139 research outputs found

    Overcoming the collective action problems facing Chinese workers: lessons from four protests against Walmart

    Get PDF
    In contrast to various structural accounts of collective inaction or short-lived contention of Chinese workers, the authors take an agency-centered approach to explain how the few sustained labor protests during closure bargaining develop against long odds. They suggest that workers’ capacity to resolve collective action problems is essential to understanding why a few contending workers are able to sustain protests whereas many others fail to do so. They argue that workplace representatives and external labor activists are crucial for helping Chinese workers resolve the collective action problems that prevent the formation of sustained labor protests. Their comparative analysis of four protests against Walmart store closures—including one unusually long, one relatively sustained, and two short-lived—shows how presence and strategic capacity of workplace representatives and external labor activists shape protest duration. The authors conclude by discussing lessons learned from these cases of closure bargaining for future development of labor contention in China

    Field opacity and practice-outcome decoupling: private regulation of labor standards in global supply chains

    Get PDF
    Although firms in diverse industries increasingly adopt private regulation of labor standards for workers in their global supply chains, growing scholarly evidence suggests that this approach has not generated sustainable improvements in working conditions for those workers. The authors draw on recent developments in institutional theory regarding the development of opaque institutional fields that cause the decoupling between practices and outcomes to develop a new explanation for the lack of sustainable improvement in labor practices in supply chains. Using qualitative and quantitative data from a global apparel supplier and a global home products retailer, they demonstrate the various ways in which opacity causes decoupling between private regulation practices of global firms and outcomes for workers in supply chains

    Fasudil in Combination With Bone Marrow Stromal Cells (BMSCs) Attenuates Alzheimer\u27s Disease-Related Changes Through the Regulation of the Peripheral Immune System.

    Get PDF
    Alzheimer\u27s disease (AD) is a chronic progressive neurodegenerative disease. Its mechanism is still not clear. Majority of research focused on the central nervous system (CNS) changes, while few studies emphasize on peripheral immune system modulation. Our study aimed to investigate the regulation of the peripheral immune system and its relationship to the severity of the disease after treatment in an AD model of APPswe/PSEN1dE9 transgenic (APP/PS1 Tg) mice. APP/PS1 Tg mice (8 months old) were treated with the ROCK-II inhibitor 1-(5-isoquinolinesulfonyl)-homo-piperazine (Fasudil) (intraperitoneal (i.p.) injections, 25 mg/kg/day), bone marrow stromal cells (BMSCs; caudal vein injections, 1 × 1

    NRT1.1 Regulates Nitrate Allocation and Cadmium Tolerance in Arabidopsis

    Get PDF
    Abiotic stress induces nitrate (NO3-) allocation to roots, which increases stress tolerance in plants. NRT1.1 is broadly involved in abiotic stress tolerance in plants, but the relationship between NRT1.1 and NO3- allocation under stress conditions is unclear. In this study, we found that Arabidopsis wild-type Col-0 was more cadmium (Cd2+)-tolerant than the nrt1.1 mutant at 20 μM CdCl2. Cd2+ exposure repressed NRT1.5 but upregulated NRT1.8 in roots of Col-0 plants, resulting in increased NO3- allocation to roots and higher [NO3-] root-to-shoot (R:S) ratios. Interestingly, NITRATE REGULATORY GENE2 (NRG2) was upregulated by Cd2+ stress in Col-0 but not in nrt1.1. Under Cd2+ stress, nrg2 and nrg2-3chl1-13 mutants exhibited similar phenotypes and NO3- allocation patterns as observed in the nrt1.1 mutant, but overexpression of NRG2 in Col-0 and nrt1.1 increased the [NO3-] R:S ratio and restored Cd2+ stress tolerance. Our results indicated that NRT1.1 and NRG2 regulated Cd2+ stress-induced NO3- allocation to roots and that NRG2 functioned downstream of NRT1.1. Cd2+ uptake did not differ between Col-0 and nrt1.1, but Cd2+ allocation to roots was higher in Col-0 than in nrt1.1. Stressed Col-0 plants increased Cd2+ and NO3- allocation to root vacuoles, which reduced their cytosolic allocation and transport to the shoots. Our results suggest that NRT1.1 regulates NO3- allocation to roots by coordinating Cd2+ accumulation in root vacuoles, which facilitates Cd2+ detoxification

    Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips

    Get PDF
    Accumulating evidence demonstrates that the aberrant expression of cell cycle regulation and DNA repair genes can result in abnormal cell proliferation and genomic instability in eukaryotic cells under different stresses. Herein, Arabidopsis thaliana (Arabidopsis) seedlings were grown hydroponically on 0.5 × MS media containing cadmium (Cd) at 0–2.5 mg L−1 for 5 d of treatment. Real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that expression of DNA damage repair and cell cycle regulation genes, including BRCA1, MRE11, WEE1, CDKA;1 and PCNA1, showed an inverted U-shaped dose-response. In contrast, notably reduced expression was observed for G1-to-S transition-related genes, Histone H4, E2Fa and PCNA2; DSB end processing, GR1; G2-to-M transition-related gene, CYCB1;1; and DNA mismatch repair, MSH2, MSH6 and MLH1 genes in root tips exposed to 0.125–2.5 mg/L Cd for 5 d. Flow cytometry (FCM) analysis revealed significant increases of cells with a 2C nuclear content and with a 4C and 8C nuclear content under Cd stresses of 0.125 and 1–2.5 mg L−1, respectively. Our results suggest that 0.125 mg L−1 Cd-induced DNA damage induced the marked G1/S arrest, leading to accelerated growth in root tips, while 1.0–2.5 mg L−1 Cd-induced DNA damage caused a notable G2/M arrest in root tips, leading to reduced growth in root tips. This may be a protective mechanism that prevents cells with damaged DNA from dividing under Cd stress

    GWAS and co-expression network combination uncovers multigenes with close linkage effects on the oleic acid content accumulation in Brassica napus

    Get PDF
    Background: Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. Results: We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C18:1) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C18:1) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. Conclusions: Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed

    Fasudil in Combination With Bone Marrow Stromal Cells (BMSCs) Attenuates Alzheimer’s Disease-Related Changes Through the Regulation of the Peripheral Immune System

    Get PDF
    Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease. Its mechanism is still not clear. Majority of research focused on the central nervous system (CNS) changes, while few studies emphasize on peripheral immune system modulation. Our study aimed to investigate the regulation of the peripheral immune system and its relationship to the severity of the disease after treatment in an AD model of APPswe/PSEN1dE9 transgenic (APP/PS1 Tg) mice. APP/PS1 Tg mice (8 months old) were treated with the ROCK-II inhibitor 1-(5-isoquinolinesulfonyl)- homo-piperazine (Fasudil) (intraperitoneal (i.p.) injections, 25 mg/kg/day), bone marrow stromal cells (BMSCs; caudal vein injections, 1 × 106 BMSCs /time/mouse), Fasudil combined with BMSCs, or saline (i.p., control) for 2 months. Morris water maze (MWM) test was used to evaluate learning and memory. The mononuclear cells (MNCs) of spleens of APP/PS1 Tg mice were analyzed using flow cytometry for CD4+ T-cells, macrophages, and the pro-inflammatory and anti-inflammatory molecules of the macrophages. Immunohistochemical staining was used to examine the expression of ROCK-II in the spleens of APP/PS1 Tg mice. The MWM test showed improved spatial learning ability in APP/PS1 Tg mice treated with Fasudil or BMSCs alone or in combination, compared to untreated APP/PS1 Tg mice. Fasudil combined with BMSCs intervention significantly promoted the proliferation of CD4+/CD25+ and CD4+/ IL-10 lymphocytes, induced the release of cytokine factors, and regulated the balance of the immune system to work functionally. It also shifted M1 (MHC-II, CD86) to M2 (IL-10, CD206) phenotype of macrophages of CD11b and significantly enhanced the anti-inflammatory and phagocytic abilities (CD16/32) of macrophages of CD11b. Immunohistochemical staining showed significantly decreased expression of ROCK-II in mice treated with combination of Fasudil with BMSCs as compared to saline control. Fasudil in combination of BMSCs improved cognition of APP/PS1 Tg mice through the regulation of the peripheral immune system, including reduction of ROCK-II expression and increased proportion of anti-inflammatory M2 mononuclear phenotype and phagocytic macrophages in the spleen of the peripheral immune system. The latter was achieved through the communication between brain and spleen to improve the immunoregulation of CNS and AD disease conditions

    Cadmium-induced genomic instability in Arabidopsis: molecular toxicological biomarkers for early diagnosis of cadmium stress

    Get PDF
    Microsatellite instability (MSI) analysis, random-amplified polymorphic DNA (RAPD), and methylation-sensitive arbitrarily primed PCR (MSAP-PCR) are methods to evaluate the toxicity of environmental pollutants in stress-treated plants and human cancer cells. Here, we evaluate these techniques to screen for genetic and epigenetic alterations of Arabidopsis plantlets exposed to 0–5.0 mg L−1 cadmium (Cd) for 15 d. There was a substantial increase in RAPD polymorphism of 24.5, and in genomic methylation polymorphism of 30.5–34.5 at CpG and of 14.5–20 at CHG sites under Cd stress of 5.0 mg L−1 by RAPD and of 0.25–5.0 mg L−1 by MSAP-PCR, respectively. However, only a tiny increase of 1.5 loci by RAPD occurred under Cd stress of 4.0 mg L−1, and an additional high dose (8.0 mg L−1) resulted in one repeat by MSI analysis. MSAP-PCR detected the most significant epigenetic modifications in plantlets exposed to Cd stress, and the patterns of hypermethylation and polymorphisms were consistent with inverted U-shaped dose responses. The presence of genomic methylation polymorphism in Cd-treated seedlings, prior to the onset of RAPD polymorphism, MSI and obvious growth effects, suggests that these altered DNA methylation loci are the most sensitive biomarkers for early diagnosis and risk assessment of genotoxic effects of Cd pollution in ecotoxicology

