142 research outputs found

    Tandem-pumped, tunable thulium-doped fiber laser in 21 μm wavelength region

    Get PDF
    We present a continuously tunable thulium(Tm)-doped fiber laser operating in the important 2.1 μm region, which is tandem-pumped by another Tm-doped fiber laser at 1908 nm. The advantages of pumping a Tm-doped fiber laser at the long-wavelength absorption tail (>1900 nm) of the fiber include a reduced quantum-defect, and efficient suppression of the amplified spontaneous noise (and potential parasitic lasing) at the short-wavelength region. This facilitates attainment of stable lasing operation in the long-wave emission tail of the Tm fiber at ~2.1 μm. By rotating a diffraction grating inside the Tm fiber laser cavity, we experimentally achieved a wavelength-tuning range of 2000-2172 nm. At central wavelengths of 2050 nm, 2150 nm, and 2172 nm, the slope efficiencies were 23%, 16%, and 9.9%, respectively. To the best of our knowledge, this is the first demonstration of long-wavelength operation of a Tm fiber laser system tandem-pumped at >1900 nm

    Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4_4

    Full text link
    A phase transition is often accompanied by the appearance of an order parameter and symmetry breaking. Certain magnetic materials exhibit exotic hidden-order phases, in which the order parameters are not directly accessible to conventional magnetic measurements. Thus, experimental identification and theoretical understanding of a hidden order are difficult. Here we combine neutron scattering and thermodynamic probes to study the newly discovered rare-earth triangular-lattice magnet TmMgGaO4_4. Clear magnetic Bragg peaks at K points are observed in the elastic neutron diffraction measurements. More interesting, however, is the observation of sharp and highly dispersive spin excitations that cannot be explained by a magnetic dipolar order, but instead is the direct consequence of the underlying multipolar order that is "hidden" in the neutron diffraction experiments. We demonstrate that the observed unusual spin correlations and thermodynamics can be accurately described by a transverse field Ising model on the triangular lattice with an intertwined dipolar and ferro-multipolar order.Comment: Published versio

    Asynchronous Wireless Federated Learning with Probabilistic Client Selection

    Full text link
    Federated learning (FL) is a promising distributed learning framework where distributed clients collaboratively train a machine learning model coordinated by a server. To tackle the stragglers issue in asynchronous FL, we consider that each client keeps local updates and probabilistically transmits the local model to the server at arbitrary times. We first derive the (approximate) expression for the convergence rate based on the probabilistic client selection. Then, an optimization problem is formulated to trade off the convergence rate of asynchronous FL and mobile energy consumption by joint probabilistic client selection and bandwidth allocation. We develop an iterative algorithm to solve the non-convex problem globally optimally. Experiments demonstrate the superiority of the proposed approach compared with the traditional schemes.Comment: To appear in IEEE Transactions on Wireless Communication

    Emergent criticality in fully frustrated quantum magnets

    Full text link
    Phase transitions in condensed matter are often linked to exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a novel emergent criticality. The quantum phase diagram contains four states, the DS (singlets on every interlayer dimer bond), DTAF (all triplets with antiferromagnetic order), TC (a singlet-triplet checkerboard) and FM (saturated ferromagnet). The thermal phase diagram is dominated by a wall of discontinuities extending from the zero-field DTAF-DS transition to a quantum critical endpoint where the field drives the DTAF and TC into the FM. This first-order wall is terminated at finite temperatures by a line of critical points, where the Berezinskii-Kosterlitz-Thouless (BKT) transition of the DTAF and the thermal Ising transition of the TC also terminate. We demonstrate by quantum Monte Carlo simulations that the BKT transition does not change the Ising nature of the DTAF-DS critical line. By contrast, the combination of symmetries merging on the multicritical DTAF-TC line leads to a 4-state Potts universality not contained in the microscopic Hamiltonian, which we associate with the Ashkin-Teller model. Our results represent a systematic step in understanding emergent phenomena in quantum magnetic materials including the ``Shastry-Sutherland compound'' SrCu2_2(BO3_3)2_2.Comment: 10+8 pages, 5+7 figure
    • …
    corecore