12 research outputs found

    Recycling of macro-synthetic fiber-reinforced concrete and properties of new concretes with recycled aggregate and recovered fibers

    Get PDF
    The study aims to investigate the feasibility of using recycled aggregate (RA) and recovered fibers (RFs) obtained from recycling polypropylene fiber-reinforced concrete (PPFRC) in new concrete production. The mechanical properties were compared between a parent PPFRC, polypropylene fiber-reinforced recycled aggregate concrete (PPRAC), and recovered polypropylene fiber concrete (Re-PPRFC). All concretes were designed to have the same compressive strength and slump. The parent concrete was produced with 3 and 9 kg/m3 of polypropylene fibers. After recycling, the RA and RF were collected, and new concretes with RA and RF, PPRAC and Re-PPRFC, respectively, were produced with the same fiber content as the parent concretes. Both the compressive and flexural tensile strength (pre- and post-cracking) were characterized and the stress–strain relations derived accordingly. The results obtained for the different concretes were compared, proving that the RA and RF obtained by PPFRC recycling can benefit the design-oriented properties (workability and mechanical performance) of new concretes.This study has received funding from the China Scholarship Council (CSC) grant number 202106930007 and MBCC Group. The APC was waived by the journal.Peer ReviewedPostprint (published version

    Multi-recycling of polypropylene fibre reinforced concrete: Influence of recycled aggregate properties on new concrete

    Get PDF
    Herein, an investigation of multi-generational recyclability of polypropylene fibre reinforced concrete (PPFRC) was performed. The parent concretes were produced with 0 and 6 kg/m3 of polypropylene fibres. After recycling, the obtained coarse recycled concrete aggregates (RCAs) were used in new concrete with 0 and 6 kg/m3 of polypropylene fibres, repeating for three generations always with the same quantities of fibres. Properties of RCA, the mechanical properties of recycled aggregate concrete, the recovery rate of polypropylene fibres and the content of fibres embedded within the RCA were measured. The results of the study show that RCA obtained by PPFRC recycling offers significant benefits to new concrete production. This is achieved through the recovered fibres reintroduced into the new concrete, as well as through the fibres embedded in the recycled aggregates, leading to increased residual tensile strength.This study has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 836270. This support is gratefully acknowledged. The authors also wish to express their acknowledgement to the Ministry of Economy, Industry and Competitiveness of Spain for the financial support received under the scope of the projects PID2019-108978RB-C32. Any opinions, findings, conclusions, and/or recommendations in the paper are those of the authors and do not necessarily represent the views of the individuals or organizations acknowledged.Peer ReviewedPostprint (published version

    Recycling of Macro-Synthetic Fiber-Reinforced Concrete and Properties of New Concretes with Recycled Aggregate and Recovered Fibers

    No full text
    The study aims to investigate the feasibility of using recycled aggregate (RA) and recovered fibers (RFs) obtained from recycling polypropylene fiber-reinforced concrete (PPFRC) in new concrete production. The mechanical properties were compared between a parent PPFRC, polypropylene fiber-reinforced recycled aggregate concrete (PPRAC), and recovered polypropylene fiber concrete (Re-PPRFC). All concretes were designed to have the same compressive strength and slump. The parent concrete was produced with 3 and 9 kg/m3 of polypropylene fibers. After recycling, the RA and RF were collected, and new concretes with RA and RF, PPRAC and Re-PPRFC, respectively, were produced with the same fiber content as the parent concretes. Both the compressive and flexural tensile strength (pre- and post-cracking) were characterized and the stress–strain relations derived accordingly. The results obtained for the different concretes were compared, proving that the RA and RF obtained by PPFRC recycling can benefit the design-oriented properties (workability and mechanical performance) of new concretes

    Magnetic Carbon Quantum Dots/Iron Oxide Composite Based on Waste Rice Noodle and Iron Oxide Scale: Preparation and Photocatalytic Capability

