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Abstract

Graph theory has been used in cognitive neuroscience to understand how organisa-

tional properties of structural and functional brain networks relate to cognitive func-

tion. Graph theory may bridge the gap in integration of structural and functional

connectivity by introducing common measures of network characteristics. However,

the explanatory and predictive value of combined structural and functional graph

theory have not been investigated in modelling of cognitive performance of healthy

adults. In this work, a Principal Component Regression approach with embedded

Step-Wise Regression was used to fit multiple regression models of Executive Func-

tion, Self-regulation, Language, Encoding and Sequence Processing with a collection

of 20 different graph theoretic measures of structural and functional network organi-

sation used as regressors. The predictive ability of graph theory-based models was

compared to that of connectivity-based models. The present work shows that using

combinations of graph theory metrics to predict cognition in healthy populations

does not produce a consistent benefit relative to making predictions based on struc-

tural and functional connectivity values directly.

K E YWORD S

adult, cognition, functional connectivity, graph theory, multimodal, multivariate, structural
connectivity

1 | INTRODUCTION

In statistical modelling, complex social, physical, economic and biologi-

cal systems can be represented by graphs. A graph is a set of ele-

ments, referred to as nodes, and connections between them, referred

to as edges. An adjacency matrix is a square matrix representing the

graph. This approach to characterising complex systems has become

increasingly popular in neuroscience as human brains naturally form

networks that can be represented by graphs (Bassett et al., 2020;

Fornito et al., 2016; Sporns et al., 2005). For example, brains are phys-

ically made up of neuronal populations that can constitute nodes and

white matter connections between them that can constitute edges

(structural connectivity [SC]) (Sporns et al., 2005). In addition, activity

in disparate remote neuronal populations can act as nodes and the

coordination of their activity can be considered as edges (functional

connectivity [FC]) (Bullmore & Sporns, 2009; Friston, 2002). TheseNelson Trujillo-Barreto and Anna Woollams are the joint senior authors.
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graph representations of the brain can then be used to try and better

understand the relationship between brain structure and function. In

this study, we consider what are the benefits of using the graph the-

ory approach to combine SC and FC.

Analyses of brain connectivity have demonstrated an association

between the strength of SC and FC. Evidence demonstrates that

white matter tends to connect neuronal populations that show syn-

chronised activation patterns (Greicius et al., 2008; Johansen-Berg

et al., 2004; Jung et al., 2017; Vázquez-Rodríguez et al., 2019). The

strength of SC has also been shown to correlate with FC (Honey

et al., 2009; Koch et al., 2002; Skudlarski et al., 2008), and to predict

patterns of FC with moderate accuracy (Honey et al., 2009; Honey

et al., 2010). Furthermore, evidence demonstrates moderate coupling

of age-related changes of SC and FC strength across lifespan (Baum

et al., 2020; Romero-Garcia et al., 2014). Similarly, coupling of SC and

FC abnormalities have been observed in neurologically atypical popu-

lations such as patients with autism spectrum disorder (Delmonte

et al., 2013; Park et al., 2021), epilepsy (Chiang et al., 2015), schizo-

phrenia (Cocchi et al., 2014), depression (Jiang et al., 2019), multiple

sclerosis (Kulik et al., 2022) and Alzheimer's disease (Zhou

et al., 2010).

Interpretation of the relationship between SC and FC is not trivial.

SC strength generally reflects the number of diffusion tracking

streamlines connecting pairs of regions, and they are generally inter-

preted as white matter connections. In contrast, FC strength reflects

statistical associations between activation amplitude across pairs of

regions and these values are generally interpreted as coordination of

activity. Consequently, a direct comparison of SC with FC is some-

what similar to the comparison of “apples and oranges”. Furthermore,

some characteristics of FC may not be reflected by SC. For example,

SC is largely static, changing over long periods (Betzel et al., 2014).

Meanwhile, FC is dynamic and shows changes in its topological con-

figuration between cognitive states and shifting environmental pres-

sures (Chang & Glover, 2010; Gonzalez-Castillo et al., 2015; Mecacci

et al., 2004; Park et al., 2012; Shirer et al., 2012). This suggests that

edge-by-edge divergence between SC and FC may occur due to

changing configurations of FC (Park & Friston, 2013). Additionally, a

pair of regions may display a strong FC in the absence of direct struc-

tural connections (Ashourvan et al., 2019; Friston, 2002; Hagmann

et al., 2008; Honey et al., 2009, 2010; Liao et al., 2015; Røge

et al., 2017; Sun et al., 2012; Thomas et al., 2009), referred to as indi-

rect FC. This is likely related to the dynamic nature of FC and its abil-

ity to produce adaptive responses (Park & Friston, 2013). Indirect FC

further exuberates the problem that SC and FC are not directly com-

parable, but their uniqueness is valid and meaningful. Consequently,

SC and FC are likely to capture both shared and unique variance in

predicting outcomes.

