4 research outputs found

    Impact of brain parcellation on prediction performance in models of cognition and demographics

    Get PDF
    Brain connectivity analysis begins with the selection of a parcellation scheme that will define brain regions as nodes of a network whose connections will be studied. Brain connectivity has already been used in predictive modelling of cognition, but it remains unclear if the resolution of the parcellation used can systematically impact the predictive model performance. In this work, structural, functional and combined connectivity were each defined with five different parcellation schemes. The resolution and modality of the parcellation schemes were varied. Each connectivity defined with each parcellation was used to predict individual differences in age, education, sex, executive function, self-regulation, language, encoding and sequence processing. It was found that low-resolution functional parcellation consistently performed above chance at producing generalisable models of both demographics and cognition. However, no single parcellation scheme showed a superior predictive performance across all cognitive domains and demographics. In addition, although parcellation schemes impacted the graph theory measures of each connectivity type (structural, functional and combined), these differences did not account for the out-of-sample predictive performance of the models. Taken together, these findings demonstrate that while high-resolution parcellations may be beneficial for modelling specific individual differences, partial voluming of signals produced by the higher resolution of the parcellation likely disrupts model generalisability

    Using graph theory as a common language to combine neural structure and function in models of healthy cognitive performance

    Get PDF
    Graph theory has been used in cognitive neuroscience to understand how organisational properties of structural and functional brain networks relate to cognitive function. Graph theory may bridge the gap in integration of structural and functional connectivity by introducing common measures of network characteristics. However, the explanatory and predictive value of combined structural and functional graph theory have not been investigated in modelling of cognitive performance of healthy adults. In this work, a Principal Component Regression approach with embedded Step-Wise Regression was used to fit multiple regression models of Executive Function, Self-regulation, Language, Encoding and Sequence Processing with a collection of 20 different graph theoretic measures of structural and functional network organisation used as regressors. The predictive ability of graph theory-based models was compared to that of connectivity-based models. The present work shows that using combinations of graph theory metrics to predict cognition in healthy populations does not produce a consistent benefit relative to making predictions based on structural and functional connectivity values directly

    Combination of structural and functional connectivity explains unique variation in specific domains of cognitive function

    Get PDF
    The relationship between structural and functional brain networks has been characterised as complex: the two networks mirror each other and show mutual influence but they also diverge in their organisation. This work explored whether a combination of structural and functional connectivity can improve the fit of regression models of cognitive performance. Principal Component Analysis (PCA) was first applied to cognitive data from the Human Connectome Project to identify latent cognitive components: Executive Function, Self-regulation, Language, Encoding and Sequence Processing. A Principal Component Regression approach with embedded Step-Wise Regression (SWR-PCR) was then used to fit regression models of each cognitive domain based on structural (SC), functional (FC) or combined structural-functional (CC) connectivity. Executive Function was best explained by the CC model. Self-regulation was equally well explained by SC and FC. Language was equally well explained by CC and FC models. Encoding and Sequence Processing were best explained by SC. Evaluation of out-of-sample models’ skill via cross-validation showed that SC, FC and CC produced generalisable models of Language performance. SC models performed most effectively at predicting Language performance in unseen sample. Executive Function was most effectively predicted by SC models, followed only by CC models. Self-regulation was only effectively predicted by CC models and Sequence Processing was only effectively predicted by FC models. The present study demonstrates that integrating structural and functional connectivity can help explaining cognitive performance, but that the added explanatory value (in-sample) may be domain-specific and can come at the expense of reduced generalisation performance (out-of-sample)
    corecore