48 research outputs found

    Temporal Variability of Human Vaginal Bacteria and Relationship with Bacterial Vaginosis

    Get PDF
    Little is known about short-term bacterial fluctuations in the human vagina. This study used PCR to assess the variability in concentrations of key vaginal bacteria in healthy women and the immediate response to antibiotic treatment in women with bacterial vaginosis (BV).Twenty-two women assessed for BV using Amsel's criteria were evaluated daily for 7 or 14 days, then at 2, 3 and 4 weeks, using a panel of 11 bacterium-specific quantitative PCR assays. Participants with BV were treated with 5 days of intravaginal metronidazole. Participants without BV had vaginal biotas dominated by lactobacilli, whose levels fluctuated with menses. With onset of menstruation, quantities of Lactobacillus jensenii and Lactobacillus crispatus decreased and were found to be inversely related to Gardnerella vaginalis concentrations (p<0.001). Women with BV had a variety of fastidious bacteria whose concentrations dropped below detection thresholds 1-5 days after starting metronidazole. Recurrent BV was characterized by initial profound decreases of BV-associated bacteria after treatment followed by subsequent increases at relapse.The microbiota of the human vagina can be highly dynamic. Healthy women are colonized with Lactobacillus species, but levels can change dramatically over a month. Marked increases in G. vaginalis were observed during menses. Participants with BV have diverse communities of fastidious bacteria that are depleted by vaginal metronidazole therapy. Women with recurrent BV initially respond to antibiotic treatment with steep declines in bacterial concentrations, but these bacteria later reemerge, suggesting that antibiotic resistance in these bacteria is not an important factor mediating BV recurrence

    The Turtle Garden: Tan Kah Kee’s last spiritual world

    Get PDF
    This paper explores the role of diasporic subjects in China’s heritage-making through a case study of the Turtle Garden built by Tan Kah Kee in Xiamen, China. Tan is the first person with Overseas Chinese background who built museums in the P.R. China and has been regarded as a symbol of Overseas Chinese patriotism. This paper argues that the Turtle Garden, conceptualised as a postcolonial ‘carnivalesque’ space, is more than a civic museum for public education. It reflects the owner’s highly complex and sometimes conflicting museum outlook embedded in his life experience as a migrant, his encounter with (British) colonialism in Malaya, and integrated with his desire and despair about the Chinese Communist Party’s nation-building project in the 1950s. Rather than a sign of devotion to the socialist motherland as simplistically depicted in China’s discourse, the garden symbolises Tan’s last ‘spiritual world’ where he simultaneously engaged with soul-searching as a returned Overseas Chinese and alternative diasporic imagining of Chinese identities and nation. It brings to light the value of heritage-making outside centralised heritage discourses, and offers an invaluable analytical lens to disentangle the contested and ever shifting relationship between diasporic subjects, cultural heritage and nation-(re)building in the Chinese context and beyond

    An algorithm for the estimation of point spread function based on curve edge of arbitrary shape

    No full text
    The estimation of point spread function of remote sensing images is the necessary premise to improve the quality and to reduce the optical blur. The oblique straight edge method is greatly limited by the target. Though existing curve edge methods overcome the drawback that the oblique edge methods can only be applied to the straight edges, but will result in large estimation value error because of the stretching coordinate. An curve edge method of arbitrary shape based on the edge method of projection is proposed using the idea of moving windows. And the feasibility is explained theoretically. In the process of experimental verification, the proposed method first fits the edge points linearly, then uses the projection method to sample the gray values of the rows or columns in a selected window and aligned the sampling centers of different windows, finally estimates the point spread function using interpolation and resampling after eliminating the improper sampling points. For the edges with curvatures from 0.001 to 0.01, the peak signal-to-noise ratio can still stay above 35 dB even though under strong blur. The error of peak of the point spread function can be controlled within 20%. Compared with the traditional edge method and curve fitting method, our method has better results for all kinds of curves that the average peak signal-to-noise ratio can be improved by more than 10 dB, and has somewhat anti-noise performance