Some investigations have complemented connectivity analysis by

obtaining graph theory measures of network organisation (Rubinov &

Sporns, 2010). These measures quantitatively describe the architec-

ture of networks. In neuroscience, graph theory measures are

obtained after raw connectivity matrices have been calculated. After

SC and FC have been additionally processed in this manner, their

organisation can be directly compared. This procedure sidesteps the

problem that the values of SC and FC have different interpretations

because graph theory measures express the same information across

networks. As a result, we can make direct comparisons between SC

and FC and then meaningfully interpret how their organisation differs.

For example, neuroscience has focused on comparing the balance

between segregation and integration of information within each con-

nectivity (Park et al., 2008). Park and colleagues have demonstrated

that both SC and FC balance segregation and integration of informa-

tion processing. This balance was estimated with analysis of each con-

nectivity's tendency to produce clusters of strongly connected nodes

relative to its tendency to produce short paths between pairs of nodes

(aka small-world architecture). However, SC had greater global and

local efficiency, as measured by the length of shortest paths between

pairs of nodes. Meanwhile, FC had greater assortativity, as measured

by the network tendency to link pairs of nodes that have a similar

amount of connections with the rest of the network. Park and col-

leagues argued that this suggests that SC is more efficiently wired

than FC, serving as a scaffold for FC. Furthermore, they proposed that

with greater assortativity FC is overall more suited for supporting a

variety of sensory and cognitive tasks and it is more resilient to node

damage than SC.

Graph theory can also be used to focus on the study of local pat-

terns of edges to explore how nodes are embedded within the SC and

FC. Several studies have meaningfully related SC and FC using various

local metrics and found a degree of shared organisational patterns

(Battiston et al., 2017; Bullmore & Sporns, 2012; Goñi et al., 2013;

Park et al., 2008). For example, one specific local measure is the rich

club coefficient, which measures the extent to which well-connected

nodes also connect with each other (van den Heuvel & Sporns, 2011).

Grayson et al. (2014) have demonstrated that the same nodes can be

classified as belonging to rich club across SC and FC. This is important

because rich club architecture supports efficient information

exchange across sections of the brain (van den Heuvel &

Sporns, 2013), which suggests a shared role in network communica-

tion of specific regions across SC and FC. Therefore, using local graph

theory measures in network analysis yields a common reference point

that allows for a meaningful interpretation of the relationship

between SC and FC.

Previous work has utilised raw connectivity of SC and FC to pre-

dict cognition (Dhamala et al., 2021; Litwi�nczuk et al., 2022; Rasero

et al., 2021). Raw connectivity contains information about each edge

of the network. For example, for SC this can reflect the number of

streamlines connecting each pair of regions. Meanwhile, for FC this

can be the temporal correlation between the activities of each pair of

regions indicating the strength of their statistical associations. This

means that connectivity matrices are rich in information but they may

also be prone to inclusion of noise, which might affect the accuracy of

predictive models of cognition based on raw connectivity. In contrast,

graph theory measures characterise the organisation of the network

(either structural or functional) in different respects, depending on the

specific measures used. While these summarisations may reduce the

amount of noise in the model predictors by focussing on specific
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aspects of the organisation of the network, they also disregard con-

nectivity information that might be relevant to predict cognition. A

potential advantage of graph theory versus raw connectivity to pre-

dict cognition is that the measures of network organisation produced

by the former have the same meaning across both structural and func-

tional networks. Thus, graph theory may serve as a common language

or an effective translation tool between SC and FC, which might facili-

tate the interpretation of models combining SC and FC. This can help

understand why a combination of SC and FC would benefit only spe-

cific cognitive domains (Dhamala et al., 2021; Litwi�nczuk et al., 2022;

Rasero et al., 2021). However, to-date no study has used graph theory

measures to predict cognitive skill in healthy individuals (Farahani

et al., 2019). Thus, it is unknown if graph theory measures could be

effectively implemented in predictive modelling of cognition. If this is

the case, then it is unknown how the resulting graph theory predictive

models compare to predictive models composed with raw

connectivity.

To expand on the research from previous predictive modelling

studies, the present work aims to investigate if graph theory measures

of network organisation (e.g., clustering coefficient, node degree,

small world coefficient, etc.) can be used to construct predictive

models of healthy adult cognition. Furthermore, our work aims to

investigate if these predictive models are better at predicting cogni-

tion than predictive models constructed with raw connectivity

(i.e., white matter connections and statistical associations in activation

across regions). To achieve this, 19 graph theory measures were

obtained. These measures were then used to fit predictive models of

cognition. Then, we compared the effectiveness of graph theory-

based predictive models in predicting cognitive performance with

effectiveness of connectivity-based predictive models obtained in our

previous work (Litwi�nczuk et al., 2022). We tested the hypothesis that

predictive models constructed with any graph theory measures will

offer better predictions of cognition than predictive models con-

structed with raw connectivity. Codes used to implement the analysis

are available on GitHub (https://github.com/MCLit/GT/PCA-SWR).

2 | METHODS

2.1 | Participants

Neuroimaging and cognitive data were obtained for 250 unrelated

subjects from the 1200-subject release of the Human Connectome

Project (HCP). For consistent treatment of behavioural and neuroim-

aging subjects' data selection, one subject was excluded from the neu-

roimaging analysis due to incomplete behavioural data. The sample

consisted of 138 females and 111 males in the age range between of

22 and 36 years.

2.2 | Measures of cognition

The present work used the measures of cognition from our previous

work (Litwi�nczuk et al., 2022). Briefly, Principal Component Analysis

(PCA) with VARIMAX rotation was used as a feature extraction

method from the behavioural dataset. Analysed tasks included: Pic-

ture Sequence Memory, Dimensional Change Card Sort, Flanker Inhib-

itory Control and Attention Task, Penn Progressive Matrices, Oral

Reading Recognition, Picture Vocabulary, Pattern Comparison Proces-

sing Speed, Delay Discounting, Variable Short Penn Line Orientation

Test, Short Penn Continuous Performance Test, Penn Word Memory

Test, and List Sorting. These assessments were obtained from the

Blueprint for Neuroscience Research–funded NIH Toolbox for Assess-

ment of Neurological and Behavioral function (http://www.

nihtoolbox.org) and tasks from the Penn computerised neurocognitive

battery (Gur et al., 2010). The extracted PCA rotated components

reflected specific latent cognitive domains, interpreted as Executive

Function, Self-regulation, Language, Encoding and Sequence Proces-

sing. The present work uses the PCA scores obtained previously for

each cognitive domain.

2.3 | Minimally processed neuroimaging data

The HCP provides minimally processed neuroimaging data that

were used here, the data acquisition and processing pipeline has

been discussed in detail by Glasser et al. (2013). All neuroimaging

data were collected with a 3 T Siemens “Connectome Skyra” scan-

ner that uses the Siemens 32-channel RF receive head coil and

with an SC72 gradient insert (Ugurbil et al., 2013). Here, we uti-

lised Version 3 of the minimal processing pipeline implemented

with FSL 5.0.6 (Jenkinson et al., 2012) and FreeSurfer 5.3.0-HCP

(Dale et al., 1999).

T1 weighted MR images were acquired with a 3D MPRAGE

sequence (TR = 2400 ms, TE = 2.14, TI = 1000 ms, flip

angle = 8�, FOV = 224 by 224 mm, voxel size = 0.7 mm isotropic).

rs-fMRI data were collected using the gradient-echo EPI

(TR = 720 ms, TE = 33.1 ms, flip angle = 52�, FOV = 208 by

180 mm, 70 slices, thickness = 2.0 mm, size = 2.0 mm isotropic).

Scans were collected in two sessions, each lasting approximately

15 min. The rs-fMRI data were collected both in left-to-right and

right-to-left directions. In addition, in the original data, spin echo

phase reversed images were acquired for registration with T1

images and the spin echo field maps were acquired for bias field

correction. Diffusion weighted MR images were acquired with spin-

echo EPI sequence (TR = 5520 ms, TE = 89.5 ms, flip angle = 78�,

refocusing flip angle = 160�, FOV = 210 by 180 mm, 111 slices,

thickness = 1.25 mm, size = 1.25 mm isotropic). Each gradient con-

sisted of 90 diffusion weighting directions plus 6 b = 0. There

were three diffusion weighed shells of b = 1000, 2000, and

3000 s/mm2. SENSE1 multi-channel image reconstruction was used

(Sotiropoulos et al., 2013).

2.4 | Additional processing of neuroimaging data

Neuroimaging data were processed following the same processing

pipeline as in our previous work (Litwi�nczuk et al., 2022).
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2.4.1 | Structural data and structural connectivity
calculation

As additional steps to the minimal processing pipeline, the diffusion

data were further analysed using the BEDPOSTX procedure in FSL,

which runs Markov Chain Monte Carlo sampling to estimate probabil-

ity distributions on diffusion parameters at each voxel. This informa-

tion was used in the FDT module of FSL to run ROI-to-ROI

probabilistic tractography with ProbtrackX. Tractography was run

between parcels obtained with a high-resolution functionally defined

brain parcellation with 278 parcels (Shen et al., 2013). During tracto-

graphy, 5000 streamlines were initiated from each voxel with a step

length of 0.5 mm (Behrens et al., 2003, 2007). Streamlines were con-

strained with a curvature threshold of 0.2, a maximum of 2000 steps

per streamline and a volume fraction threshold of subsidiary fibre ori-

entations of 0.01. An SC matrix between regions was constructed by

first counting the number of streamlines originating from a seed

region i that reached a target region j (Mij). These counts are asymmet-

ric since the count of streamlines from region i to j is not necessarily

equal to the count of streamlines from region j to i (Mij ≠Mji), but they

are highly correlated for all subjects (lowest Pearson's Correlation was

0.76, p< .001). Based on these counts, the weight Wij (entries of the

SC matrix) between any two pairs of regions i and j was defined as the

ratio of the total streamline counts in both directions (MijþMji), to the

maximum possible number of streamlines that can be shared between

the two regions, which is NiþNj

� ��5000 (where Ni and Nj are the

number of seed voxels in regions i and j, respectively):

Wij ¼
MijþMji

� �

NiþNj

� ��5000

Similar to previous studies, the weight Wij can be interpreted as

capturing the connection density (number of streamlines per unit sur-

face) between nodes i and j, which accounts for possible bias due to

different sizes of the seed regions (Hagmann et al., 2008; Ingalhalikar

et al., 2013). Note that the SC matrix defined based on these weights

is symmetric because swapping around the regions' indices does not

change the result; and it is also normalised between 0 and 1, because

the maximum value of the numerator can only be reached when all

streamlines originating from each of region reach the other region, so

that Mij ¼Ni �5000 and Mji ¼Nj �5000, which gives Wij ¼1. Evidence

suggests that structural connectivity is most sensitive to individual dif-

ferences with moderate-to-high thresholding (Buchanan et al., 2020)

and produces least false positive and negative results (de Reus & van

den Heuvel, 2013), therefore an 80% proportional threshold was

applied.

