309 research outputs found

    On Exploring Node-feature and Graph-structure Diversities for Node Drop Graph Pooling

    Full text link
    A pooling operation is essential for effective graph-level representation learning, where the node drop pooling has become one mainstream graph pooling technology. However, current node drop pooling methods usually keep the top-k nodes according to their significance scores, which ignore the graph diversity in terms of the node features and the graph structures, thus resulting in suboptimal graph-level representations. To address the aforementioned issue, we propose a novel plug-and-play score scheme and refer to it as MID, which consists of a \textbf{M}ultidimensional score space with two operations, \textit{i.e.}, fl\textbf{I}pscore and \textbf{D}ropscore. Specifically, the multidimensional score space depicts the significance of nodes through multiple criteria; the flipscore encourages the maintenance of dissimilar node features; and the dropscore forces the model to notice diverse graph structures instead of being stuck in significant local structures. To evaluate the effectiveness of our proposed MID, we perform extensive experiments by applying it to a wide variety of recent node drop pooling methods, including TopKPool, SAGPool, GSAPool, and ASAP. Specifically, the proposed MID can efficiently and consistently achieve about 2.8\% average improvements over the above four methods on seventeen real-world graph classification datasets, including four social datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, and COLLAB), and thirteen biochemical datasets (D\&D, PROTEINS, NCI1, MUTAG, PTC-MR, NCI109, ENZYMES, MUTAGENICITY, FRANKENSTEIN, HIV, BBBP, TOXCAST, and TOX21). Code is available at~\url{https://github.com/whuchuang/mid}.Comment: 14 pages, 14 figure

    Evaluation of mixing and mixing rate in a multiple spouted bed by image processing technique

    Get PDF
    Mixing efficiency is one of the most significant factors, affecting both performance and scale-up of a gas-solid reactor system. This paper presents an experimental investigation on the particle mixing in a multiple spouted bed. Image processing technique was used to extract the real-time information concerning the distribution of particle components (bed materials and tracer particles). A more accurate definition of the tracer concentration was developed to calculate the mixing index. According to the visual observation and image analysis, the mixing mechanism was revealed and the mixing rate was evaluated. Based on these results, the effects of operation parameters on the mixing rate were discussed in terms of the flow patterns. It is found that the detection of the pixel distribution of each component in RGB images is not affected by the interference of air void, thus maintaining good measurement accuracy. Convective transportation controls the particle mixing in the internal jet and spout, while shear dominants the particle mixing in the dense moving region. Global mixing takes place only when the path from one spout cell to the other is open. This path can be formed either by the bubbles or particle circulation flows. The mixing rate is linked to the bubble motion and particle circulation. Provided that there are interactions between the spout cells, any parameters promoting the bubble motion and circulation can increase the mixing rate. Finally, a mixing pattern diagram was constructed to establish the connection between the flow structure and mixing intensity

    Interaction of Avelox with Bovine Serum Albumin and Effect of the Coexistent Drugs on the Reaction

    Get PDF
    The interaction between Avelox and bovine serum albumin (BSA) was investigated at different temperatures by fluorescence spectroscopy. Results showed that Avelox could quench the intrinsic fluorescence of BSA strongly, and the quenching mechanism was a static quenching process with Förester spectroscopy energy transfer. The electrostatic force played an important role on the conjugation reaction between BSA and Avelox. The order of magnitude of binding constants (Ka) was 104, and the number of binding site (n) in the binary system was approximately equal to 1. The binding distance (r) was less than 3 nm and the primary binding site for Avelox was located in subdomain IIA of BSA. Synchronous fluorescence spectra clearly revealed that the microenvironment of amino acid residues and the conformation of BSA were changed during the binding reaction. In addition, the effect of some antibiotics on the binding constant of Avelox with BSA was also studied

    Designer Amphiphilic Short Peptides Enhance Thermal Stability of Isolated Photosystem-I

    Get PDF
    Stability of membrane protein is crucial during protein purification and crystallization as well as in the fabrication of protein-based devices. Several recent studies have examined how various surfactants can stabilize membrane proteins out of their native membrane environment. However, there is still no single surfactant that can be universally employed for all membrane proteins. Because of the lack of knowledge on the interaction between surfactants and membrane proteins, the choice of a surfactant for a specific membrane protein remains purely empirical. Here we report that a group of short amphiphilic peptides improve the thermal stability of the multi-domain protein complex photosystem-I (PS-I) in aqueous solution and that the peptide surfactants have obvious advantages over other commonly used alkyl chain based surfactants. Of all the short peptides studied, Ac-I5K2-CONH2 (I5K2) showed the best stabilizing effect by enhancing the melting temperature of PS-I from 48.0°C to 53.0°C at concentration of 0.65 mM and extending the half life of isolated PS-I significantly. AFM experiments showed that PS-I/I5K2/Triton X-100 formed large and stable vesicles and thus provide interfacial environment mimicking that of native membranes, which may partly explain why I5K2 enhanced the thermal stability of PS-I. Hydrophobic and hydrophilic group length of IxKy had an important influence on the stabilization of PS-I. Our results showed that longer hydrophobic group was more effective in stabilizing PS-I. These simple short peptides therefore exhibit significant potential for applications in membrane protein studies

    PCR-based generation of shRNA libraries from cDNAs

    Get PDF
    BACKGROUND: The use of small interfering RNAs (siRNAs) to silence target gene expression has greatly facilitated mammalian genetic analysis by generating loss-of-function mutants. In recent years, high-throughput, genome-wide screening of siRNA libraries has emerged as a viable approach. Two different methods have been used to generate short hairpin RNA (shRNA) libraries; one is to use chemically synthesized oligonucleotides, and the other is to convert complementary DNAs (cDNAs) into shRNA cassettes enzymatically. The high cost of chemical synthesis and the low efficiency of the enzymatic approach have hampered the widespread use of screening with shRNA libraries. RESULTS: We report here an improved method for constructing genome-wide shRNA libraries enzymatically. The method includes steps of cDNA fragmentation and endonuclease MmeI digestion to generate 19-bp fragments, capping the 19-bp cDNA fragments with a hairpin oligonucleotide, and amplification of the hairpin structures by PCR. The PCR step converts hairpins into double-stranded DNAs that contain head-to-head cDNA fragments that can be cloned into a vector downstream of a Pol III promoter. CONCLUSION: This method can readily be used to generate shRNA libraries from a small amount of mRNA and thus can be used to create cell- or tissue-specific libraries

    Experimental evaluation of a Chinese sulfur-containing lean iron ore as the oxygen carrier for chemical-looping combustion

    Get PDF
    A series of chemical-looping combustion (CLC) tests were conducted in a thermogravimetric analysis (TGA) reactor to investigate the potential of a Chinese sulfur-containing lean iron ore as the oxygen carrier. Two main products of solidfuel pyrolysis and gasification, namely, CH4 and CO, were selected as the reducing gases. Consecutive reduction−oxidation cycles were first carried out in the TGA reactor to evaluate the cyclic stability and agglomeration tendency of the oxygen carrier. The effects of the temperature, fuel gas concentration, and reaction gas composition on the reduction reaction were further investigated. Increasing the reaction temperature or fuel gas concentration enhanced the reduction rate and reaction degree of the oxygen carrier. Meanwhile, CO showed much higher reduction reactivity than CH4. A comparison of the rate index of the iron ore used with those of high-grade minerals indicated that the iron ore had adequate reactivity for its application in solid-fuel CLC technology. The side reaction of carbon deposition was also discussed. Finally, the shrinking-core model with chemical reaction control was adopted to determine the chemical kinetics
    corecore