    An Operational DNA Strand Displacement Encryption Approach

    No full text
    DeoxyriboNucleic Acid (DNA) encryption is a new encryption method that appeared along with the research of DNA nanotechnology in recent years. Due to the complexity of biology in DNA nanotechnology, DNA encryption brings in an additional difficulty in deciphering and, thus, can enhance information security. As a new approach in DNA nanotechnology, DNA strand displacement has particular advantages such as being enzyme free and self-assembly. However, the existing research on DNA-strand-displacement-based encryption has mostly stayed at a theoretical or simulation stage. To this end, this paper proposes a new DNA-strand-displacement-based encryption framework. This encryption framework involves three main strategies. The first strategy was a tri-phase conversion from plaintext to DNA sequences according to a Huffman-coding-based transformation rule, which enhances the concealment of the information. The second strategy was the development of DNA strand displacement molecular modules, which produce the initial key for information encryption. The third strategy was a cyclic-shift-based operation to extend the initial key long enough, and thus increase the deciphering difficulty. The results of simulation and biological experiments demonstrated the feasibility of our scheme for encryption. The approach was further validated in terms of the key sensitivity, key space, and statistic characteristic. Our encryption framework provides a potential way to realize DNA-strand-displacement-based encryption via biological experiments and promotes the research on DNA-strand-displacement-based encryption

    Analysis of Major Ampullate Silk cDNAs from Two Non-Orb-Weaving Spiders

    No full text

    N‑Cadherin Targeted Melanin Nanoparticles Reverse the Endothelial–Mesenchymal Transition in Vascular Endothelial Cells to Potentially Slow the Progression of Atherosclerosis and Cancer

    No full text
    Endothelial–mesenchymal transition (EndoMT) of vascular endothelial cells has recently been considered as a key player in the early progression of a variety of vascular and nonvascular diseases, including atherosclerosis, cancer, and organ fibrosis. However, current strategies attempting to identify pharmacological inhibitors to block the regulatory pathways of EndoMT suffer from poor selectivity, unwanted side effects, and a heterogeneous response from endothelial cells with different origins. Furthermore, EndoMT inhibitors focus on preventing EndoMT, leaving the endothelial cells that have already undergone EndoMT unresolved. Here, we report the design of a simple but powerful nanoparticle system (i.e., N-cadherin targeted melanin nanoparticles) to convert cytokine-activated, mesenchymal-like endothelial cells back to their original endothelial phenotype. We term this process “Reversed EndoMT” (R-EndoMT). R-EndoMT allows the impaired endothelial barriers to recover their quiescence and intactness, with significantly reduced leukocyte and cancer cell adhesion and transmigration, which could potentially stop atheromatous plaque formation and cancer metastasis in the early stages. R-EndoMT is achieved on different endothelial cell types originating from arteries, veins, and capillaries, independent of activating cytokines. We reveal that N-cadherin targeted melanin nanoparticles reverse EndoMT by downregulating an N-cadherin dependent RhoA activation pathway. Overall, this approach offers a different prospect to treat multiple EndoMT-associated diseases by designing nanoparticles to reverse the phenotypical transition of endothelial cells

    Identification of fallopian tube microbiota and its association with ovarian cancer

    No full text
    Investigating the human fallopian tube (FT) microbiota has significant implications for understanding the pathogenesis of ovarian cancer (OC). In this large prospective study, we collected swabs intraoperatively from the FT and other surgical sites as controls to profile the microbiota in the FT and to assess its relationship with OC. Eighty-one OC and 106 non-cancer patients were enrolled and 1001 swabs were processed for 16S rRNA gene PCR and sequencing. We identified 84 bacterial species that may represent the FT microbiota and found a clear shift in the microbiota of the OC patients when compared to the non-cancer patients. Of the top 20 species that were most prevalent in the FT of OC patients, 60% were bacteria that predominantly reside in the gastrointestinal tract, while 30% normally reside in the mouth. Serous carcinoma had higher prevalence of almost all 84 FT bacterial species compared to the other OC subtypes. The clear shift in the FT microbiota in OC patients establishes the scientific foundation for future investigation into the role of these bacteria in the pathogenesis of OC
    corecore