2.4.2 | Functional data and functional connectivity
calculation

The minimally processed images were obtained for rs-fMRI to com-

pute FC based on pair-wise correlations (Glasser et al., 2013). Next,

the following steps were taken to further process data using the

CONN Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) with the

use of the standard FC processing pipeline (Nieto-Castanon, 2020).

Briefly, images were realigned, slice-timing correction was conducted,

and outlier detection of functional images for scrubbing was per-

formed with Artefact Detection Tools (ART, https://www.nitrc.org/

projects/artifact_detect/). Grey matter, white matter, cerebrospinal

fluid, and non-brain tissues were then segmented. Images were nor-

malized and smoothed with a 6 mm Full Width at Half Maximum

Gaussian kernel. Next, the data were denoised with default Conn

denoising options using the anatomical component-based noise cor-

rection procedure (Behzadi et al., 2007). This procedure removes arte-

factual components from the data, including noise components from

cerebral white matter and cerebrospinal areas, subject-motion param-

eters (Friston et al., 1996), identified outlier scans (Power et al., 2014),

and constant and first-order linear session effects (Whitfield-Gabrieli &

Nieto-Castanon, 2012). Then standard denoising steps were applied

including scrubbing, motion regression and application of a high pass

filter (0.01 Hz cut-off), and a low pass filter (0.10 Hz cut-off).

FC analysis was performed based on the same high-resolution

brain parcellation used in the SC computations (Shen et al., 2013). The

average blood oxygenation level-dependent signal in each ROI was

obtained and the pairwise (ROI-to-ROI) correlation of the averaged

signals was calculated. Since the CONN toolbox produces Fisher's Z-

scores (Fisher, 1915), a hyperbolic tangent function was used to

reverse the Fisher's transformation, and obtain original correlation

values ranging between �1 and 1. Negative correlations were trans-

formed to positive by taking their absolute values and a proportional

80% FC threshold was then applied (Garrison et al., 2015; van den

Heuvel et al., 2017).

2.5 | Graph theory

Graph theoretic measures were calculated based on the weighted,

undirected SC and FC matrices of every subject, using The Brain Con-

nectivity Toolbox (http://www.brain-connectivity-toolbox.net). Mea-

sures of node, edge and global network organisation are described in

Table 1. The clustering coefficient was obtained with Onnela's algo-

rithm (Onnela et al., 2005). Network modules for within module node

degree and participation coefficient were defined with Newman's

algorithm (Newman, 2006). Shortest path length, used for between-

ness centrality, participation coefficient, node eccentricity, and local

efficiency, was calculated using the Floyd–Warshall Algorithm applied

to the weighted graph obtained from the inverse of each connectivity

matrix. Small-world propensity has been developed by Muldoon

et al. (2016).

2.6 | Model construction and model comparisons

Within this work, we compare the quality of predictive models con-

structed from raw connectivity with models constructed with graph
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theory measures of network organisation. All models of cognition

were constructed using the Principal Component Regression with

Step-Wise Regression (SWR-PCR) (Litwi�nczuk et al., 2022) (Figure 1).

In our previous work, the SWR-PCR pipeline was applied to raw con-

nectivity to produce predictions of cognition. Here, these already

fitted models constituted a reference point. In addition, we now

applied the SWR-PCR approach to graph theory measures. This allows

for a direct comparison of raw connectivity-based models with graph

theory-based models to assess the gain (if any) of characterising raw

connectivity in terms of graph theory to predict cognition.

During SWR-PCR, separate linear regression models were fit to

each individual cognitive domain (5 domains) using various combina-

tions of graph theory measures of structural and functional networks

as predictors. To fit each model we used the Principal Component

Regression (PCR) approach, where the predictor's matrix of graph the-

ory measures is first orthogonalised by using PCA to obtain the asso-

ciated orthogonal principal components' scores. The extracted

component scores are then used as candidate predictors in a step-

wise regression (SWR) analysis. SWR was implemented with Bayesian

Information Criterion (BIC) as a criterion for including or excluding

components (ΔBIC = 0). BIC balances the goodness-of-fit of the

model (model accuracy) against its complexity (the number of parame-

ters included in the model). Consequently, components were only

added to or removed from the regression model if they improved

model quality. Finally, the resulting regression coefficients in PCA

space were projected back to the original space of graph theoretic

measures.

