250,896 research outputs found

    Comment on "Mass and K Lambda coupling of N*(1535)"

    Full text link
    It is argued in [1] that when the strong coupling to the K Lambda channel is considered, Breit-Wigner mass of the lightest orbital excitation of the nucleon N(1535) shifts to a lower value. The new value turned out to be smaller than the mass of the lightest radial excitation N(1440), which effectively solved the long-standing problem of conventional constituent quark models. In this Comment we show that it is not the Breit-Wigner mass of N(1535) that is decreased, but its bare mass. [1] B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006).Comment: 3 pages, comment on "Mass and K Lambda coupling of N*(1535)", B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006

    On integrable natural Hamiltonian systems on the suspensions of toric automorphism

    Full text link
    We point out a mistake in the main statement of \cite{liu} and suggest and proof a correct statement.Comment: 5 pages, no figure

    Modelling of deep wells thermal modes

    Get PDF
    Purpose. Investigation of various heat-exchange conditions influence of the tower liquid on the deep wells thermal conditions. Methods. Methods of heat-exchange processes mathematical modeling are used. On the basis of the developed scheme for calculation, the thermal condition in a vertical well with a concentric arrangement of the drill-string was investigated. It was assumed that the walls of the well are properly insulated, and there is no flow or loss of fluid. The temperature distribution in the Newtonian (water) and non-Newtonian (clay mud) liquid along the borehole was simulated taking into account changes in the temperature regime of rocks with depth. To verify the calculation method and determine the reliability of the results, a comparative analysis of the calculated and experimental data to determine the temperature of the drilling liquid in the well was performed. Findings. A mathematical model for the study of temperature fields along the well depth was proposed and verified. A steady-state temperature distribution along the borehole is obtained for various types (Newtonian or non-Newtonian) tower liquid, with a linear law of change in rocks temperature with depth. It has been established that the temperature of the liquid flow at the face of hole and at the exit to the surface depends on the type of liquid used and the flow regime. It has been established that due to thermal insulation of drill pipe columns, heat-exchange between the downward and upward flow is reduced, which leads to a decrease in the temperature of the downward flow at the face of hole, providing a more favorable temperature at the face, which contributes to better destruction of the rock and cooling the tool during drilling. Originality. The nature of temperature distribution and changes along the borehole under the steady-state mode of heat-exchange in a turbulent and structural flow regime for both Newtonian and non-Newtonian circulating liquid are revealed. Practical implications. The proposed mathematical model and obtained results can be used to conduct estimates of the thermal conditions of wells and the development of recommendations for controlling the intensity of heat-exchange processes in the well, in accordance with the requirements of a specific technology.ΠœΠ΅Ρ‚Π°. ДослідТСння Π²ΠΏΠ»ΠΈΠ²Ρƒ Ρ€Ρ–Π·Π½ΠΈΡ… ΡƒΠΌΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡ–Π½Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡŽΡŽΡ‡ΠΎΡ— Ρ€Ρ–Π΄ΠΈΠ½ΠΈ Π½Π° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΈΠΉ Ρ€Π΅ΠΆΠΈΠΌ Π³Π»ΠΈΠ±ΠΎΠΊΠΈΡ… свСрдловин. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. Використано ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ модСлювання процСсів Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡ–Π½Ρƒ. На основі Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎΡ— схСми Π΄ΠΎ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ дослідТувався Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΈΠΉ Ρ€Π΅ΠΆΠΈΠΌ Ρƒ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ–ΠΉ свСрдловині Π· ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌ Ρ€ΠΎΠ·Ρ‚Π°ΡˆΡƒΠ²Π°Π½Π½ΡΠΌ Π±ΡƒΡ€ΠΈΠ»ΡŒΠ½ΠΎΡ— ΠΊΠΎΠ»ΠΎΠ½ΠΈ. ΠŸΠ΅Ρ€Π΅Π΄Π±Π°Ρ‡Π°Π»ΠΎΡΡ, Ρ‰ΠΎ стінки свСрдловини Π½Π°Π»Π΅ΠΆΠ½ΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½Ρ–, ΠΏΡ€ΠΈΠΏΠ»ΠΈΠ² Ρ– Π²Ρ‚Ρ€Π°Ρ‚ΠΈ Ρ€Ρ–Π΄ΠΈΠ½ΠΈ відсутні. МодСлювався Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π» Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Ρƒ ΠΏΠΎΡ‚ΠΎΠΊΠ°Ρ… Π½ΡŒΡŽΡ‚ΠΎΠ½Ρ–Π²ΡΡŒΠΊΠΎΡ— (Π²ΠΎΠ΄ΠΈ) Ρ‚Π° Π½Π΅Π½ΡŒΡŽΡ‚ΠΎΠ½Ρ–Π²ΡΡŒΠΊΠΎΡ— (глинистого Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρƒ) Ρ€Ρ–Π΄ΠΈΠ½ ΡƒΠ·Π΄ΠΎΠ²ΠΆ стовбура свСрдловини Π· урахуванням Π·ΠΌΡ–Π½ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ Π³Ρ–Ρ€ΡΡŒΠΊΠΈΡ… ΠΏΠΎΡ€Ρ–Π΄ Π· глибиною. Для Π²Π΅Ρ€ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ Ρ– визначСння достовірності Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² Π±ΡƒΠ² Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΈΠΉ ΠΏΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²ΠΈΡ… Ρ‚Π° Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… Π΄Π°Π½ΠΈΡ… Π· визначСння Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ ΠΏΡ€ΠΎΠΌΠΈΠ²Π½ΠΎΡ— Ρ€Ρ–Π΄ΠΈΠ½ΠΈ Ρƒ свСрдловині. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° Ρ– Π²Π΅Ρ€ΠΈΡ„Ρ–Ρ†Ρ–ΠΉΠΎΠ²Π°Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π° модСль для дослідТСння Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–Π² Π· глибиною свСрдловини. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ стаціонарний Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π» Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ ΡƒΠ·Π΄ΠΎΠ²ΠΆ стовбура свСрдловини для Ρ€Ρ–Π·Π½ΠΈΡ… Ρ‚ΠΈΠΏΡ–Π² (Π½ΡŒΡŽΡ‚ΠΎΠ½Ρ–Π²ΡΡŒΠΊΠΈΡ… Π°Π±ΠΎ Π½Π΅Π½ΡŒΡŽΡ‚ΠΎΠ½Ρ–Π²ΡΡŒΠΊΠΈΡ…) Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡŽΡŽΡ‡ΠΈΡ… Ρ€Ρ–Π΄ΠΈΠ½ ΠΏΡ€ΠΈ Π»Ρ–Π½Ρ–ΠΉΠ½ΠΎΠΌΡƒ Π·Π°ΠΊΠΎΠ½Ρ– Π·ΠΌΡ–Π½ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Π³Ρ–Ρ€ΡΡŒΠΊΠΈΡ… ΠΏΠΎΡ€Ρ–Π΄ Π· глибиною. ВиявлСно, Ρ‰ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΏΠΎΡ‚ΠΎΠΊΡƒ Ρ€Ρ–Π΄ΠΈΠ½ΠΈ Π½Π° Π²ΠΈΠ±ΠΎΡ— свСрдловини Ρ– Π½Π° Π²ΠΈΡ…ΠΎΠ΄Ρ– Π½Π° Π΄Π΅Π½Π½Ρƒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΡŽ Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ Ρ‚ΠΈΠΏΡƒ використовуваної Ρ€Ρ–Π΄ΠΈΠ½ΠΈ Ρ– Ρ€Π΅ΠΆΠΈΠΌΡƒ Ρ‚Π΅Ρ‡Ρ–Ρ—. ВстановлСно, Ρ‰ΠΎ Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ тСрмоізоляції ΠΊΠΎΠ»ΠΎΠ½ΠΈ Π±ΡƒΡ€ΠΈΠ»ΡŒΠ½ΠΈΡ… Ρ‚Ρ€ΡƒΠ± Π·Π½ΠΈΠΆΡƒΡ”Ρ‚ΡŒΡΡ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡ–Π½ ΠΌΡ–ΠΆ Π½ΠΈΠ·Ρ…Ρ–Π΄Π½ΠΈΠΌ Ρ– висхідним ΠΏΠΎΡ‚ΠΎΠΊΠ°ΠΌΠΈ, Ρ‰ΠΎ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ зниТСння Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Π½ΠΈΠ·Ρ…Ρ–Π΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΡƒ Π½Π° Π²ΠΈΠ±ΠΎΡ— свСрдловини, Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‡ΠΈ Π±Ρ–Π»ΡŒΡˆ сприятливий Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΠΉ Ρ€Π΅ΠΆΠΈΠΌ Π½Π° Π²ΠΈΠ±ΠΎΡ—, який сприяє ΠΊΡ€Π°Ρ‰ΠΎΠΌΡƒ руйнування ΠΏΠΎΡ€ΠΎΠ΄ΠΈ Ρ‚Π° ΠΎΡ…ΠΎΠ»ΠΎΠ΄ΠΆΠ΅Π½Π½ΡŽ інструмСнту ΠΏΡ€ΠΈ Π±ΡƒΡ€Ρ–Π½Π½Ρ–. Наукова Π½ΠΎΠ²ΠΈΠ·Π½Π°. ВиявлСно Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ Ρ‚Π° Π·ΠΌΡ–Π½ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Π²Π·Π΄ΠΎΠ²ΠΆ стовбура свСрдловин ΠΏΡ€ΠΈ стаціонарному Ρ€Π΅ΠΆΠΈΠΌΡ– Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡ–Π½Ρƒ Π² Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΠΌΡƒ Ρ– структурному Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Ρ‚Π΅Ρ‡Ρ–Ρ— як для Π½ΡŒΡŽΡ‚ΠΎΠ½Ρ–Π²ΡΡŒΠΊΠΈΡ…, Ρ‚Π°ΠΊ Ρ– Π½Π΅Π½ΡŒΡŽΡ‚ΠΎΠ½Ρ–Π²ΡΡŒΠΊΠΈΡ… Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡŽΡŽΡ‡ΠΈΡ… Ρ€Ρ–Π΄ΠΈΠ½. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π° Π·Π½Π°Ρ‡ΠΈΠΌΡ–ΡΡ‚ΡŒ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π° модСль Ρ– ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ використовуватися для провСдСння ΠΎΡ†Ρ–Π½ΠΎΡ‡Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡ–Π² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² свСрдловин Ρ‚Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†Ρ–ΠΉ Π· управління Ρ–Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡ–Π½Π½ΠΈΡ… процСсів Ρƒ свСрдловині Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π΄ΠΎ Π²ΠΈΠΌΠΎΠ³ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΡ— Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ—.ЦСль. ИсслСдованиС влияния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условий Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π° Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Тидкости Π½Π° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ Ρ€Π΅ΠΆΠΈΠΌ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… скваТин. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ матСматичСского модСлирования процСссов Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π°. На основС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ схСмы ΠΊ расчСту исслСдовался Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ Ρ€Π΅ΠΆΠΈΠΌ Π² Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ скваТинС с концСнтричСским располоТСниСм Π±ΡƒΡ€ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Ρ‹. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ стСнки скваТины Π½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹, ΠΏΡ€ΠΈΡ‚ΠΎΠΊ ΠΈ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Тидкости ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΎΡΡŒ распрСдСлСниС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π² ΠΏΠΎΡ‚ΠΎΠΊΠ°Ρ… Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ (Π²ΠΎΠ΄Ρ‹) ΠΈ Π½Π΅Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ (глинистого раствора) ТидкостСй вдоль ствола скваТины с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ измСнСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ с Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ. Для Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ расчСта ΠΈ опрСдСлСния достовСрности Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π±Ρ‹Π» Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· расчСтных ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΡ€ΠΎΠΌΡ‹Π²ΠΎΡ‡Π½ΠΎΠΉ Тидкости Π² скваТинС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π° матСматичСская модСль для исслСдования Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ ΠΏΠΎ Π³Π»ΡƒΠ±ΠΈΠ½Π΅ скваТины. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ стационарноС распрСдСлСниС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ вдоль ствола скваТины для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² (Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΡ… ΠΈΠ»ΠΈ Π½Π΅Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΡ…) Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ТидкостСй ΠΏΡ€ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π·Π°ΠΊΠΎΠ½Π΅ измСнСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ с Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ. ВыявлСно, Ρ‡Ρ‚ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΏΠΎΡ‚ΠΎΠΊΠ° Тидкости Π½Π° Π·Π°Π±ΠΎΠ΅ скваТины ΠΈ Π½Π° Π²Ρ‹Ρ…ΠΎΠ΄Π΅ Π½Π° Π΄Π½Π΅Π²Π½ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ зависит ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ Тидкости ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ° тСчСния. УстановлСно, Ρ‡Ρ‚ΠΎ Π·Π° счСт тСрмоизоляции ΠΊΠΎΠ»ΠΎΠ½Ρ‹ Π±ΡƒΡ€ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€ΡƒΠ± сниТаСтся Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½ ΠΌΠ΅ΠΆΠ΄Ρƒ нисходящим ΠΈ восходящим ΠΏΠΎΡ‚ΠΎΠΊΠ°ΠΌΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сниТСнию Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ нисходящСго ΠΏΠΎΡ‚ΠΎΠΊΠ° Π½Π° Π·Π°Π±ΠΎΠ΅ скваТины, обСспСчивая Π±ΠΎΠ»Π΅Π΅ благоприятный Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ Ρ€Π΅ΠΆΠΈΠΌ Π½Π° Π·Π°Π±ΠΎΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ способствуСт Π»ΡƒΡ‡ΡˆΠ΅ΠΌΡƒ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ ΠΈ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡŽ инструмСнта ΠΏΡ€ΠΈ Π±ΡƒΡ€Π΅Π½ΠΈΠΈ. Научная Π½ΠΎΠ²ΠΈΠ·Π½Π°. ВыявлСн Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ распрСдСлСния ΠΈ измСнСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ вдоль ствола скваТин ΠΏΡ€ΠΈ стационарном Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π° Π² Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΠΌ ΠΈ структурном Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… тСчСния ΠΊΠ°ΠΊ для Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΡ…, Ρ‚Π°ΠΊ ΠΈ Π½Π΅Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΡ… Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ТидкостСй. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ матСматичСская модСль ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для провСдСния ΠΎΡ†Π΅Π½ΠΎΡ‡Π½Ρ‹Ρ… расчСтов Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² скваТин ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΉ ΠΏΠΎ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Ρ… процСссов Π² скваТинС Π² соотвСтствии с трСбованиями ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ.The authors thank the Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine (Dnipro, Ukraine) for providing technical and informational support in this work

