620,515 research outputs found

    Roll waves in mud

    Get PDF
    The stability of a viscoplastic fluid film falling down an inclined plane is explored, with the aim of determining the critical Reynolds number for the onset of roll waves. The Herschel–Bulkley constitutive law is adopted and the fluid is assumed two-dimensional and incompressible. The linear stability problem is described for an equilibrium in the form of a uniform sheet flow, when perturbed by introducing an infinitesimal stress perturbation. This flow is stable for very high Reynolds numbers because the rigid plug riding atop the fluid layer cannot be deformed and the free surface remains flat. If the flow is perturbed by allowing arbitrarily small strain rates, on the other hand, the plug is immediately replaced by a weakly yielded ‘pseudo-plug’ that can deform and reshape the free surface. This situation is modelled by lubrication theory at zero Reynolds number, and it is shown how the fluid exhibits free-surface instabilities at order-one Reynolds numbers. Simpler models based on vertical averages of the fluid equations are evaluated, and one particular model is identified that correctly predicts the onset of instability. That model is used to describe nonlinear roll waves

    High-order harmonic generation from diatomic molecules with large internuclear distance: The effect of two-center interference

    Full text link
    In the present paper, we investigate the high-order harmonic generation (HHG) from diatomic molecules with large internuclear distance using a strong field approximation (SFA) model. We find that the hump and dip structure emerges in the plateau region of the harmonic spectrum, and the location of this striking structure is sensitive to the laser intensity. Our model analysis reveals that two-center interference as well as the interference between different recombination electron trajectories are responsible for the unusual enhanced or suppressed harmonic yield at a certain order, and these interference effects are greatly influenced by the laser parameters such as intensity.Comment: 5 pages,4 figure

    Stability at Random Close Packing

    Full text link
    The requirement that packings of hard particles, arguably the simplest structural glass, cannot be compressed by rearranging their network of contacts is shown to yield a new constraint on their microscopic structure. This constraint takes the form a bound between the distribution of contact forces P(f) and the pair distribution function g(r): if P(f) \sim f^{\theta} and g(r) \sim (r-{\sigma})^(-{\gamma}), where {\sigma} is the particle diameter, one finds that {\gamma} \geq 1/(2+{\theta}). This bound plays a role similar to those found in some glassy materials with long-range interactions, such as the Coulomb gap in Anderson insulators or the distribution of local fields in mean-field spin glasses. There is ground to believe that this bound is saturated, offering an explanation for the presence of avalanches of rearrangements with power-law statistics observed in packings

    Observational Test of Coronal Magnetic Field Models I. Comparison with Potential Field Model

    Full text link
    Recent advances have made it possible to obtain two-dimensional line-of-sight magnetic field maps of the solar corona from spectropolarimetric observations of the Fe XIII 1075 nm forbidden coronal emission line. Together with the linear polarization measurements that map the azimuthal direction of the coronal magnetic field, these coronal vector magnetograms now allow for direct observational testing of theoretical coronal magnetic field models. This paper presents a study testing the validity of potential-field coronal magnetic field models. We constructed a theoretical coronal magnetic field model of active region AR 10582 observed by the SOLARC coronagraph in 2004 by a global potential field extrapolation of the synoptic map of Carrington Rotation 2014. Synthesized linear and circular polarization maps from thin layers of the coronal magnetic field model above the active region along the line of sight are compared with the observed maps. We found that reasonable agreement occurs from layers located just above the sunspot of AR 10582, near the plane of the sky. This result provides the first observational evidence that potential field extrapolation can yield a reasonable approximation of the magnetic field configuration of the solar corona for simple and stable active regions.Comment: 25 pages, 11 figures. ApJ in pres

    Improved Chebyshev series ephemeris generation capability of GTDS

    Get PDF
    An improved implementation of the Chebyshev ephemeris generation capability in the operational version of the Goddard Trajectory Determination System (GTDS) is described. Preliminary results of an evaluation of this orbit propagation method for three satellites of widely different orbit eccentricities are also discussed in terms of accuracy and computing efficiency with respect to the Cowell integration method. An empirical formula is deduced for determining an optimal fitting span which would give reasonable accuracy in the ephemeris with a reasonable consumption of computing resources
    corecore