Each graph theoretic measure describes one network property,

such as the strength of the node or its degree. Due to their comple-

mentary nature, individual graph theory measures can therefore pro-

vide a limited explanation of cognition (Appendix S1). The remainder

of this work focuses on exploring the complementary nature of the

information provided by the graph theoretic measures used to charac-

terise node embedding, edge embedding and global network architec-

ture. For each of the SC, FC and combined connectivity

(CC) networks, five separate regression models were fitted using: i)

global measures, ii) node measures, iii) edge measures, iv) local mea-

sures (i.e., edge and node measures) and v) local and global measures;

to predict each cognitive domain. To combine various measures into

each one of the five models, individual measures were stacked in a

single matrix along the measure's dimension, resulting in a number of

subjects by number of measures matrix of predictors.

The Bootstrap Bias Corrected Cross-Validation (BBC-CV) was

implemented to validate the PCR as a learning method and to evaluate

the (out-of-sample) predictive performance of the models

(Tsamardinos et al., 2018). Permutation (randomisation) testing was

F IGURE 1 Schematic presenting the Principal Component Regression with Step-Wise Regression pipeline. Here, network information input
to the model can either constitute raw connectivity and/or any number of graph theory measures.

TABLE 1 A summary of graph theory measures obtained within
this work.

Node measures Edge measures Global measures

• Node degree

• Within

module node

degree

• Node

strength

• Clustering

coefficient

• Eigenvector

centrality

• Betweenness

centrality

• Participation

coefficient

• Node

eccentricity

• Local

efficiency

• Edge

betweenness

centrality

• Matching

index

• Path

transitivity

• Average clustering

coefficient

• Characteristic path

length small world

propensity

• Global efficiency

• Assortativity

• Modularity statistic

• Transitivity

• Size of core resulting

from core-periphery

partition

LITWIŃCZUK ET AL. 3011



used to assess how likely it is to get the observed models' perfor-

mance by chance. Specifically, the saved predictions during the BBC-

CV were randomised (sampled without replacement) 10,000 times

and the models' performance statistics (coefficient of determination)

were estimated for each randomisation. This null distribution was then

used to assess the observed model performance statistics in the non-

permuted data. That is, a p-value for testing models' performance was

determined by computing the proportion of resampled statistics at

least as high or greater than the observed statistics. As a complemen-

tary analysis, we used the non-parametric Wilcoxon rank sum tests

for equal medians to assess the significance of the difference in per-

formance between different connectivity models and graph theory

models. These comparisons were only done for models which per-

formed better than chance, and the results were based on coefficient

of determination.

Finally, we compared connectivity-based models from our previ-

ous work (Litwi�nczuk et al., 2022) with graph theory-based models

obtained here. Model comparison was conducted for each cognitive

construct using Bayesian information criterion (BIC) (Schwarz, 1978).

That is, the BIC value of the connectivity models was subtracted from

the BIC of the graph theory models. Results were then interpreted so

that, given any two models M1 and M2, a positive difference

(ΔBIC¼BIC M1ð Þ�BIC M2ð Þ) is interpreted as weak (barely worth a

mention) (1–3 units), positive (3–20units) or strong (20–150 units) evi-

dence in favour of M2 (Kass & Raftery, 1995). To complement this

analysis, models were further assessed in terms of their coefficients of

determination in the sample of 249 participants (Poldrack et al., 2020)

(Appendix S2).

3 | RESULTS

3.1 | Bayesian information criterion model
comparison

Table 2 summarises in-sample results for models composed with

graph theory measures relative to connectivity. Figures 2–6 illustrate

the absolute BIC model evidence values in each cognitive domain.

When Executive Function was modelled, global graph theory

measures proved unable to model cognition across structure, function

and their combination. Comparison of BIC values demonstrated mod-

erate evidence that Executive Function was better explained by node

graph theory measures of structural network organisation than struc-

tural connectivity. Further, there was a strong preference for models

composed of edge, local and global and local graph theory measures

in the structural modality.

When the functional network was considered, only edge graph

theory measures were approximately as effective as raw connectivity

in modelling of Executive Function. There was strong evidence

favouring the raw connectivity model above all other graph theory

measures. When structural and functional information was combined

in a single model, joint consideration of local and local and global

graph theory measures improved model performance relative to use

of combined raw connectivity.

When Self-regulation was modelled, global graph theory mea-

sures proved unable to model cognition across structure, function and

their combination. For the structural network, node graph theory

measures proved poorer at modelling of Self-regulation than raw con-

nectivity. However, node, local, and local and global graph theory

measures of the structural network were more effective at modelling

of Self-regulation than raw connectivity. For the functional network,

node, edge, local, and global and local graph theory measures and

were more effective than raw connectivity in modelling of Self-regula-

tion. When combined structural and functional information was con-

sidered, the combined raw connectivity model was preferred above all

graph theory measure models.

Model evidence demonstrated that global, edge, local, and local

and global graph theory measures were less effective at modelling of

Language than raw connectivity. However, node graph theory mea-

sures of the structural network have outperformed raw connectivity

models. In functional and combined networks, node graph theory

measures performed approximately as well as raw connectivity.

