heqi are given in
Appendix B.

Using the Chapman-Enskog expansion, the lattice Boltzmann model Eqs.(32)-
(34) can lead to Eqs. (12)-(15) in the long-wavelength and low-frequency
limit. The relaxation parameters τf , τg and τh are related to the kinematic
viscosity and mobilities through

ν = c2s(τf − 1/2)δt, (36)

Mφ = Γφ(τg − 1/2)δt, Mψ = Γψ(τh − 1/2)δt, (37)
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where cs is the speed of sound which is c/
√
3. Note that we set τg =

τh = 1/(3 −
√
3) to minimize numerical errors of the convection-diffusion

scheme [45]. So Γφ (Γψ) can act as a tunable parameter to control Mφ (Mψ).
In our lattice Boltzmann multiphase model, the calculations of gradient

and Laplacian operators are required to evaluate the chemical potentials in
Eqs. (6) and (7) as well as the pressure tensor in Eq. (9). To minimize
the discretization error, these operators are calculated using 9-point finite
difference stencils as follows:

∇φ(~x) =
1

c2sδt

∑

i

wiφ(~x+ ~eiδt)~ei,

∇2φ(~x) =
2

c2sδ
2
t

∑

i

wi[φ(~x+ ~eiδt)− φ(~x)], (38)

where wi is the weight factor with w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36.

4. Model validation and applications

4.1. Equilibrium properties

First, we will numerically test the present phase-field model’s capability
for prediction of the profile of surfactant concentration at a planar oil-water
interface. The flow domain contains 202 × 4 square lattices in the xy-plane
with an oil phase initially located at 51 ≤ x ≤ 150. The periodic boundary
conditions are imposed at all the boundaries. We run our simulations with
these parameters: σ0 = 0.02, ξ/δx = 3, ψc = 0.017, Ex = 0.17, d = κ,
Mφ = 0.2, Mψ = 0.02, ψb = {10−4, 10−3, 5 × 10−3}, c = 0 for the Langmuir
adsorption, and 2kBT for the Frumkin adsorption.

Fig. 1 (a) shows excellent agreement between our numerical results and
the analytical solution given by Eq. (27). For the two different adsorption
isotherms, the profiles of surfactant concentration exhibit a large difference
only when the value of ψ0 is large. As seen in Fig. 1 (b), the predicted solvent
composition profile φ(x) agrees well with the analytical solution, φ(x) =
φb tanh(x/ξ), in all the cases. Therefore, the results confirm that the solvent
composition profile is independent of the surfactant loading, which is assumed
in obtaining our analytical solution. However, our numerical prediction will
deviate from the analytical solution when ψ0 is sufficiently large, which may
attribute to two factors. The first one is that we cannot obtain Eq. (A.13)
with χ approximated by kBT (

1
ψb

+ 1
1−ψb

) − c due to the large surfactant
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(x-x0)/ξ

ψ
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(x-x0)/ξ
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1
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Figure 1: (a) Profile of the surfactant concentration for a planar oil-water interface located
at x0 = 50 (or x0 = 151) with various parameters listed in the text. Square and circle
symbols represent numerical predictions for c = 0 and c = 2kBT respectively, and the
dashed and solid lines are the corresponding analytical solutions. (b) Profile of the solvent
composition φ: the square symbols and circle symbols represent numerical predictions
corresponding to c = 0 and c = 2kBT respectively; the solid line is the analytical solution
of φ(x) = φb tanh(x/ξ).
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excess at the interface, whereas the analytical solution Eq. (27) is derived
on the basis of the parameter of the interface thickness satisfying ξ2 = 2κ

bφ2
b

.

Consequently, the predicted solvent composition profile cannot follow φ(x) =
φb tanh(x/ξ) with ξ = 3δx as in the present simulation. The other factor
may be due to the discretization error for the approximation of ∇ψ, which
increases rapidly as ψ0 becomes large. We have also examined the influence of
parameter ξ on the simulation results, which is shown in Fig. 2 for ξ = δx and
ξ = 2δx. It suggests that ξ = 2δx is still acceptable but ξ = δx is not a good
choice. To correctly capture the sharp profile of surfactant concentration
across the interface, a reasonably thick interface (ξ ≥ 2δx) is important.
Considering the numerical accuracy, we choose ξ ≥ 2δx in the following
simulations.