    Antagonist Effect of Triptolide on AKT Activation by Truncated Retinoid X Receptor-alpha

    Get PDF
    Background: Retinoid X receptor-alpha (RXR alpha) is a key member of the nuclear receptor superfamily. We recently demonstrated that proteolytic cleavage of RXR alpha resulted in production of a truncated product, tRXR alpha, which promotes cancer cell survival by activating phosphatidylinositol-3-OH kinase (PI3K)/AKT pathway. However, how the tRXR alpha-mediated signaling pathway in cancer cells is regulated remains elusive. Methodology/Principal Findings: We screened a natural product library for tRXR alpha targeting leads and identified that triptolide, an active component isolated from traditional Chinese herb Trypterygium wilfordii Hook F, could modulate tRXR alpha-mediated cancer cell survival pathway in vitro and in animals. Our results reveal that triptolide strongly induces cancer cell apoptosis dependent on intracellular tRXR alpha expression levels, demonstrating that tRXR alpha serves as an important intracellular target of triptolide. We show that triptolide selectively induces tRXR alpha degradation and inhibits tRXR alpha-dependent AKT activity without affecting the full-length RXR alpha. Interestingly, such effects of triptolide are due to its activation of p38. Although triptolide also activates Erk1/2 and MAPK pathways, the effects of triptolide on tRXR alpha degradation and AKT activity are only reversed by p38 siRNA and p38 inhibitor. In addition, the p38 inhibitor potently inhibits tRXR alpha interaction with p85 alpha leading to AKT inactivation. Our results demonstrate an interesting novel signaling interplay between p38 and AKT through tRXR alpha mediation. We finally show that targeting tRXR alpha by triptolide strongly activates TNF alpha death signaling and enhances the anticancer activity of other chemotherapies Conclusions/Significance: Our results identify triptolide as a new xenobiotic regulator of the tRXR alpha-dependent survival pathway and provide new insight into the mechanism by which triptolide acts to induce apoptosis of cancer cells. Triptolide represents one of the most promising therapeutic leads of natural products of traditional Chinese medicine with unfortunate side-effects. Our findings will offer new strategies to develop improved triptolide analogs for cancer therapy.National Natural Science Foundation of China [NSFC: 30971445, 90913015, 91129302]; NSFC/Hong Kong Research Grants Council [NSFC/RGC: 30931160431/N_HKU 735/09]; Natural Science Foundation of Fujian Province [2009J01198

    Fasudil in Combination With Bone Marrow Stromal Cells (BMSCs) Attenuates Alzheimer’s Disease-Related Changes Through the Regulation of the Peripheral Immune System

    Get PDF
    Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease. Its mechanism is still not clear. Majority of research focused on the central nervous system (CNS) changes, while few studies emphasize on peripheral immune system modulation. Our study aimed to investigate the regulation of the peripheral immune system and its relationship to the severity of the disease after treatment in an AD model of APPswe/PSEN1dE9 transgenic (APP/PS1 Tg) mice. APP/PS1 Tg mice (8 months old) were treated with the ROCK-II inhibitor 1-(5-isoquinolinesulfonyl)-homo-piperazine (Fasudil) (intraperitoneal (i.p.) injections, 25 mg/kg/day), bone marrow stromal cells (BMSCs; caudal vein injections, 1 × 106 BMSCs /time/mouse), Fasudil combined with BMSCs, or saline (i.p., control) for 2 months. Morris water maze (MWM) test was used to evaluate learning and memory. The mononuclear cells (MNCs) of spleens of APP/PS1 Tg mice were analyzed using flow cytometry for CD4+ T-cells, macrophages, and the pro-inflammatory and anti-inflammatory molecules of the macrophages. Immunohistochemical staining was used to examine the expression of ROCK-II in the spleens of APP/PS1 Tg mice. The MWM test showed improved spatial learning ability in APP/PS1 Tg mice treated with Fasudil or BMSCs alone or in combination, compared to untreated APP/PS1 Tg mice. Fasudil combined with BMSCs intervention significantly promoted the proliferation of CD4+/CD25+ and CD4+/ IL-10 lymphocytes, induced the release of cytokine factors, and regulated the balance of the immune system to work functionally. It also shifted M1 (MHC-II, CD86) to M2 (IL-10, CD206) phenotype of macrophages of CD11b and significantly enhanced the anti-inflammatory and phagocytic abilities (CD16/32) of macrophages of CD11b. Immunohistochemical staining showed significantly decreased expression of ROCK-II in mice treated with combination of Fasudil with BMSCs as compared to saline control. Fasudil in combination of BMSCs improved cognition of APP/PS1 Tg mice through the regulation of the peripheral immune system, including reduction of ROCK-II expression and increased proportion of anti-inflammatory M2 mononuclear phenotype and phagocytic macrophages in the spleen of the peripheral immune system. The latter was achieved through the communication between brain and spleen to improve the immunoregulation of CNS and AD disease conditions
    corecore