481 research outputs found

    Induced Stem Cells as a Novel Multiple Sclerosis Therapy.

    Get PDF
    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS

    A Study of Lateral Bearing Capacity of Pile by Dynamic Test

    Get PDF
    In order to improve the knowledge of the Lateral Loading behavior of artificially drilled cast-in-place concrete piles, the full-scale lateral static and dynamic loading tests of eleven piles had been carried out by the authors in Louyang, China. In this paper, the principle of laterally dynamic pile test is discussed. The results of the static and dynamic tests performed in the light of different diameter piles are analyzed comparatively. It is found that the critical loads defined by the dynamic testing are almost identical with results of the static testing ones. Thus we come to a conclusion that the lateral critical loading of the single pile in the area can be determined by dynamic testing method

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde

    3-(5-Chloro­naphthalene-1-sulfonamido)-2-(2-hy­droxy­eth­yl)-4,5,6,7-tetra­hydro-2H-pyrazolo­[4,3-c]pyridin-5-ium chloride

    Get PDF
    In the cation of the title compound, C18H20ClN4O3S+·Cl−, the tetra­hydro­pyridinium ring assumes a half-chair conformation. The dihedral angle between the pyrazole ring and the naphthalene ring system is 75.19 (6)°. In the crystal, ions are linked into a three-dimensional network by N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds and weak π–π stacking inter­actions with centroid–centroid distances of 3.608 (2) Å

    Device modeling of superconductor transition edge sensors based on the two-fluid theory

    Full text link
    In order to support the design and study of sophisticated large scale transition edge sensor (TES) circuits, we use basic SPICE elements to develop device models for TESs based on the superfluid-normal fluid theory. In contrast to previous studies, our device model is not limited to small signal simulation, and it relies only on device parameters that have clear physical meaning and can be easily measured. We integrate the device models in design kits based on powerful EDA tools such as CADENCE and OrCAD, and use them for versatile simulations of TES circuits. Comparing our simulation results with published experimental data, we find good agreement which suggests that device models based on the two-fluid theory can be used to predict the behavior of TES circuits reliably and hence they are valuable for assisting the design of sophisticated TES circuits.Comment: 10pages,11figures. Accepted to IEEE Trans. Appl. Supercon

    Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered \u3ci\u3eEscherichia coli\u3c/i\u3e

    Get PDF
    Longifolene is a naturally occurring tricyclic sesquiterpene widely used in many different fields. Up to now, this valuable terpene was mainly manufactured from the high-boiling fraction of certain pine resins. Microbial production can be a promising alternative to the extraction from natural plant sources. Here, we present the metabolic engineering strategy to assemble biosynthetic pathway for longifolene production in Escherichia coli. E. coli was rendered to produce longifolene by heterologously expressing a codon optimized longifolene synthase from Picea abies. Augmentation of the metabolic flux to farnesyl pyrophosphate (FPP) by different FPP synthases conferred a 1.8-fold increase in longifolene production. An additional enhancement of longifolene production (up to 2.64 mg/L) was achieved by introducing an exogenous mevalonate pathway. Under fed-batch conditions, the best-performing strain was able to produce 382 mg/L of longifolene in a 5 L bioreactor. These results demonstrated the feasibility of producing longifolene by microbial fermentation and could serve as the basis for the construction of more robust strains in the future

    Tooth-shaped plasmonic waveguide filters with nanometeric sizes

    Full text link
    A novel nanometeric plasmonic filter in a tooth-shaped Metal-Insulator-Metal waveguide is proposed and demonstrated numerically. An analytic model based on the scattering matrix method is given. The result reveals that the single tooth-shaped filter has a wavelength filtering characteristic and an ultra-compact size in the length of a few hundred nanometers, compared to grating-like SPPs filters. Both analytic and simulation results show that the wavelength of the trough of the transmission has linear and nonlinear relationships with the tooth depth and the tooth width, respectively. The waveguide filter could be utilized to develop ultra-compact photonic filters for high integration.Comment: 16 pages, 5 figure

    Carnosol Modulates Th17 Cell Differentiation and Microglial Switch in Experimental Autoimmune Encephalomyelitis

    Get PDF
    Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine have been used for thousands of years. Carnosol as a bioactive diterpene compound originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In this study, we investigated the therapeutic effects and molecule mechanism of carnosol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the myelin oligodendrocyte glycoprotein (MOG35–55) peptide-induced EAE model, markedly decreased inflammatory cell infiltration into the central nervous system and reduced demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB nuclear translocation. In the passive-EAE model, carnosol treatment also significantly prevented Th17 cell pathogenicity. Moreover, carnosol exerted its therapeutic effects in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated macrophage/microglia. Taken together, our results show that carnosol has enormous potential for development as a therapeutic agent for autoimmune diseases such as MS

    5-tert-Butyl 1-ethyl 3-amino-1,4,5,6-tetra­hydro­pyrrolo­[3,4-c]pyrazole-1,5-dicarboxyl­ate

    Get PDF
    The asymmetric unit of the title compound, C13H20N4O4, contains two crystallographically independent mol­ecules in which the dihedral angles between the fused pyrrole and pyrazole rings are 5.06 (8) and 1.12 (8)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into chains parallel to the b axis

    catena-Poly[[bis­(μ2-4-amino­benzene­sulfonato-κ2 O:O)disilver]-bis­(μ2-4,4′-bipyridine-κ2 N:N′)]

    Get PDF
    In the title compound, [Ag2(C6H6NO3S)2(C10H8N2)2]n, the AgI atom is four-coordinated by two N atoms from two symmetry-related 4,4′-bipyridine (bipy) and two O atoms from two independent 4-amino­benzene­sulfonate (ABS) ligands. The two inter-chain AgI atoms are bridged by two independent ABS ligands through weak Ag—O bonds and Ag⋯Ag attractions, forming a ladder-like chain coordination polymer [Ag2(ABS)2(bipy)2]n parallel to [001], which is further linked to generate a two-dimensional structure via N—H⋯O hydrogen-bonding inter­actions
    corecore