Understanding the interfacial tension modification due to the presence
of surfactants is practically important. Here, we will perform numerical
simulations in a 121×121 domain with a droplet whose radius R is 30 lattices
centred in the middle of the flow domain. We choose d = κ, ψc = 0.017,
ξ/δx = 2, Mφ = 0.1, Mψ = 0.02, and different values for σ0, Ex, c and ψb.
The profiles of φ and ψ are initialized with the analytical solutions given by
Eqs. (20) and (27). When the droplet reaches its equilibrium, we calculate
the interfacial tension σ by the Laplace law:

∆p =
σ

R
, (39)

where ∆p is the pressure difference across the droplet interface with the
pressure p defined by p = 1

2
Pαα.

Eq. (30) shows the relation between the lowering of the interfacial tension
∆σ and the surfactant concentration at the interface. To validate this equi-
librium relation, seven numerical simulation cases are performed with the
following parameters: 1) σ0 = 0.02, Ex = 2 and c = 0, 2) σ0 = 0.02, Ex = 1
and c = 0, 3) σ0 = 0.01, Ex = 0.5 and c = 0, 4) σ0 = 0.01, Ex = 0.5 and
c = 2kBT , 5) σ0 = 0.01, Ex = 0.25 and c = 0, 6) σ0 = 0.01, Ex = 0.25 and
c = 2kBT , 7) σ0 = 0.01, Ex = 0.25 and c = 3kBT . In Fig. 3, we plot ∆σ/σ0
as a function of ψ0, where the coefficient α in Eq. (30) is determined by the
best fitting of our simulation results. In all these cases, it can be observed
that the lowering of the interfacial tension follows the equation of state given
by Eq. (30) when ψ0 is not large (ψ0 < 0.5). As we expect, the coefficient
α is only dependent on Ex. Specifically, when Ex = {0.25, 0.5, 1.0, 2.0}, the
corresponding values of α are {2.0, 2.2, 2.4, 2.8}. For a large ψ0, our simula-
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Figure 2: The effect of ξ on the profile of the surfactant concentration: (a) c = 0; (b)
c = 2kBT . Simulation results are represented by the discrete symbols, and the solid lines
are the analytical solutions.
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Figure 3: The lowering of interfacial tension ∆σ/σ0 as a function of the surfactant concen-
tration at the interface ψ0. The parameters are described in the text. Simulation results
are indicated by the discrete symbols, and the lines are the solutions of Eq. (30) with the
coefficient α determined by the best fitting of the simulation data.

tion results deviate from the analytical solutions of Eq. (30), which is also
caused by the two factors as discussed in Fig. 1. Nevertheless, the intrinsic
dependence of ∆σ on ψ0 still holds.

A numerical artifact observed in many numerical methods is the exis-
tence of spurious velocities at the phase interface. Based on the analysis of
the flowfield for a clean droplet in quiescent fluid, van der Sman and van
der Graaf [27] have shown that the magnitude of the spurious velocities is
proportional to the interfacial tension. It is interesting to study the influence
of the interfacial tension σ0 and the surfactant concentration ψb on the spu-
rious velocities. Fig. 4 shows the maximal spurious velocities as a function
of σ0 for different c and ψb at a fixed Ex which is 0.25. It can be clearly
seen that the addition of surfactant can decrease the spurious velocities, and
the large surfactant concentration leads to bigger reduction of spurious ve-
locities. For the same c and ψb, the magnitude of spurious velocities is also
proportional to σ0, which is similar to the case of clean droplet. Additionally,
a multiphase system is always evolving towards the direction of free energy
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Figure 4: The maximal value of spurious velocities |~u| as a function of σ0 for both clean
and contaminated droplets.

decreasing in phase field model. It has been found that small droplets are
prone to dissolve in a surfactant-free finite system [27]. This is also observed
in the surfactant-contaminated finite systems in our simulations. We also
find that the addition of surfactants has negligible effect on dissolution of
droplets.

4.2. Adsorption dynamics

Ward and Tordai [46] theoretically considered the adsorption dynamics
of surfactant molecules from a semi-infinite bulk surfactant solution to an
interface. The bulk phase and interface are assumed to have an initial sur-
factant concentration ψb and ψ0 = 0 respectively. Surfactant molecules will
diffuse from the bulk phase to the interface due to the concentration gra-
dient. Consequently, the surfactant concentration at the interface will rise,
while depleting the surfactants in the layer of fluid adjacent to the inter-
face (termed as the subsurface). Soon, the interface is in local equilibrium
with the subsurface, and the adsorption process slows down as the surfactant
molecules have to transport over longer distances from the bulk phase to the
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Figure 5: Short-time behavior of the surfactant concentration at the interface.

interface. The time-dependent adsorption process can be expressed by [46]

ψ0(t) = 2

√

Dψ

π

[

ψb
√
t−

∫

√
t

0

ψs(u)d
√
t− u

]

, (40)

where t is time, u is a dummy time-delay variable, and ψs(u) is the surfactant
concentration at the subsurface. We note that Eq. (40) is the analytical so-
lution of the classical Ward and Tordai problem with the governing equation
Eq. (18) in the sharp interface model, and it can be numerically solved with
a given adsorption isotherm which relates the interface excess ψ0 to ψs [47].