    The classification of traveling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion

    Full text link
    Under the traveling wave transformation, Camassa-Holm equation with dispersion is reduced to an integrable ODE whose general solution can be obtained using the trick of one-parameter group. Furthermore combining complete discrimination system for polynomial, the classifications of all single traveling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More general, an implicit linear structure in Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion

    Climatic control on the peak discharge of glacier outburst floods

    No full text
    Lakes impounded by natural ice dams occur in many glacier regions. Their sudden emptying along subglacial paths can unleash similar to 1 km(3) of floodwater, but predicting the peak discharge of these subglacial outburst floods ('jokulhlaups') is notoriously difficult. To study how environmental factors control jokulhlaup magnitude, we use thermo- mechanical modelling to interpret a 40- year flood record from Merzbacher Lake in the Tian Shan. We show that the mean air temperature during each flood modulates its peak discharge, by influencing both the rate of meltwater input to the lake as it drains, and the lake- water temperature. The flood devastation potential thus depends sensitively on weather, and this dependence explains how regional climatic warming drives the rising trend of peak discharges in our dataset. For other subaerial ice- dammed lakes worldwide, regional warming will also promote higher- impact jokulhlaups by raising the likelihood of warm weather during their occurrence, unless other factors reduce lake volumes at flood initiation to outweigh this effect

    Comparison of Canonical and Grand Canonical Models for selected multifragmentation data

    Get PDF
    Calculations for a set of nuclear multifragmentation data are made using a Canonical and a Grand Canonical Model. The physics assumptions are identical but the Canonical Model has an exact number of particles, whereas, the Grand Canonical Model has a varying number of particles, hence, is less exact. Interesting differences are found.Comment: 12 pages, Revtex, and 3 postscript figure
    • …
    corecore