    No full text
    To provide an economical magnetic photocatalyst and introduce an innovative approach for efficiently utilizing discarded waste rice noodle (WRN) and iron oxide scale (IOS), we initially converted WRN into carbon quantum dots (CQDs) using a hydrothermal method, simultaneously calcining IOS to obtain iron oxide (FeOx). Subsequently, we successfully synthesized a cost-effective, magnetic CQDs/FeOx photocatalytic composite for the first time by combining the resulting CQDs and FeOx. Our findings demonstrated that calcining IOS in an air atmosphere enhanced the content of photocatalytically active α-Fe2O3, while incorporating WRN-based CQDs into FeOx improved the electron-hole pair separation, resulting in increased O2 reduction and H2O oxidation. Under optimized conditions (IOS calcination temperature: 300 °C; carbon loading: 11 wt%), the CQDs/FeOx composite, utilizing WRN and IOS as its foundation, exhibited exceptional and reusable capabilities in photodegrading methylene blue and tetracycline. Remarkably, for methylene blue, it achieved an impressive degradation rate of 99.30% within 480 min, accompanied by a high degradation rate constant of 5.26 × 10−3 min−1. This composite demonstrated reusability potential for up to ten photocatalytic cycles without a significant reduction in the degradation efficiency, surpassing the performance of IOS and FeOx without CQDs. Notably, the composite exhibited strong magnetism with a saturation magnetization strength of 34.7 emu/g, which enables efficient and convenient recovery in photocatalytic applications. This characteristic is highly advantageous for the large-scale industrial utilization of photocatalytic water purification

    Effects of the Gas-Atomization Pressure and Annealing Temperature on the Microstructure and Performance of FeSiBCuNb Nanocrystalline Soft Magnetic Composites

    No full text
    FeSiBCuNb powders prepared by the gas atomization method generally exhibit a wide particle size distribution and a high degree of sphericity. In addition, the correspondingly prepared nanocrystalline soft magnetic composites (NSMCs) perform good service stability. In this paper, effects of the gas-atomization pressure and annealing temperature on the microstructure and soft magnetic properties of FeSiBCuNb powders and NSMCs are investigated. The results show that the powders obtained by a higher gas-atomization pressure possess a larger amorphous ratio and a smaller average crystallite size, which contribute to the better soft magnetic performance of the NSMCs. After being annealed at 550 °C for 60 min, the NSMCs show a much better performance than those treated by the stress-relief annealing process under 300 °C, which indicates that the optimization of the soft magnetic properties resulting from the precipitation of the α-Fe(Si) nanocrystalline largely overwhelms the deterioration caused by the grain growth of the pre-existing crystals. In addition, the annealed NSMCs prepared by the powders with the gas-atomization pressure of 4 MPa show the best performance in this work, μe = 33.32 (f = 100 kHz), Hc = 73.08 A/m and Pcv = 33.242 mW/cm3 (f = 100 kHz, Bm = 20 mT, sine wave)

    Effects of the Gas-Atomization Pressure and Annealing Temperature on the Microstructure and Performance of FeSiBCuNb Nanocrystalline Soft Magnetic Composites

    No full text
    FeSiBCuNb powders prepared by the gas atomization method generally exhibit a wide particle size distribution and a high degree of sphericity. In addition, the correspondingly prepared nanocrystalline soft magnetic composites (NSMCs) perform good service stability. In this paper, effects of the gas-atomization pressure and annealing temperature on the microstructure and soft magnetic properties of FeSiBCuNb powders and NSMCs are investigated. The results show that the powders obtained by a higher gas-atomization pressure possess a larger amorphous ratio and a smaller average crystallite size, which contribute to the better soft magnetic performance of the NSMCs. After being annealed at 550 °C for 60 min, the NSMCs show a much better performance than those treated by the stress-relief annealing process under 300 °C, which indicates that the optimization of the soft magnetic properties resulting from the precipitation of the α-Fe(Si) nanocrystalline largely overwhelms the deterioration caused by the grain growth of the pre-existing crystals. In addition, the annealed NSMCs prepared by the powders with the gas-atomization pressure of 4 MPa show the best performance in this work, μe = 33.32 (f = 100 kHz), Hc = 73.08 A/m and Pcv = 33.242 mW/cm3 (f = 100 kHz, Bm = 20 mT, sine wave)

