1,524 research outputs found

    Multi-Wavelength Variability of the Synchrotron Self-Compton Model for Blazar Emission

    Get PDF
    Motivated by recent reports of strongly correlated radio and X-ray variability in 3C279 (Grandi, etal 1995), we have computed the relative amplitudes of variations in the synchrotron flux at ν\nu and the self-Compton X-ray flux at 1 keV (R(ν)R(\nu)) for a homogeneous sphere of relativistic electrons orbiting in a tangled magnetic field. Relative to synchrotron self-Compton scattering without induced Compton scattering, stimulated scattering reduces the amplitude of R(ν)R(\nu) by as much as an order of magnitude when \tau_T \gtwid 1. When τT\tau_T varies in a fixed magnetic field, RτR_{\tau} increases monotonically from 0.01 at νo\nu_o, the self-absorption turnover frequency, to 0.50.5 at 100νo100 \nu_o. The relative amplitudes of the correlated fluctuations in the radio-mm and X-ray fluxes from 3C279 are consistent with the synchrotron self-Compton model if τT\tau_T varies in a fixed magnetic field and induced Compton scattering is the dominant source of radio opacity. The variation amplitudes are are too small to be produced by the passage of a shock through the synchrotron emission region unless the magnetic field is perpendicular to the shock front.Comment: 21 pages, 4 fig

    On the Reliability of Cross Correlation Function Lag Determinations in Active Galactic Nuclei

    Full text link
    Many AGN exhibit a highly variable luminosity. Some AGN also show a pronounced time delay between variations seen in their optical continuum and in their emission lines. In effect, the emission lines are light echoes of the continuum. This light travel-time delay provides a characteristic radius of the region producing the emission lines. The cross correlation function (CCF) is the standard tool used to measure the time lag between the continuum and line variations. For the few well-sampled AGN, the lag ranges from 1-100 days, depending upon which line is used and the luminosity of the AGN. In the best sampled AGN, NGC 5548, the H_beta lag shows year-to-year changes, ranging from about 8.7 days to about 22.9 days over a span of 8 years. In this paper it is demonstrated that, in the context of AGN variability studies, the lag estimate using the CCF is biased too low and subject to a large variance. Thus the year-to-year changes of the measured lag in NGC 5548 do not necessarily imply changes in the AGN structure. The bias and large variance are consequences of finite duration sampling and the dominance of long timescale trends in the light curves, not due to noise or irregular sampling. Lag estimates can be substantially improved by removing low frequency power from the light curves prior to computing the CCF.Comment: To appear in the PASP, vol 111, 1999 Nov; 37 pages; 10 figure

    The Effects of Periodically Gapped Time Series on Cross-correlation Lag Determinations

    Get PDF
    The three bright TeV blazars Mrk 421, Mrk 501 and PKS 2155-404 are highly variable in synchrotron X-ray emission. In particular, these sources may exhibit variable time lags between flux variations at different X-ray energy bands. However, there are a number of issues that may significantly bias lag determinations. Edelson et al. (2001) recently proposed that the lags on timescales of hours, discovered by ASCA and BeppoSAX, could be an artifact of periodic gaps in the light curves introduced by the Earth occultation every \~1.6 hr. Using Monte Carlo simulations, in this paper we show that the lags over timescales of hours can not be the spurious result of periodic gaps, while periodic gaps indeed introduces uncertainty larger than what present in the evenly sampled data. The results also show that time lag estimates can be substantially improved by using evenly sampled light curves with large lag to bin-size ratio. Furthermore, we consider an XMM-Newton observation without interruptions and re-sample the light curves using the BeppoSAX observing windows, and then repeat the same cross correlation function (CCF) analysis on both the real and fake data. The results also show that periodic gaps in the light curves do not significantly distort the CCF characters, and indeed the CCF peak ranges of the real and fake data overlap. Therefore, the lags discovered by ASCA and BeppoSAX are not due to periodic gaps in the light curves.Comment: 13 pages, 6 figures, accepted for publication in Ap

    Test result communication in primary care : clinical and office staff perspectives

    Get PDF
    OBJECTIVE. To understand how the results of laboratory tests are communicated to patients in primary care and perceptions on how the process may be improved. DESIGN. Qualitative study employing staff focus groups. SETTING. Four UK primary care practices. PARTICIPANTS. Staff involved in the communication of test results. FINDINGS. Five main themes emerged from the data: (i) the default method for communicating results differed between practices; (ii) clinical impact of results and patient characteristics such as anxiety level or health literacy influenced methods by which patients received their test result; (iii) which staff member had responsibility for the task was frequently unclear; (iv) barriers to communicating results existed, including there being no system or failsafe in place to determine whether results were returned to a practice or patient; (v) staff envisaged problems with a variety of test result communication methods discussed, including use of modern technologies, such as SMS messaging or online access. CONCLUSIONS. Communication of test results is a complex yet core primary care activity necessitating flexibility by both patients and staff. Dealing with the results from increasing numbers of tests is resource intensive and pressure on practice staff can be eased by greater utilization of electronic communication. Current systems appear vulnerable with no routine method of tracing delayed or missing results. Instead, practices only become aware of missing results following queries from patients. The creation of a test communication protocol for dissemination among patients and staff would help ensure both groups are aware of their roles and responsibilities

    Measurement of the neutrino mass splitting and flavor mixing by MINOS

    Get PDF
    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25imes10207.25 imes 10^{20} protons on target. A fit to neutrino oscillations yields values of Deltam2=(2.320.08+0.12)imes103|Delta m^2| = (2.32^{+0.12}_{-0.08}) imes10^{-3},eV2^2 for the atmospheric mass splitting and m sin^2!(2 heta) > 0.90 (90%,C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively

    Treating Solar Model Uncertainties: A Consistent Statistical Analysis of Solar Neutrino Models and Data

    Get PDF
    We describe how to consistently incorporate solar model uncertainties, along with experimental errors and correlations, when analyzing solar neutrino data to derive confidence limits on parameter space for proposed solutions of the solar neutrino problem. Our work resolves ambiguities and inconsistencies in the previous literature. As an application of our methods we calculate the masses and mixing angles allowed by the current data for the proposed MSW solution using both Bayesian and frequentist methods, allowing purely for solar model flux variations, to compare with previous work. We consider the effects of including metal diffusion in the solar models and also discuss implications for future experiments.Comment: 29 pages (incl figs), latex, 6 figures (appended as separate uuencoded file. To embed figures in text, uncomment 6 \epsfysize lines which appear before bibliography), CWRU-P5-94, CfPA-94-TTH-29, Fermilab-Pub-94/176-
    corecore