Global graph theory measures were not effective at modelling of

Encoding. Node graph theory measures of structural networks were

TABLE 2 A summary of in-sample predictive skill of graph theory
models relative to raw connectivity models.

Executive function

Modality Global Edge Node Local Global and local

Structural 12 �18 �2 �15 �15

Functional 19 0 17 9 9

Combined 22 1 8 �5 �5

Self-regulation

Global Edge Node Local Global and local

Structural 17 �7 15 �4 �4

Functional 16 �5 �18 �15 �15

Combined 15 2 8 11 11

Language

Global Edge Node Local Global and local

Structural 4 1 �13 4 4

Functional 27 19 0 11 11

Combined 18 15 �2 19 19

Encoding

Global Edge Node Local Global and local

Structural 21 �13 4 �11 �11

Functional 17 6 14 11 11

Combined 6 �5 �7 �7 �7

Sequence Processing

Global Edge Node Local Global and local

Structural 34 14 31 2 2

Functional 23 3 4 �1 �1

Combined 13 �2 8 8 8

Note: Table values reflect BIC difference. Bold font has been used to

indicate models that perform better when graph theory measures are used

than when raw connectivity is used.

Abbreviation: BIC, Bayesian information criterion.
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less effective at modelling of Encoding than raw connectivity. How-

ever, models produced with edge, local, and global and local graph

theory of the structural network were favoured above raw connectiv-

ity models. Model evidence demonstrated that functional raw connec-

tivity outperformed all graph theory measures in modelling of

Encoding. Model evidence favoured models constructed with node,

edge, local, and global and local graph theory measures relative to the

model constructed with combined raw connectivity.

Finally, Sequence Processing was not effectively modelled by

global graph theory measures. All graph theory measures of the struc-

tural network were less effective than raw connectivity in modelling

of Sequence Processing, although the difference between raw con-

nectivity models and models composed of local and local and global

graph theory measures was not significant. The functional raw

connectivity model was preferred above the model produced with

node and edge graph theory measures. The model produced with local

graph theory measures of the functional network preferred above the

raw connectivity model. When combined structural-functional infor-

mation was considered, the model constructed with edge graph the-

ory measures was somewhat preferable to the raw connectivity

model.

3.1.1 | Cross-validation based model comparison

Table 3 summarises out-of-sample results for models composed with

graph theory measures relative to connectivity. Figures 7–11 illustrate

the results of the BBC-CV procedure, as measured by the coefficient

F IGURE 2 Bayesian information criterion (BIC) model evidence for connectivity and graph theory models of Executive Function. Models with
lower BIC values are favoured.

F IGURE 3 Bayesian information criterion (BIC) model evidence for connectivity and graph theory models of Self-regulation. Models with
lower BIC values are favoured.
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of determination. Filled boxes illustrate greater-than-chance predic-

tion skill. Only results for models that predict greater than chance will

be considered further and the analysis will compare the performance

of connectivity-based and graph theory-based models.

In structural networks, raw connectivity models (mean = 0.03,

SD = 0.02) explained more variation in the Executive Function of the

validation sample than the edge (mean = 0.01, SD = 0.02) (Z = 85.86,

p < .001), local (mean = 0.01, SD = 0.01) (Z = 82.28, p < .001), and

local and global (mean = 0.01, SD = 0.01) (Z = 82.02, p < .001) graph

theory models. Models combining structural and functional informa-

tion explained significantly more variation using raw connectivity

(mean = 0.02, SD = 0.02) than global and local graph theory measures

(mean = 0.01, SD = 0.01) (Z = 40.26, p < .001).

Only the combined raw connectivity model of Self-regulation per-

formed above chance (mean = 0.01, SD = 0.01).

In structural modality, raw connectivity models (mean = 0.06,

SD = 0.02) explained significantly more variation in the Language of

the validation sample than global (mean = 0.05, SD = 0.03)

(Z = 14.45, p < .001), edge (mean = 0.3, SD = 0.02) (Z = 62.8,

p < .001), node (mean = 0.05, SD = 0.04) (Z = 14.95, p < .001), local

(mean = 0.05, SD = 0.02) (Z = 55.45, p < .001), and local and global

(mean = 0.04, SD = 0.02) (Z = 56.27, p < .001) models. In functional

modality, only raw connectivity models explained more variation in

Language than chance (mean = 0.02, SD = 0.01). When combined

structural-functional models were considered, raw connectivity

(mean = 0.05, SD = 0.02) explained significantly more variation in

Language than the edge (mean = 0.04, SD = 0.02) (Z = 46.07,

p < .001), node (mean = 0.02, SD = 0.03) (Z = 87.11, p < .001), local

(mean = 0.04, SD = 0.02) (Z = 51.19, p < .001), local and global

(mean = 0.04, SD = 0.02) (Z = 50.97, p < .001) graph theory measures

F IGURE 4 Bayesian information criterion (BIC) model evidence for connectivity and graph theory models of Language. Models with lower
BIC values are favoured.

F IGURE 5 Bayesian information criterion (BIC) model evidence for connectivity and graph theory models of Encoding. Models with lower
BIC values are favoured.
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but not the global graph theory measures (mean = 0.06, SD = 0.02)

(Z = �22.04, p < .001).

