13,549 research outputs found

    Analytical formulation of orbiter-payload coupled by trunnion joints with Coulomb friction

    Get PDF
    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures

    Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    Get PDF
    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system

    A Novel Lumbar Motion Segment Classification to Predict Changes in Segmental Sagittal Alignment After Lateral Interbody Fixation.

    Get PDF
    Study designRetrospective cohort study.ObjectivesLateral interbody fixation is being increasingly used for the correction of segmental sagittal parameters. One factor that affects postoperative correction is the resistance afforded by posterior hypertrophic facet joints in the degenerative lumbar spine. In this article, we describe a novel preoperative motion segment classification system to predict postoperative correction of segmental sagittal alignment after lateral lumbar interbody fusion.MethodsPreoperative computed tomography scans were analyzed for segmental facet osseous anatomy for all patients undergoing lateral lumbar interbody fusion at 3 institutions. Each facet was assigned a facet grade (min = 0, max = 2), and the sum of the bilateral facet grades was the final motion segment grade (MSG; min = 0, max = 4). Preoperative and postoperative segmental lordosis was measured on standing lateral radiographs. Postoperative segmental lordosis was also conveyed as a percentage of the implanted graft lordosis (%GL). Simple linear regression was conducted to predict the postoperative segmental %GL according to MSG.ResultsA total of 36 patients with 59 operated levels were identified. There were 19 levels with MSG 0, 14 levels with MSG 1, 13 levels with MSG 2, 8 levels with MSG 3, and 5 levels with MSG 4. Mean %GL was 115%, 90%, 77%, 43%, and 5% for MSG 0 to 4, respectively. MSG significantly predicted postoperative %GL (P < .01). Each increase in MSG was associated with a 28% decrease in %GL.ConclusionsWe propose a novel facet-based motion segment classification system that significantly predicted postoperative segmental lordosis after lateral lumbar interbody fusion

    SIRTF Telescope Instrument Changeout and Cryogen Replenishment (STICCR) Study

    Get PDF
    The Space Infrared Telescope Facility (SIRTF) is a long-life cryogenically cooled space-based telescope for infrared astronomy from 2 to 700 micrometers. SIRTF is currently under study by NASA-ARC (Reference AP) and planned for launch in approximately the mid 1990s. SIRTF will operate as a multiuser facility, initially carrying three instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and baseline is currently to be 2 years. The telescope changes required to allow in-space replenishment of the 4,000-L superfluid helium tank was investigated. A preliminary design for the space services equipment was also developed. The impacts of basing the equipment and servicing on the space station were investigated. Space replenishment and changeout of instruments required changes to the telescope design. Preliminary concepts are presented

    Bisphosphonate's and Intermittent Parathyroid Hormone's Effect on Human Spinal Fusion: A Systematic Review of the Literature.

    Get PDF
    There has been a conscious effort to address osteoporosis in the aging population. As bisphosphonate and intermittent parathyroid hormone (PTH) therapy become more widely prescribed to treat osteoporosis, it is important to understand their effects on other physiologic processes, particularly the impact on spinal fusion. Despite early animal model studies and more recent clinical studies, the impact of these medications on spinal fusion is not fully understood. Previous animal studies suggest that bisphosphonate therapy resulted in inhibition of fusion mass with impeded maturity and an unknown effect on biomechanical strength. Prior animal studies demonstrate an improved fusion rate and fusion mass microstructure with the use of intermittent PTH. The purpose of this study was to determine if bisphosphonates and intermittent PTH treatment have impact on human spinal fusion. A systematic review of the literature published between 1980 and 2015 was conducted using major electronic databases. Studies reporting outcomes of human subjects undergoing 1, 2, or 3-level spinal fusion while receiving bisphosphonates and/or intermittent PTH treatment were included. The results of relevant human studies were analyzed for consensus on the effects of these medications in regards to spinal fusion. There were nine human studies evaluating the impact of these medications on spinal fusion. Improved fusion rates were noted in patients receiving bisphosphonates compared to control groups, and greater fusion rates in patients receiving PTH compared to control groups. Prior studies involving animal models found an improved fusion rate and fusion mass microstructure with the use of intermittent PTH. No significant complications were demonstrated in any study included in the analysis. Bisphosphonate use in humans may not be a deterrent to spinal fusion. Intermittent parathyroid use has shown early promise to increase fusion mass in both animal and human studies but further studies are needed to support routine use
    • …
    corecore