74 research outputs found

    Topological Superfluid Transition Induced by Periodically Driven Optical Lattice

    Full text link
    We propose a scenario to create topological superfluid in a periodically driven two-dimensional square optical lattice. We study the phase diagram of a spin-orbit coupled s-wave pairing superfluid in a periodically driven two-dimensional square optical lattice. We find that a phase transition from a trivial superfluid to a topological superfluid occurs when the potentials of the optical lattices are periodically changed. The topological phase is called Floquet topological superfluid and can host Majorana fermions.Comment: 6 pages, 1 figure

    Marriage Fraud

    Get PDF
    This Article examines the astonishing array of doctrines used to determine what constitutes marriage fraud. It begins by locating the traditional nineteenth-century annulment-by-fraud doctrine within the realm of contract fraud, observing that in the family law context fraudulent marriages were voidable solely at the option of the injured party. The Article then explains how, in the twentieth century, a massive expansion of public benefits tied to marriage prompted new marriage fraud doctrines to develop in various areas of the law, shifting the concept of the injured party from the defrauded spouse to the public at large. It proposes a framework for understanding these new doctrines by demonstrating that courts apply different tests for finding fraud depending on the value of the benefit sought compared to the cost to the individual of using marriage to obtain it. Furthermore, the Article argues that marriage is an ineffective means for distributing public benefits that serve specific objectives; in other words, marriage is being asked to do too much work. As a possible response to this problem, the Article concludes that lawmakers could disaggregate the components of marriage to which they attach public benefits. This would improve the efficacy of public benefits distribution without entirely dismantling the institution of marriage or jeopardizing the stability that it may provide to societ

    Simulating and Detecting the Quantum Spin Hall Effect in Kagom\'{e} Optical Lattice

    Full text link
    We propose a model which includes a nearest-neighbor intrinsic spin-orbit coupling and a dimer Hamiltonian in the Kagom\'{e} lattice and promises to host the transition from the quantum spin Hall insulator to the normal insulator. In addition, we design an experimental scheme to simulate and detect this transition in the ultracold atom system. The lattice intrinsic spin-orbit coupling is generated via the laser-induced-gauge-field method. Furthermore, we establish the connection between the spin Chern number and the spin-atomic density which enables us to detect the topological quantum spin Hall insulator directly by the standard density-profile technique used in the atomic systems.Comment: 8 pages, 6 figure

    Quantum Hall Effects in a Non-Abelian Honeycomb Lattice

    Get PDF
    We study the tunable quantum Hall effects in a non-Abelian honeycomb optical lattice which is a many-Dirac-points system. We find that the quantum Hall effects present different features as change as relative strengths of several perturbations. Namely, a gauge-field-dressed next-nearest-neighbor hopping can induce the quantum spin Hall effect and a Zeeman field can induce a so-called quantum anomalous valley Hall effect which includes two copies of quantum Hall states with opposite Chern numbers and counter-propagating edge states. Our study extends the borders of the field of quantum Hall effects in honeycomb optical lattice when the internal valley degrees of freedom enlarge.Comment: 7 pages, 6 figure

    Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering

    Get PDF
    Introduction: Bone defects remain a thorny challenge that clinicians have to face. At present, scaffolds prepared by 3D printing are increasingly used in the field of bone tissue repair. Polylactic acid (PLA) has good thermoplasticity, processability, biocompatibility, and biodegradability, but the PLA is brittle and has poor osteogenic performance. Beta-tricalcium phosphate (β-TCP) has good mechanical properties and osteogenic induction properties, which can make up for the drawbacks of PLA.Methods: In this study, photocurable biodegradable polylactic acid (bio-PLA) was utilized as the raw material to prepare PLA/β-TCP slurries with varying β-TCP contents (β-TCP dosage at 0%, 10%, 20%, 30%, 35% of the PLA dosage, respectively). The PLA/β-TCP scaffolds were fabricated using liquid crystal display (LCD) light-curing 3D printing technology. The characterization of the scaffolds was assessed, and the biological activity of the scaffold with the optimal compressive strength was evaluated. The biocompatibility of the scaffold was assessed through CCK-8 assays, hemocompatibility assay and live-dead staining experiments. The osteogenic differentiation capacity of the scaffold on MC3T3-E1 cells was evaluated through alizarin red staining, alkaline phosphatase (ALP) detection, immunofluorescence experiments, and RT-qPCR assays.Results: The prepared scaffold possesses a three-dimensional network structure, and with an increase in the quantity of β-TCP, more β-TCP particles adhere to the scaffold surface. The compressive strength of PLA/β-TCP scaffolds exhibits a trend of initial increase followed by decrease with an increasing amount of β-TCP, reaching a maximum value of 52.1 MPa at a 10% β-TCP content. Degradation rate curve results indicate that with the passage of time, the degradation rate of the scaffold gradually increases, and the pH of the scaffold during degradation shows an alkaline tendency. Additionally, Live/dead staining and blood compatibility experiments suggest that the prepared PLA/β-TCP scaffold demonstrates excellent biocompatibility. CCK-8 experiments indicate that the PLA/β-TCP group promotes cell proliferation, and the prepared PLA/β-TCP scaffold exhibits a significant ability to enhance the osteogenic differentiation of MC3T3-E1 cells in vitro.Discussion: 3D printed LCD photocuring PLA/β-TCP scaffolds could improve surface bioactivity and lead to better osteogenesis, which may provide a unique strategy for developing bioactive implants in orthopedic applications