No model of Encoding could produce results that were more gen-

eralizable to unseen samples than chance.

Finally, when Sequence Processing was considered, only the func-

tional network could produce generalizable models of cognition. Raw

connectivity models (mean = 0.01, SD = 0.01) explained more varia-

tion in Sequence Processing than global graph theory measures

F IGURE 6 Bayesian information criterion (BIC) model evidence for connectivity and graph theory models of Sequence Processing. Models
with lower BIC values are favoured.

TABLE 3 A summary of out-of-sample predictive skills of graph theory models relative to raw connectivity models.

Modality Global Edge Node Local Global and local

Structural – 85.86 82.28 82.02

Functional – – – – –

Combined – – – – 40.26

Global Edge Node Local Global and local

Structural – – – – –

Functional – – – – –

Combined – – – – –

Language

Global Edge Node Local Global and local

Structural 14.45 62.8 14.95 55.45 56.27

Functional – – – – –

Combined �22.04 46.07 – 51.19 50.97

Encoding

Global Edge Node Local Global and local

Structural – – – – –

Functional – – – – –

Combined – – – – –

Sequence processing

Global Edge Node Local Global and local

Structural – – – – –

Functional 106.84 �22.13 – – –

Combined – – – – –

Note: Table values reflect Wilcoxon rank sum values Z score (all p-values are <.001). Bold font has been used to indicate models that perform better when

graph theory measures are used than when raw connectivity is used.
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(mean = �0.01, SD = 0.01) (Z = 106.84, p < .001). However, func-

tional edge graph theory measures explained more variation than raw

connectivity (mean = 0.02, SD = 0.02) (Z = �22.13, p < .001).

4 | DISCUSSION

Graph theory has been previously used to quantify network organiza-

tion and relate it to cognitive function but little work has been done

to assess its value in predictive models (Farahani et al., 2019). In this

work, we constructed predictive regression models of cognitive func-

tion with graph theory measures. We compared the predictive perfor-

mance of graph theory-based models to models constructed with raw

connectivity. To achieve this goal, a series of models were constructed

with the SWR-PCR approach. Their in-sample performance was

assessed by comparing BIC model evidence and their generalizability

was assessed by comparing their predictive performance of unseen

datasets. Local and global graph theory measures could be used to

predict cognitive performance in a healthy adult sample. However,

they could not consistently outperform raw connectivity at the quality

of in-sample and out-of-sample predictions.

In this work, we explored modelling of five different cognitive

domains using a collection of 19 graph theory measures from struc-

tural and functional connectivity. Global graph theory models have

only succeeded at predicting in-sample Language abilities. When out-

of-sample predictive ability was considered, global graph theory mea-

sures were able to predict Language abilities for structural and com-

bined models, and Sequence Processing abilities for functional

models. This demonstrates that in this healthy population global net-

work characteristics predict linguistic abilities and predict Sequence

F IGURE 7 Results of BBC-CV of Executive Function, as measured by the coefficient of determination. The solid lines show the median
scores, the boxes show the interquartile range (IQR), and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled
boxes illustrate greater than chance prediction and unfilled boxes illustrate not greater than chance prediction. The asterisks indicate significant
differences (p < .001) between connectivity-based and graph theory-based model coefficients of determination observed for models that perform
significantly better than chance.

F IGURE 8 Results of BBC-CV of Self-regulation, as measured by the coefficient of determination. The solid lines show the median scores,
the boxes show the interquartile range (IQR), and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes
illustrate greater than chance prediction and unfilled boxes illustrate not greater than chance prediction. The asterisks indicate significant
differences (p < .001) between connectivity-based and graph theory-based model coefficients of determination observed for models that perform
significantly better than chance.
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Processing but their relationship to other cognitive domains is weak.

This finding was largely contrary to our expectations. Highly complex

and abstract tasks have been demonstrated to engage large parts of

the distributed network. Consequently, we expected that understand-

ing the global organization of the brain will benefit the explanation of

high-order cognitive domains like Executive Function and Self-regula-

tion. Previous work has successfully demonstrated that global graph

theory can effectively be used in prediction of diagnosis and cognitive

function of epilepsy, attention deficit hyperactivity disorder and

dementia (Colby et al., 2012; Hojjati et al., 2017; Sethi et al., 2019).

The difference between previous work and present findings suggests

that while network disruption may be observed for atypical popula-

tions and allow successful classification, it is not clear if this network

organization maps directly onto various cognitive domains observed

in a healthy population. Consequently, we advise caution during the

interpretation of graph theory measure models across populations.

We have also found that various combinations of local graph the-

ory measures have succeeded at modelling of all cognitive domains to

varying degrees. Graph theory measures occasionally outperformed

raw connectivity at predicting cognition. For example, Executive

Function was more effectively explained by local graph theoretic mea-

sures of the structural network than SC. However, the graph theory

results were erratic, as no specific collection of graph theory measures

could consistently explain cognition across domains or modalities

more effectively than others. This means that on some occasions

information about node embedding within the network was more

effective at explaining cognitive performance, but on other occasions

information about edge embedding within the network was more

F IGURE 9 Results of BBC-CV of Language, as measured by the coefficient of determination. The solid lines show the median scores, the
boxes show the interquartile range (IQR), and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate
greater than chance prediction and unfilled boxes illustrate not greater than chance prediction. The asterisks indicate significant differences
(p < .001) between connectivity-based and graph theory-based model coefficients of determination observed for models that perform
significantly better than chance.