    Hedgehog Signalling Contributes to Trauma-Induced Tendon Heterotopic Ossification and Regulates Osteogenesis through Antioxidant Pathway in Tendon-Derived Stem Cells

    No full text
    Heterotopic ossification (HO) is defined as the generation of pathological ectopic bony structures in soft tissues, but the molecular mechanisms of tendon HO are not fully revealed. Hedgehog (Hh) signalling is reportedly critical in hereditary HO. Our study focuses on the role of Hh signalling in the formation of trauma-induced tendon ossification. In this study, samples of healthy tendons and injured tendons from C57BL/6J female mice at 1, 4, 7, and 10 weeks after Achilles tenotomy were collected for quantitative real-time polymerase chain reaction (qRT–PCR) and immunohistochemical analysis (IHC). At 1, 4, 7, and 10 weeks postinjury, tendon samples from the mice administered with vehicle, GANT58 (a GLI antagonist), or SAG (a smoothened agonist) were harvested for micro-CT, histological staining, qRT–PCR, and IHC. Rat tendon-derived stem cells (TDSCs) treated with vehicle, GANT58, or SAG were used to induce osteogenic and chondrogenic differentiation in vitro for qRT–PCR, alkaline phosphatase staining, Alcian blue staining, and reactive oxygen species (ROS) levels measurement. We found that Hh signalling is remarkably activated during the formation of trauma-induced tendon ossification in the model of Achilles tenotomy. The in vitro and in vivo assays both confirm that downregulation of Hh signalling significantly suppresses osteogenesis and chondrogenesis to inhibit tendon ossification, while upregulation of Hh signalling promotes this process. Under osteogenic induction, Hh signalling regulates antioxidant pathway and affects ROS generation of TDSCs. Collectively, Hh signalling contributes to trauma-induced tendon ossification and affects ROS generation through antioxidant pathway in osteogenic differentiation of TDSCs, indicating that targeting Hh signalling by GANT58 may be a potential treatment for trauma-induced tendon ossification

    A Novel and Noninvasive Risk Assessment Score and Its Child-to-Adult Trajectories to Screen Subclinical Renal Damage in Middle Age

    No full text
    This study aimed to develop a noninvasive, economical and effective subclinical renal damage (SRD) risk assessment tool to identify high-risk asymptomatic people from a large-scale population and improve current clinical SRD screening strategies. Based on the Hanzhong Adolescent Hypertension Cohort, SRD-associated variables were identified and the SRD risk assessment score model was established and further validated with machine learning algorithms. Longitudinal follow-up data were used to identify child-to-adult SRD risk score trajectories and to investigate the relationship between different trajectory groups and the incidence of SRD in middle age. Systolic blood pressure, diastolic blood pressure and body mass index were identified as SRD-associated variables. Based on these three variables, an SRD risk assessment score was developed, with excellent classification ability (AUC value of ROC curve: 0.778 for SRD estimation, 0.729 for 4-year SRD risk prediction), calibration (Hosmer—Lemeshow goodness-of-fit test p = 0.62 for SRD estimation, p = 0.34 for 4-year SRD risk prediction) and more potential clinical benefits. In addition, three child-to-adult SRD risk assessment score trajectories were identified: increasing, increasing-stable and stable. Further difference analysis and logistic regression analysis showed that these SRD risk assessment score trajectories were highly associated with the incidence of SRD in middle age. In brief, we constructed a novel and noninvasive SRD risk assessment tool with excellent performance to help identify high-risk asymptomatic people from a large-scale population and assist in SRD screening
    corecore