We apply the present phase-field model to investigate the Ward and Tor-
dai problem, where an oil-water planar interface with an equal surfactant
diffusion coefficient Dψ in both bulk phases. We adopt the previously used
definition of adsorption length Lad = ψeq/ψb [48, 49], where ψeq is determined
by the adsorption isotherm:

ψeq =
ψb

ψb + ψce
− c
kBT

ψeq
. (41)
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And we choose the characteristic time as L2
ad/Dψ, so that the nondi-

mensional time, τ , is tDψ/L
2
ad [48, 49]. Therefore, the original dimensional

Eq. (40), when cast into dimensionless form, becomes

ψ0(τ)

ψeq
=

2√
π

√
τ , (42)

for the short-time (t → 0) adsorption behavior in the Ward and Tordai
problem. This behavior is independent of the adsorption isotherm and the
bulk surfactant concentration. The short-time adsorption behavior is ex-
amined using the model in a 401 × 4 lattices domain with the following
parameters: ψc = 0.017, Ex = 0.23, ξ/δx = 3 and d = κ. The Langmuir
adsorption (c = 0) and Frumkin adsorption (c/kBT = {2, 3}) are consid-
ered with ψb = {10−3, 5× 10−3, 10−3, 1.5× 10−2} and ψb = {10−3, 5× 10−3}
respectively. Halfway bounce-back boundary conditions [50] are applied at
x = ±200. The simulation results are shown in Fig. 5, and we can observe
that all the adsorption curves collapse into a single curve for

√
τ < 0.025:

ψ0(τ)

ψeq
≈ 2.6√

π

√
τ , (43)

which is indeed independent of the choice of adsorption isotherm and ψb.
However, the

√
τ behavior follows a different proportionality constant from

the sharp interface model, which attributes to a finite thickness of the diffuse
interface. It can also be found that the

√
τ behavior lasts shorter for c/kBT =

3 and ψb = 5× 10−3 compared to the other adsorption curves. This displays
a stronger nonlinear adsorption process for large value of c/kBT .

In the Ward and Tordai problem, the long-time adsorption behavior
should be obtained numerically by solving Eq. (40) with a given adsorption
isotherm. For the Langmuir adsorption, the long-time adsorption behavior
can be approximated by [48]

ψ0(τ)

ψeq
≈ 1− ψc

ψc
√
πτ − ψb(1−

√
πτ)

. (44)

We note that the approximation of Eq. (44) corresponds to the long-time be-
havior in an infinite domain. Fig. 6 shows the simulation results of the whole
adsorption process in the finite domain with c = 0, which are represented by
the solid lines. It can be easily seen that the long-time adsorption behavior in
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Figure 6: Evolution of surfactant concentration at the interface for the Langmuir adsorp-
tion with the initial bulk surfactant concentration ψb = {10−3, 5× 10−3, 10−2, 1.5× 10−2}
(the solid lines from bottom to top), as well as the Frumkin adsorption with c = 2kBT
and ψb = {10−3, 5× 10−3} (the dash-dot-dot lines from top to bottom). The dashed lines
show the limiting behavior at τ → ∞ for the Langmuir adsorption, and the square symbols
represent the analytical surfactant loadings in equilibrium.
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a finite domain is different from an infinite domain. Compared with an infi-
nite system, the finite system can equilibrate faster, which is more significant
for a lower ψb. In a finite system, the initial ψb will change as the surfactants
are adsorbed to the interface, leading to reduction of ψb, which will be more
significant for a system with lower initial ψb. As the diffusion coefficient is
ψ-dependent in our free energy model, the diffusion coefficient Dψ cannot
be accurately approximated by the initial bulk surfactant concentration ψb
if it is small, whereas it is assumed a constant in obtaining Eq. (44). As
the initial ψb increases, it can be expected that the adsorption behavior in a
finite domain becomes closer to the approximation of Eq. (44), which is also
reflected in Fig. 6. In addition, Fig. 6 also shows the whole adsorption pro-
cessees in the finite domain with c = 2kBT and ψb = {10−3, 5×10−3}, which
are represented by dash-dot-dot lines. In contrast to the Langmuir adsorp-
tion, the Frumkin adsorption can equilibrate faster due to more surfactants
absorbed to the interface. Finally, we compare the simulation results with
the analytical solution of Eq. (27) when the finite system is in equilibrium.
However, we cannot directly solve Eq. (27) to obtain the profile of surfactant
concentration because the equilibrium bulk surfactant concentration ψb is
unknown. For a closed system, the total mass of surfactant ms should be
conserved during the process of surfactant adsorption, i.e.

∫

ψdx = ms. (45)

By satisfying the constraint of Eq. (45), we can use the two-step Newton’s
method to solve the nonlinear equation Eq. (27) to obtain the concentration
profile. Details are given in Appendix C. Fig. 6 shows good agreement
between simulation data and analytical solution for the equilibrium values of
ψ0/ψeq.