F IGURE 10 Results of BBC-CV of Encoding, as measured by the coefficient of determination. The solid lines show the median scores, the
boxes show the interquartile range (IQR), and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate
greater than chance prediction and unfilled boxes illustrate not greater than chance prediction. The asterisks indicate significant differences
(p < .001) between connectivity-based and graph theory-based model coefficients of determination observed for models that perform
significantly better than chance.
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effective. While it is not necessarily the case that one would expect

complete consistency across cognitive domains, there was no discern-

able pattern that would allow formulation of theories of cognition and

its relation to structure and function.

In summary, we did not find a consistent benefit to the explana-

tion and prediction of domains of healthy and typical cognitive

domains from the use of graph theory relative to the use of connectiv-

ity values. This demonstrates that when studying individual differ-

ences in cognition, connectivity effectively captures variation in the

brain networks related to cognition. Representation of variation with

graph theory does not add to explanatory capacity of models of cogni-

tion. This finding is likely due to the nature of graph theory—it sum-

marizes information and thus provides an interpretable overview of

network organization. This summary would benefit modelling of cog-

nition if it would remove irrelevant information that does not benefit

the explanation of cognition. For example, strength does not reflect

what pattern of edges contributes to node strength. Consequently,

the use of graph theory measures results in a loss of some information

about connectivity that is relevant to cognitive domains. Taken

together, these results suggest that the interpretation of results of

graph theory models must be approached with caution. Graph theory

presents a meaningful representation of network organization and

information exchange. However, on its own graph theory does not

appear to be very effective at modelling of cognition in a healthy pop-

ulation, and this may call into question the extent to which abnormali-

ties in graph theory measures seen in atypical populations are

meaningful.

This work has also proposed that there is a fundamental differ-

ence between what information is expressed by structural and func-

tional connectivity in that structural connectivity expresses physical

connections between pairs of nodes, whereas functional connectivity

expresses statistical associations in their activation during rest. We

reasoned that graph theory quantifies the organisational properties of

networks and thereby it provides a common language for structural

and functional information. Consequently, we also expected that

graph theory would aid the efficiency of modelling when combined

structural-functional information was considered. However, in com-

bined structural-functional models, consideration of connectivity

values sometimes proved more effective at modelling of cognition

than combinations of graph theory measures. When structural and

functional information was combined, models constructed with graph

theory did not outperform connectivity at explaining and predicting

cognitive information. This is a very important finding because it dem-

onstrates that the fact that structural and functional information

express different information about the state of the brain does not

impede its combination in a common model, and may improve it. This

validates the previous endeavours of modelling cognition using stan-

dard measures of structural and/or functional brain connectivity

(Dhamala et al., 2021; Litwi�nczuk et al., 2022; Rasero et al., 2021).

Furthermore, this finding adds to the previous literature by demon-

strating that the advantage of combining structural and functional

information in modelling of cognition is due to divergent information

expressed by structural and functional connectivity and it appears that

this divergence is better captured in connectivity than graph theory.

Several methodological caveats must be considered when asses-

sing the results of the present work. Here, the PCA-SWR approach

was implemented to produce predictive models of cognition. The pre-

sent work only considered linear models. It remains a possibility that

non-linear associations exist between connectivity and cognition. In

addition, previous work has demonstrated that SWR selects different

features across samples (Nogueira et al., 2017). It is possible that more

consistent findings could be obtained with the introduction of feature

selection before model training. Previous research also demonstrates

that many predictive methods (e.g., lasso, connectome-based predic-

tive modelling) tend to produce different beta weights across samples

(Tian & Zalesky, 2021). Consequently, implementation of an

F IGURE 11 Results of BBC-CV of Sequence Processing, as measured by the coefficient of determination. The solid lines show the median
scores, the boxes show the interquartile range (IQR), and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled
boxes illustrate greater than chance prediction and unfilled boxes illustrate not greater than chance prediction. The asterisks indicate significant
differences (p < .001) between connectivity-based and graph theory-based model coefficients of determination observed for models that perform
significantly better than chance.
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alternative regression method and obtainment of average beta

weights across repetitions of cross-validation may benefit model

generalisability.

Overall, this work has demonstrated that graph theory can be

used to model healthy performance across cognitive domains. Yet

there was no notable benefit to regression modelling conducted with

graph theory measures relative to the use of structural, functional and

combined structural-functional connectivity. Hence while graph the-

ory may represent meaningful information about the state of the sys-

tem, it did not produce consistent improvements in explanation or

predictions across cognitive domains. While graph theory may prove

useful to understand the characteristics of the neural network organi-

zation in atypical populations, our work brings to question whether

such findings map meaningfully onto cognitive performance of

healthy adults.
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