Recent advances have made it possible to obtain two-dimensional line-of-sight
magnetic field maps of the solar corona from spectropolarimetric observations
of the Fe XIII 1075 nm forbidden coronal emission line. Together with the
linear polarization measurements that map the azimuthal direction of the
coronal magnetic field, these coronal vector magnetograms now allow for direct
observational testing of theoretical coronal magnetic field models. This paper
presents a study testing the validity of potential-field coronal magnetic field
models. We constructed a theoretical coronal magnetic field model of active
region AR 10582 observed by the SOLARC coronagraph in 2004 by a global
potential field extrapolation of the synoptic map of Carrington Rotation 2014.
Synthesized linear and circular polarization maps from thin layers of the
coronal magnetic field model above the active region along the line of sight
are compared with the observed maps. We found that reasonable agreement occurs
from layers located just above the sunspot of AR 10582, near the plane of the
sky. This result provides the first observational evidence that potential field
extrapolation can yield a reasonable approximation of the magnetic field
configuration of the solar corona for simple and stable active regions.Comment: 25 pages, 11 figures. ApJ in pres