4.3. Surfactant effect on droplet dynamics

We have examined our model equilibrium behavior and surfactant ad-
sorption dynamics. In this section, we apply the present phase-field model
to investigate the droplet deformation, breakup and coalescence with the
presence of surfactants in shear flows. All simulations are performed in a
2D rectangular domain with periodic boundary conditions on the left and
right sides of the domain. The velocity boundary conditions [51] on the top
and bottom sides of the domain are prescribed to introduce simple shear
flow. The droplet is initially circular with the radius R, while the system
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is initially at rest. The surfactant concentration starts with the analytical
prediction of ψ(~x) for a given ψb. The characteristic length and velocity of
simulation are chosen to be the droplet radius R and γR respectively, where
γ is the shear rate. We introduce the following dimensionless numbers to
classify the droplet dynamical behaviour:

λ =
ηd
ηm
, Re =

ργR2

ηm
, Ca =

γRηm
σ0

, (46)

where λ is the viscosity ratio of the droplet to the carrier fluid, which we set
to be 1 here; Re is the Reynolds number; and Ca is the capillary number.
When there are surfactants, interfacial tension will vary. In this case, we
use the interfacial tension without surfactants to calculate Ca. In addition,
we define the Peclet numbers Peφ and Peψ, which are associated with the
Cahn-Hilliard equations Eq. (14) and Eq. (15) respectively, as

Peφ =
γRξ

|Dφ|
, P eψ =

γR2

Dψ
. (47)

In the following simulations, we choose ψc = 0.017, ξ/δx = 2, Peφ =
2 and Peψ = 100 so that the physical behavior of droplets in a typical
oil/water/surfactant system can be reasonably reproduced.

4.3.1. Droplet deformation and breakup under shear

Here, we perform 2D simulation to examine the surfactant effect on
droplet deformation and breakup under a shear flow. Initially, the droplet
is circular with the radius R = 32, which is placed in the center of a
257 × 129 lattice flow domain. To study small deformation, we choose
Ca = 0.1, Re = 0.1 and σ0 = 10−3. We investigate the effects of surfac-
tant concentration and interaction coefficient c on droplet formation with
two groups of parameters: c = 0 and ψb = {5× 10−3, 10−2, 1.5× 10−2}; and
c/kBT = {0, 1, 2} and ψb = 10−2. For all the chosen parameters, it can be
observed that the droplet deforms and eventually evolves to a stable elliptic
shape, which is usually characterized by the Taylor deformation parameter,
Df = (L − B)/(L + B) with L and B being the major and minor axis of
the ellipse. In Fig. 7, we have depicted the steady state shapes at Ca = 0.1,
Re = 0.1 and σ0 = 10−3 for the clean droplet and the droplets with surfac-
tants. For the droplet with surfactants, we have various ψb and c. For the
Langmuir adsorption (c = 0), increasing surfactant concentration can lead to
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Figure 7: The stable shape of a droplet in the simple shear flow (Ca = 0.1, Re = 0.1 and
σ0 = 10−3) with the presence of surfactants (c = 0, ψb = 5× 10−3, the black dashed line;
c = 0, ψb = 10−2, the black dash-dot line; c = 0, ψb = 1.5 × 10−2, the red dashed line;
c = kBT, ψb = 10−2, the green dash-dot line; c = 2kBT, ψb = 10−2, the blue dash-dot-dot
line) and in the absence of surfactants (the black solid line).

a more prolate droplet. In addition, with the same surfactant concentration
i.e. ψb = 10−2, a large interaction coefficient c can also produce a highly
enlongated droplet. The corresponding time evolution of Taylor deformation
parameter is plotted in Fig. 8, which reveals the same observations.

During the droplet deformation, surfactant dilution due to the local in-
terfacial stretching will counter the lowering of interfacial tension, and thus
preventing the droplet further deformation. Meanwhile, the surfactants are
gradually swept towards the droplet tips under the action of shear flow, re-
sulting in the non-uniform distribution of the interfacial tension where the
smallest interfacial tension occurs at the droplet tips. The Marangoni force
will arise due to the gradient of interfacial tension, which resists the sur-
factants further migration. Consequently, the droplet may have a stable
deformed shape. For the stable droplet, we also calculate the droplet incli-
nation angle θ (the angle between the orientation of the major ellipse axis
and the horizontal axis) using the method of moments [27]. The calculated
inclination angles are: θ = 35.58 degrees for the clean droplet, for the droplet
with surfactants, θ is 32.76 degrees (c = 0, ψb = 5 × 10−3), 31.21 degrees
(c = 0, ψb = 10−2), 30.03 degrees (c = 0, ψb = 1.5 × 10−2), 30.33 degrees
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Figure 8: The time evolution of Taylor deformation parameter for a droplet in the shear
flow with Ca = 0.1, Re = 0.1 and σ0 = 10−3.

(c = kBT, ψb = 10−2), and 28.70 degrees (c = 2kBT, ψb = 10−2), respec-
tively. The presence of surfactants acts to promote the droplet deformation
and reduce the droplet inclination angle.

