1,580 research outputs found
Recommended from our members
Modeling the effects of combining diverse software fault detection techniques
The software engineering literature contains many studies of the efficacy of fault finding techniques. Few of these, however, consider what happens when several different techniques are used together. We show that the effectiveness of such multitechnique approaches depends upon quite subtle interplay between their individual efficacies and dependence between them. The modelling tool we use to study this problem is closely related to earlier work on software design diversity. The earliest of these results showed that, under quite plausible assumptions, it would be unreasonable even to expect software versions that were developed ‘truly independently’ to fail independently of one another. The key idea here was a ‘difficulty function’ over the input space. Later work extended these ideas to introduce a notion of ‘forced’ diversity, in which it became possible to obtain system failure behaviour better even than could be expected if the versions failed independently. In this paper we show that many of these results for design diversity have counterparts in diverse fault detection in a single software version. We define measures of fault finding effectiveness, and of diversity, and show how these might be used to give guidance for the optimal application of different fault finding procedures to a particular program. We show that the effects upon reliability of repeated applications of a particular fault finding procedure are not statistically independent - in fact such an incorrect assumption of independence will always give results that are too optimistic. For diverse fault finding procedures, on the other hand, things are different: here it is possible for effectiveness to be even greater than it would be under an assumption of statistical independence. We show that diversity of fault finding procedures is, in a precisely defined way, ‘a good thing’, and should be applied as widely as possible. The new model and its results are illustrated using some data from an experimental investigation into diverse fault finding on a railway signalling application
Amplitude-mode dynamics of polariton condensates
We study the stability of collective amplitude excitations in non-equilibrium
polariton condensates. These excitations correspond to renormalized upper
polaritons and to the collective amplitude modes of atomic gases and
superconductors. They would be present following a quantum quench or could be
created directly by resonant excitation. We show that uniform amplitude
excitations are unstable to the production of excitations at finite
wavevectors, leading to the formation of density-modulated phases. The physical
processes causing the instabilities can be understood by analogy to optical
parametric oscillators and the atomic Bose supernova.Comment: 4 pages, 2 figure
Non-equilibrium quantum condensation in an incoherently pumped dissipative system
We study spontaneous quantum coherence in an out of equilibrium system,
coupled to multiple baths describing pumping and decay. For a range of
parameters describing coupling to, and occupation of the baths, a stable
steady-state condensed solution exists. The presence of pumping and decay
significantly modifies the spectra of phase fluctuations, leading to
correlation functions that differ both from an isolated condensate and from a
laser.Comment: 5 pages, 2 eps figure
Ferrodistortive instability at the (001) surface of half-metallic manganites
We present the structure of the fully relaxed (001) surface of the
half-metallic manganite La0.7Sr0.3MnO3, calculated using density functional
theory within the generalized gradient approximation (GGA). Two relevant
ferroelastic order parameters are identified and characterized: The tilting of
the oxygen octahedra, which is present in the bulk phase, oscillates and
decreases towards the surface, and an additional ferrodistortive Mn
off-centering, triggered by the surface, decays monotonically into the bulk.
The narrow d-like energy band that is characteristic of unrelaxed manganite
surfaces is shifted down in energy by these structural distortions, retaining
its uppermost layer localization. The magnitude of the zero-temperature
magnetization is unchanged from its bulk value, but the effective spin-spin
interactions are reduced at the surface.Comment: 4 pages, 2 figure
Sliding Density-Wave in Sr_{14}Cu_{24}O_{41} Ladder Compounds
We used transport and Raman scattering measurements to identify the
insulating state of self-doped spin 1/2 two-leg ladders of Sr_{14}Cu_{24}O_{41}
as a weakly pinned, sliding density wave with non-linear conductivity and a
giant dielectric response that persists to remarkably high temperatures
Density and spin response functions in ultracold fermionic atom gases
We propose a new method of detecting the onset of superfluidity in a
two-component ultracold fermionic gas of atoms governed by an attractive
short-range interaction. By studying the two-body correlation functions we find
that a measurement of the momentum distribution of the density and spin
response functions allows one to access separately the normal and anomalous
densities. The change in sign at low momentum transfer of the density response
function signals the transition between a BEC and a BCS regimes, characterized
by small and large pairs, respectively. This change in sign of the density
response function represents an unambiguous signature of the BEC to BCS
crossover. Also, we predict spin rotational symmetry-breaking in this system
Rehabilitation following rotator cuff repair: A nested qualitative study exploring the perceptions and experiences of participants in a randomised controlled trial
Objective:
To investigate acceptability, barriers to adherence with the interventions, and which outcome measures best reflect the participants’ rehabilitation goals in a pilot and feasibility randomised controlled trial evaluating early patient-directed rehabilitation and standard rehabilitation, including sling immobilisation for four weeks, following surgical repair of the rotator cuff of the shoulder.
Design:
Nested qualitative study.
Setting:
Five English National Health Service Hospitals.
Subjects:
Nineteen patient participants who had undergone surgical repair of the rotator cuff and 10 healthcare practitioners involved in the trial.
Method:
Individual semi-structured interviews. Data were analysed thematically.
Results:
Four themes: (1) Preconceptions of early mobilisation; many participants were motivated to enter the trial for the opportunity of removing their sling and getting moving early. (2) Sling use and movement restrictions; for some, sling use for four weeks was unacceptable and contributed to their pain, rather than relieving it. (3) Tensions associated with early mobilisation; clinical tensions regarding early mobilisation and the perceived risk to the surgical repair were apparent. (4) Processes of running the trial; participants found the trial processes to be largely appropriate and acceptable, but withholding the results of the post-operative research ultrasound scan was contentious.
Conclusion:
Trial processes were largely acceptable, except for withholding results of the ultrasound scan. For some participants, use of the shoulder sling for a prolonged period after surgery was a reported barrier to standard rehabilitation whereas the concept of early mobilisation contributed tension for some healthcare practitioners due to concern about the effect on the surgical repair
Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity
We consider polariton condensation in a generalized Dicke model, describing a
single-mode cavity containing quantum dots, and extend our previous mean-field
theory to allow for finite-size fluctuations. Within the fluctuation-dominated
regime the correlation functions differ from their (trivial) mean-field values.
We argue that the low-energy physics of the model, which determines the photon
statistics in this fluctuation-dominated crossover regime, is that of the
(quantum) anharmonic oscillator. The photon statistics at the crossover are
different in the high- and low- temperature limits. When the temperature is
high enough for quantum effects to be neglected we recover behavior similar to
that of a conventional laser. At low enough temperatures, however, we find
qualitatively different behavior due to quantum effects.Comment: 12 pages, 5 figures. v2: Revised version with minor corrections
(typos, added reference, correction in argument following Eq. 25). v3:
further typos correcte
- …