8,082 research outputs found

    Faraday rotation in the MOJAVE blazars: 3C 273 a case study

    Full text link
    Radio polarimetric observations of Active Galactic Nuclei can reveal the magnetic field structure in the parsec-scale jets of these sources. We have observed the gamma-ray blazar 3C 273 as part of our multi-frequency survey with the Very Long Baseline Array to study Faraday rotation in a large sample of jets. Our observations re-confirm the transverse rotation measure gradient in 3C 273. For the first time the gradient is seen to cross zero which is further indication for a helical magnetic field and spine-sheath structure in the jet. We believe the difference to previous epochs is due to a different part of the jet being illuminated in our observations.Comment: 6 pages, 3 figures. To appear in the proceedings of "Beamed and Unbeamed Gamma-rays from Galaxies", held in Muonio, Finland, April 11-15, 2011. Journal of Physics: Conference Serie

    Fusion-Fission of 16O+197Au at Sub-Barrier Energies

    Get PDF
    The recent discovery of heavy-ion fusion hindrance at far sub-barrier energies has focused much attention on both experimental and theoretical studies of this phenomenon. Most of the experimental evidence comes from medium-heavy systems such as Ni+Ni to Zr+Zr, for which the compound system decays primarily by charged-particle evaporation. In order to study heavier systems, it is, however, necessary to measure also the fraction of the decay that goes into fission fragments. In the present work we have, therefore, measured the fission cross section of 16O+197Au down to unprecedented far sub-barrier energies using a large position sensitive PPAC placed at backward angles. The preliminary cross sections will be discussed and compared to earlier studies at near-barrier energies. No conclusive evidence for sub-barrier hindrance was found, probably because the measurements were not extended to sufficiently low energies.Comment: Fusion06 - Intl. Conf. on Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier, San Servolo, Venezia, Italy, March 19-223, 2006 5 pages, 4 figure

    Coupled-Channels Approach for Dissipative Quantum Dynamics in Near-Barrier Collisions

    Get PDF
    A novel quantum dynamical model based on the dissipative quantum dynamics of open quantum systems is presented. It allows the treatment of both deep-inelastic processes and quantum tunneling (fusion) within a fully quantum mechanical coupled-channels approach. Model calculations show the transition from pure state (coherent) to mixed state (decoherent and dissipative) dynamics during a near-barrier nuclear collision. Energy dissipation, due to irreversible decay of giant-dipole excitations of the interacting nuclei, results in hindrance of quantum tunneling.Comment: 8 pages, 4 figures, Invited talk by A. Diaz-Torres at the FUSION08 Conference, Chicago, September 22-26, 2008, To appear in AIP Conference Proceeding

    Coupled Magnetic Excitations in Single Crystal PrBa2Cu3O6.2

    Full text link
    The dispersion of the low-energy magnetic excitations of the Pr sublattice in PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a single crystal. The dispersion, which shows the effect of interactions with the Cu spin-waves, is well described by a model of the coupled Cu-Pr magnetic system. This enables values for the principal exchange constants to be determined, which suggest that both Pr-Pr and Cu-Pr interactions are important in producing the anomalously high ordering temperature of the Pr sublattice. Measurements of the Cu optic spin wave mode show that the inter-layer Cu-Cu exchange is significantly lower than in YBa2Cu3O6.2.Comment: To be published Phys. Rev. Let

    Ghost of a Shell: Magnetic Fields of Galactic Supershell GSH 006−-15++7

    Get PDF
    We identify a counterpart to a Galactic supershell in diffuse radio polarisation, and use this to determine the magnetic fields associated with this object. GSH 006−-15++7 has perturbed the polarised emission at 2.3 \,GHz, as observed in the S-band Polarisation All Sky Survey (S-PASS), acting as a Faraday screen. We model the Faraday rotation over the shell, and produce a map of Faraday depth over the area across it. Such models require information about the polarised emission behind the screen, which we obtain from the Wilkinson Microwave Anisotropy Probe (WMAP), scaled from 23 \,GHz to 2.3 \,GHz, to estimate the synchrotron background behind GSH 006−-15++7. Using the modelled Faraday thickness we determine the magnitude and the plane-of-the-sky structure of the line-of-sight magnetic field in the shell. We find a peak line-of-sight field strength of ∣B∥∣peak=2.0+0.01−0.7 μ|B_\parallel|_\text{peak} = 2.0\substack{+0.01 \\ -0.7}\,\muG. Our measurement probes weak magnetic fields in a low-density regime (number densities of ∼0.4 \sim0.4\,cm−3^{-3}) of the ISM, thus providing crucial information about the magnetic fields in the partially-ionised phase.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 19 pages, 19 figure

    The Control of Modern Tokamaks

    Get PDF
    • …
    corecore