When we increase the capillary number and the Reynolds number, the
droplet cannot evolve to a steady shape. Fig. 9 shows the time evolution plots
of droplet deformation in the simple shear flow with Ca = 0.5, Re = 1.0 and
σ0 = 10−3. The other parameters are kept to be the same as the above.
As expected, the droplet deforms more significantly when ψb and c increase,
which is consistent with the cases of small Ca and Re. If we continue to
increase the capillary number and Reynolds number, a critical droplet state
may appear, i.e. the droplet will breakup as the surfactant concentration
exceeds a critical value. In order to capture the underlying physics of droplet
breakup, we consider a 641 × 161 computational domain with a droplet of
initial radius R = 40 lattices. The simulation starts with the clean droplet
(Ca = 0.6, Re = 2.4 and σ0 = 10−3). As the surfactant concentration
increases, Fig. 10 shows that the droplet breakup begins at some critical
value for both c = 0 and c = 2kBT . When the droplet breakup occurs, the
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Figure 9: The time evolution of a droplet in the shear flow (Ca = 0.5, Re = 1.0 and
σ0 = 10−3) with the presence of surfactants (c = 0, ψb = 5 × 10−3, the red dashed line;
c = 0, ψb = 10−2, the green dash-dot line; c = 0, ψb = 1.5× 10−2, the blue dash-dot-dot
line; c = kBT, ψb = 10−2, the black long-dash line; c = 2kBT, ψb = 10−2, the black
dash-dot-dot line) and in the absence of surfactants (the black solid line).

increasing of ψb or c can accelerate the droplet breakup process, and smaller
daughter droplets will be generated. In addition, we notice that the droplet
will shrink again once the maximal deformation is not enough to “pinch-off”
the droplet.

4.3.2. Collision of two equal-sized droplets

We consider the effect of surfactant dynamics on droplet-droplet inter-
actions in the simple shear flow with Ca = 0.1, Re = 0.4 and σ0 = 10−3.
We consider two initially circular droplets with the radius of 40 lattices and
located at (101, 141) and (261, 101). The 2D computational domain is
361 × 241. In Fig. 11, the droplet evolution is shown at the times (γt) of
0, 2.5, 5.0, 5.5, 7.5 and 8.0. We find that the droplet coalescence due to
collision is dramatically hindered by the presence of surfactant molecules,
which has also been experimentally observed [8, 52, 53, 54]. The surfactants
have little effect on the droplet behavior, until the two droplets move close to
each other. When the two droplets are in close contact, the surfactant con-
centration and the adsorption isotherm have significant influence on droplet
coalescence. The increase of ψb or c prevents the droplets from merging.
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Figure 10: Evolution of droplet breakup in the shear flow (Ca = 0.6, Re = 2.4 and
σ0 = 10−3) with the presence of surfactants (c = 0, ψb = 5 × 10−3, the red dashed line;
c = 0, ψb = 10−2, the green dash-dot line; c = 0, ψb = 1.5× 10−2, the blue dash-dot-dot
line; c = 2kBT, ψb = 5 × 10−3, the black dashed line; c = 2kBT, ψb = 10−2, the black
long-dash line.) and in the absence of surfactants (the black solid line).
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Figure 11: The glancing collision of two droplets in the shear flow (Ca = 0.1, Re = 0.4
and σ0 = 10−3) with the presence of surfactants (c = 0, ψb = 5 × 10−3, the red dashed
line; c = 0, ψb = 10−2, the green dash-dot line; c = 2kBT, ψb = 5 × 10−3, the blue
dash-dot-dot line) and in the absence of surfactants (the black solid line).
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Figure 12: Evolution of surfactant concentration of two colliding droplets in the simple
shear flow (Ca = 0.1, Re = 0.4, σ0 = 10−3, c = 0, and ψb = 10−2).
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Fig. 12 shows the contour plot of surfactant concentration of two colliding
droplets in the simple shear flow (ψb = 10−2 and c = 0). At the beginning,
the surfactant molecules are convected towards the droplet tips. As the
two droplets approach each other, the increased pressure in the gap between
the two droplets pushes surfactants away from the near-contact region. We
can clearly see that the surfactant concentrations are unevenly distributed
along the interfaces, thus generating the Marangoni stress that affects the
droplet-droplet interaction. In addition, the reduction of interfacial tension
due to the presence of surfactants can enhance droplet deformation, and thus
affect droplet-droplet interaction as well. The dimple forming in the near-
contact region, which has been observed during the collision of two droplets
using the sharp interface model with insoluble surfactant [12, 13], is not
clear in our simulations. It is because the dimple is produced by the a high
repulsive lubrication pressure at h≪ R (h is the gap between two droplets),
whereas the diffuse interface model underpredicts the lubrication pressure
when h/ξ < 1.5 [55].