    Integrated transcriptomics and metabolomics analysis provide insight into the resistance response of rice against brown planthopper

    Get PDF
    IntroductionThe brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most economically significant pests of rice. The Bph30 gene has been successfully cloned and conferred rice with broad-spectrum resistance to BPH. However, the molecular mechanisms by which Bph30 enhances resistance to BPH remain poorly understood.MethodsHere, we conducted a transcriptomic and metabolomic analysis of Bph30-transgenic (BPH30T) and BPH-susceptible Nipponbare plants to elucidate the response of Bph30 to BPH infestation.ResultsTranscriptomic analyses revealed that the pathway of plant hormone signal transduction enriched exclusively in Nipponbare, and the greatest number of differentially expressed genes (DEGs) were involved in indole 3-acetic acid (IAA) signal transduction. Analysis of differentially accumulated metabolites (DAMs) revealed that DAMs involved in the amino acids and derivatives category were down-regulated in BPH30T plants following BPH feeding, and the great majority of DAMs in flavonoids category displayed the trend of increasing in BPH30T plants; the opposite pattern was observed in Nipponbare plants. Combined transcriptomics and metabolomics analysis revealed that the pathways of amino acids biosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis and flavonoid biosynthesis were enriched. The content of IAA significantly decreased in BPH30T plants following BPH feeding, and the content of IAA remained unchanged in Nipponbare. The exogenous application of IAA weakened the BPH resistance conferred by Bph30.DiscussionOur results indicated that Bph30 might coordinate the movement of primary and secondary metabolites and hormones in plants via the shikimate pathway to enhance the resistance of rice to BPH. Our results have important reference significance for the resistance mechanisms analysis and the efficient utilization of major BPH-resistance genes

    Single-Cell RNA sequencing of leaf sheath cells reveals the mechanism of rice resistance to brown planthopper (Nilaparvata lugens)

    Get PDF
    The brown planthopper (BPH) (Nilaparvata lugens) sucks rice sap causing leaves to turn yellow and wither, often leading to reduced or zero yields. Rice co-evolved to resist damage by BPH. However, the molecular mechanisms, including the cells and tissues, involved in the resistance are still rarely reported. Single-cell sequencing technology allows us to analyze different cell types involved in BPH resistance. Here, using single-cell sequencing technology, we compared the response offered by the leaf sheaths of the susceptible (TN1) and resistant (YHY15) rice varieties to BPH (48 hours after infestation). We found that the 14,699 and 16,237 cells (identified via transcriptomics) in TN1 and YHY15 could be annotated using cell-specific marker genes into nine cell-type clusters. The two rice varieties showed significant differences in cell types (such as mestome sheath cells, guard cells, mesophyll cells, xylem cells, bulliform cells, and phloem cells) in the rice resistance mechanism to BPH. Further analysis revealed that although mesophyll, xylem, and phloem cells are involved in the BPH resistance response, the molecular mechanism used by each cell type is different. Mesophyll cell may regulate the expression of genes related to vanillin, capsaicin, and ROS production, phloem cell may regulate the cell wall extension related genes, and xylem cell may be involved in BPH resistance response by controlling the expression of chitin and pectin related genes. Thus, rice resistance to BPH is a complicated process involving multiple insect resistance factors. The results presented here will significantly promote the investigation of the molecular mechanisms underlying the resistance of rice to insects and accelerate the breeding of insect-resistant rice varieties
    corecore