As we know, the increase of the effective capillary number (Cae) due to the
presence of surfactants can inhibit the droplet coalescence. However, what is
the role of Marangoni stress during the droplet coalescence? To answer this
question, we have simulated two cases where the effective capillary number is
the same, i.e. Cae = 0.1, for the droplets with surfactants (c = 0, ψb = 10−2)
and the clean droplet. The other parameters are kept the same as the above.
The effective capillary number is defined by

Cae =
γRηm
σe

, (48)

where σe is the initial equilibrium interfacial tension, which is the same to σ0
for the clean droplet and smaller than σ0 for the droplets with surfactants.
To ensure the two cases having the same effective interfacial tension, we need
to calculate the required σ0 for the droplets with surfactants as

σ0 =
σe

1− 0.375α
ξ lnψc

(1 + 1
Ex

)[ln(1− ψ0) +
1
2
c̃ψ2

0 ]
. (49)

Therefore, σ0 is different for the two cases.
In the present simulation, α is 2.0 for Ex = 0.25. Fig. 13 shows the

evolution of droplet collision with Cae = 0.1, Re = 0.4 and σe = 10−3 (in the
presence of surfactants, c = 0 and ψb = 10−2). Although the two cases have
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Figure 13: The glancing collision of two droplets in the shear flow (Cae = 0.1, Re = 0.4
and σe = 10−3) with the presence of surfactants (c = 0, ψb = 10−2, the solid line) and in
the absence of surfactants (the dashed line).

30



the same effective capillary number, it can be found that the Marangoni stress
induced by non-uniform interfacial tension acts as an additional repulsive
force to prevent droplet coalescence.

To show the effect of Marangoni stress on the flowfield, Fig. 14(a) gives the
comparison of the velocity vectors in the vicinity of the gap at the drainage
time γt = 4.0 with surfactants (c = 0 and ψb = 10−2, the red arrows)
and without surfactants (the blue arrows). It can be clearly seen that the
gap between the two droplets without surfactants is more narrow, which
indicates that the presence of surfactants does slow down the film drainage
process and thus increases the required drainage time prior to coalescence.
It has been demonstrated that the surfactants can immobilize the bubble
interface due to the effect of Marangoni stress during the motion of buoyancy-
driven bubbles in a circular tube [14]. The Marangoni stress can also lead
to reduction of the interface mobility during the droplet-droplet interaction,
though the reduction is not as significant as that in the bubble deformation,
where the viscosity ratio of bubble to carrier fluid is small. The Peclet number
will increase as the mobility decreases, which can lead to droplet collision-
separation [56]. Fig. 14(b) shows the flowfield at γt = 6.5 (c = 0 and ψb =
10−2), where the streamlines are self-closed circle-like with the two droplets
rotating like rigid bodies, which was also observed by Yu and Zhou [56].

As found from the above, the presence of surfactants can increase the
droplet deformation and reduce the droplet inclination angle. We also know
that the presence of surfactants leads to the increase of Cae, which can
increase the droplet deformation and reduce the droplet inclination angle.
To understand the mechanism of droplet deformation when the surfactants
are present. We re-examine the droplet deformation with three groups of
different parameters: 1) clean droplet with Ca = Cae = 0.1, Re = 0.1
and σ0 = σe = 10−3; 2) contaminated droplet with Ca = 0.1, Re = 0.1,
σ0 = 10−3, ψb = 10−2 and c = 0, so that Cae = 0.127 and σe = 7.87× 10−4;
and 3) clean droplet with Ca = Cae = 0.127, Re = 0.1 and σ0 = σe =
7.87×10−4. The group 3 has the same effective capillary number as the group
2, which is designed to single out the effect of the increase of Cae on droplet
deformation when the surfactants are added. Fig. 15 gives the evolutions of
Taylor deformation parameter for the above three groups of data. The total
amount of deformation ∆ has two parts: ∆1, due to the Marangoni stresses
induced by redistribution of the surfactants, and ∆2, stemming from the
increase of Cae due to the surfactant adsorption. For the present case, it is
clear that the effect of Marangoni stresses is significant. We expect that the
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Figure 14: (a) Velocity vectors are shown at every fifth grid point in the vicinity of the
gap at γt = 4.0 (Cae = 0.1, Re = 0.4 and σe = 10−3). The red line is the droplet interface
with the surfactants while the blue line is the interface of the clean droplet. (b) The
flowfield is shown at every eighth grid point (γt = 7.0) for droplets collision-separation in
the presence of surfactants (c = 0 and ψb = 10−2). The red solid lines are φ contours of 0
and ±0.8, the blue lines are the streamlines.

Marangoni stresses are smaller for the soluble surfactants than the insoluble
ones due to the bulk diffusion, which can redistribute the surfactants through
desorption from the droplet tips and adsorption in the middle regions of the
droplet. The steady inclination angle is obtained with θ = 33.23 degrees for
the group 3 in contrast to θ = 35.58 degrees for the group 1 and θ = 31.21
degrees for the group 2. Therefore, when the surfactants are presented, the
Marangoni stresses and the increase of Cae are responsible for the increase of
the droplet deformation and the reduction of the droplet inclination angle.

It has been argued that Peφ can affect the interfacial dynamics to some
extent in the phase field model [27, 56]. It is different from the other Peclet
number Peψ, though both are associated with the Cahn-Hilliard equations
in the same form. Peψ is a physical dimensionless parameter relating convec-
tion to diffusion of surfactants in the bulk phases, whereas Peφ is a purely
numerical parameter, indicating the interface diffusivity, which is unique to
phase field model. The moderate interface diffusion is numerically desirable
to avoid spurious velocities and numerical instability at the interface. While
straining flows, which can thicken or thin the interface, must be balanced by
diffusion, large diffusion will excessively damp the flow. Here, we investigate
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Figure 15: The time evolution of Taylor deformation parameter for a droplet in the shear
flow with Ca = 0.1, Re = 0.1 and σe = 10−3.
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Figure 16: The influence of Peφ on the evolution of Taylor deformation parameter for a
droplet in the shear flow with Cae = 0.1, Re = 0.1, c = 0, ψb = 0.01 and Peψ = 100.

the influence of Peφ on the droplet deformation for Cae = 0.1, Re = 0.1,
c = 0, ψb = 0.01 and Peψ = 100. The value of Peφ is obtained by varying
Mφ (Γφ), and all the other parameters are kept to be the same. Fig. 16 shows
that the time evolution of Taylor deformation parameter Df for Peφ = 1 and
100. It can been clearly seen that Peφ can increase the droplet deformation
at a constant Cae. Also, the droplet is continuously deformed and no steady
state is observed for Peφ = 100. Note, the analogous Weber number, defined

as Weξ =
σ0/ξ
ρc2s

, in the above simulations ranges from 1.5× 10−3 to 3× 10−2.

Finally, the coupling term w
2
ψφ2 in the free energy functional is essential for

numerical stability. Since Ex = d
wξ2

, Ex can indirectly influence stability.
We observed numerical stability problem at large Ex which corresponds to
small w. In our simulations, we found that Ex ≤ 0.5 is a good choice for
ψc = 0.017 and 10−3 ≤ ψb ≤ 1.5× 10−2.

34



5. Conclusions

We have proposed a generalized free energy functional to enable the
phase-field model to capture surfactant dynamics in a multiphase system with
the bulk surfactant concentration below CMC. In comparison with the other
multiphase/surfactant models, the present model can describe evolution of
the interface and the surfactant concentration automatically. In equilibrium,
this model can lead to the commonly-used surfactant adsorption isotherms,
i.e. the Langmuir and Frumkin isotherms. In addition, our model can deal
with different solubility of surfactants in the bulk phases. The lowering of
interfacial tension caused by the surfactant concentration at the interface, is
theoretically and numerically analyzed.

For the Ward and Tordai problem, the interface surfactant loading ψ0/ψeq
follows

√
τ behavior at short-time. At long-time, we find that the surfac-

tant adsorption behavior in a finite system is significantly different from an
infinite system as the finite system can equilibrate faster. The surfactant
concentration ψb and the interaction coefficient c have been found to have
big impact on the droplet formation, breakup and collision in a simple shear
flow. The increase of ψb and c can promote the droplet deformation, decrease
the droplet inclination angle, and acceralate the droplet breakup. Smaller
daughter droplets are expected to emit for large ψb or c. The droplets will
less likely to merge when the surfactants are introduced, and the increase of
ψb and c makes the droplet coalescence more difficult. The reasons are that
the effective capillary number is increased due to the reduction of interfacial
tension, and the time required for film drainage to the point of film rupture
is increased due to the Marangoni effect.
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Appendix A. The equilibrium properties

The free energy functional is chosen as Eq. (5). The excess free energy
per unit interface area can be defined by

W (φ, ψ) = f(φ, ψ)− f(φb, ψb)−
∂f(φb, ψb)

∂φb
(φ− φb)−

∂f(φb, ψb)

∂ψb
(ψ − ψb),

(A.1)
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which satisfies the Euler-Lagrange minimization equations:

∂W

∂φ
− d

dx

(

∂W

∂∇φ

)

= 0, (A.2)

∂W

∂ψ
− d

dx

(

∂W

∂∇ψ

)

= 0. (A.3)

Defining η(x) = φ(x)/φb, and from Eqs. (A.1), (A.2) and (A.3), we obtain:

W = kBT

[

ψ ln

(

ψ

ψb

)

+ (1− ψ) ln

(

1− ψ

1− ψb

)]

− c

2
(ψ − ψb)

2

+
w

2
φ2
b(ψ − ψb)(η

2 − 1) +
b

4
φ4
b(η

2 − 1)2 +
1

2
(κ− dψ)φ2

bη
2
x,(A.4)

bφ3
b(η

3 − η) + wφbη(ψ − ψb) = (κ− dψ)φbηxx − dφbηxψx, (A.5)

kBT

[

ln

(

ψ

ψb

)

− ln

(

1− ψ

1− ψb

)]

−c(ψ−ψb)+
w

2
φ2
b(η

2−1)−d

2
φ2
bη

2
x = 0. (A.6)

When the surfactant excess is moderate at the interface, we can rewrite
Eq. (A.6) using a linear approximation for the logarithmic part as:

χ(ψ − ψb) +
w

2
φ2
b(η

2 − 1)− d

2
φ2
bη

2
x ≈ 0, (A.7)

where χ = kBT
(

1
ψb

+ 1
1−ψb

)

− c.

From Eq. (A.7), we obtain

ψ − ψb =
φ2
b

2χ
[w(1− η2) + dη2x], (A.8)

ψx =
1

χ
φ2
bηx(dηxx − wη). (A.9)

Substituting Eqs. (A.8) and (A.9) into Eq. (A.5), we have

bφ3
b(η

3 − η) +
wφ3

b

2χ
η[w(1− η2) + dη2x] = −dφ

3
b

χ
η2x(dηxx − wη)

+

{

κ− dψb −
φ2
bd

2χ
[w(1− η2) + dη2x]

}

φbηxx. (A.10)
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The interfacial profile η(x) can be obtained by the solution of Eq. (A.10).
Unfortunately, Eq. (A.10) cannot be analytically solved. To obtain an ex-
pression for the interfacial tension σ, we omit all the high-order terms in
Eq. (A.10), so that the equation is simplified as:

bφ3
b(η

3 − η) +
wφ3

b

2χ
wη(1− η2) =

(

κ− dψb −
1

2χ
dwφ2

b

)

φbηxx. (A.11)

Therefore, we can obtain

η(x) = tanh(x/ξ), (A.12)

where

ξ2 =
2
[

κ− d
(

ψb +
φ2
b
w

2χ

)]

φ2
b

(

b− w2

2χ

) . (A.13)

In our free energy model given by Eq. (5), χ can be approximated by
χ ≈ kBT/ψb due to c is up to O(kBT ) and ψb ≪ 1. Therefore, Eq. (A.13)
can be approximated by:

ξ2 =
2κ

bφ2
b

, (A.14)

which accords with our assumption that the solvent composition profile is
independent of the surfactant loading in equilibrium. When χ = c, the free
energy model proposed by Theissen and Gompper [31] can be recovered with
the parameter of interface thickness defined by Eq. (4). By integrating the
excess free energy per unit interface area i.e. Eq. (A.4) in the whole domain,
we can obtain the interfacial tension i.e. Eq. (3) for χ = c.

Appendix B. Equilibrium distributions

Following the constraints of Eqs.(31) and (35), the equilibrium distribu-
tions, which are assumed to be a power series in terms of the local velocity,
can be written as:

f eqi = Fi + wiρ

[

~ei · ~u
c2s

+
(~ei · ~u)2
2c4s

− ~u · ~u
2c2s

]

,

geqi = Gi + wiφ

[

~ei · ~u
c2s

+
(~ei · ~u)2
2c4s

− ~u · ~u
2c2s

]

,

heqi = Hi + wiψ

[

~ei · ~u
c2s

+
(~ei · ~u)2
2c4s

− ~u · ~u
2c2s

]

. (B.1)
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for i = 1, ..., 8, where

Fi =

{

~eTi P~ei/2c
4 − (Pxx + Pyy)/12c

2 i = 1− 4,
~eTi P~ei/8c

4 − (Pxx + Pyy)/6c
2 i = 5− 8.

(B.2)

and

Gi =
1

c2s
wiΓφµφ, Hi =

1

c2s
wiΓψµψ. (B.3)

The stationary values i.e. i = 0 are chosen to conserve the mass of each
species,

f eq0 = ρ−
8

∑

i=1

f eqi , geq0 = φ−
8

∑

i=1

geqi , heq0 = ψ −
8

∑

i=1

heqi . (B.4)

Appendix C. Newton method for solution of equilibrium surfac-

tant concentration in a closed system

We use a two-step Newton’s method to solve the equilibrium surfactant
concentration in a closed system with a given total surfactant concentration
ms. In equilibrium, the surfactant concentration follows the Eq. (27), which
can be rewritten as

ψ(x) =
1

1 + ye−c̃ψ(x)ϑ(x)
, (C.1)

where ϑ(x) = exp
{

1
kBT

[

w
2
φ2 − κ

2
(∂xφ)

2
]

}

, y = e
− 1

kBT
µψ , and c̃ = c

kBT
.

Meanwhile, the surfactant concentration must satisfy the constraint of Eq. (45),
which can be expressed in a discrete form:

∑

i

ψ(xi)δx = ms (C.2)

We introduce the notations: ψi = ψ(xi), ϑi = ϑ(xi), and directly substi-
tute Eq. (C.1) into Eq. (C.2). Therefore, Eqs. (C.1) and (C.2) become

ψi =
1

1 + ye−c̃ψiϑi
, (C.3)

∑

i

1

1 + ye−c̃ψiϑi
δx = ms. (C.4)

In the above equations, ψi and y are unknowns. We can use the following
algorithm to obtain the unknowns.
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1. Set k = 0, and give y an initial guess y0.

2. Set y = yk, and use the Newton-Raphson method to iteratively solve
Eq. (C.3) until a converged solution ψki is obtained at all the lattice
points.

3. Set ψi = ψki for all the lattice points, and then use the Newton-Raphson
method to iteratively solve Eq. (C.4) until a converged solution yk+1 is
obtained. Update k = k + 1.

4. Repeat the solution steps (2) and (3) until the solutions satisfy the
given conditions.

References
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