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1 INTRODUCTION

The control of the current, position and shape of an
elongated cross-section tokamak plasma is complicated by
the instability of the plasma vertical position. Linearised
models all share the feature of a single unstable pole, at-
tributable to this vertical instability, and a large number
of stable or marginally stable poles, attributable to zero or
positive resistance in all other circuit equations. Due to
the size and therefore the cost of ITER, there will natu-
rally be smaller margins in the Poloidal Field coil power
supplies implying that the feedback will experience actu-
ator saturation during large transients due to a variety of
plasma disturbances. Current saturation is relatively be-
nign due to the integrating nature of the tokamak, resulting
in a reasonable time horizon for strategically handling this
problem. On the other hand, voltage saturation is produced
by the feedback controller itself, with no intrinsic delay.
This paper presents a feedback controller design approach
which explicitly takes saturation of the power supply volt-
ages into account when producing the power supply de-
mand signals. We consider the vertically stabilising part of
the controller (fast controller) with one power supply and
therefore a single saturated input. The method is based on
state feedback and therefore requires a reconstruction or an
observation of the states of the system. We discuss the fea-
sibility of extracting this state from the available diagnostic
information. This novel approach has been tested on simu-
lations using ITER and JET linearised plasma equilibrium
response models.

2 DEVELOPMENT OF THE CONTROL
METHOD

Throughout this work, we use linearised tokamak mod-
els (CREATE-L for JET [1] and ITER [2]) which describe
the tokamak by ODEs in the continuous time state space
format given by

ẋp = Apxp + Bpu + Epẇ (1)

y = Cpxp + Fpw (2)

The state variables xp explicitly represent the physical ac-
tive coil currents, the passive structure currents and some
plasma variables. The coil voltages are the control vector
u. The outputs of the system, the vertical and radial plasma
positions, wall-separatrix gaps, plasma current and all the
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magnetic diagnostics measurements, are given by y. The

vector w =
[

∆β ∆li
]T

represents disturbances such
as ELMs or sawteeth. The power supply voltage saturation
is defined by u = sat(v).

Traditionally, we talk of the vertical position as being
unstable. However, when the position is unstable, the pas-
sive currents, coil currents and position also grow exponen-
tially, although all these physical variables cannot be con-
sidered to be separately unstable. The eigenvalues of the
matrix Ap in (1) determine the dynamical evolution of the
physical variables xp. One of the eigenvalues of Ap is pos-
itive, expressing the unstable characteristic of the system.
However, Ap is not diagonal and therefore the variables xp

are not the eigenvectors of the system. We transform these
equations from the variables xp to new states x for which
the transformed matrix A is diagonal, thereby generating
the new dynamic representation

ẋ = Ax + Bu + Eẇ (3)

y = Cx + Fw (4)

where xp = Tx, A = T−1ApT , B = T−1Bp, E =
T−1Ep, C = CpT and F = Fp. One of the new orthog-
onal states is unstable and this is now the single unstable
state. Unfortunately, there is no intuitive combination of
the physically meaningful variables xp which describes the
unstable state. Furthermore, we can split system (3) into an
anti-stable and a stable subsystem
[

ẋ1

ẋs

]

=

[

λ1 0
0 As

] [

x1

xs

]

x+

[

λ1

bs

]

u+

[

E1

Es

]

ẇ

(5)
Here x1 and λ1 describe the anti-stable subsystem and

xs =
[

x2 x3 . . . xn

]T
, As and bs describe the sta-

ble subsystem.
Provided there are sufficient diagnostic measurements,

the states can be estimated using the pseudo-inverse of (4)
[

x̂

ŵ

]

=
[

C F
]†

y (6)

reconstructing the unstable state, the stable states, and the
disturbance w. If we neglect F (the direct influence of w

on y with respect to the nominal equilibrium) then x̂ is sim-
ple to generate. However, voltage saturation is most likely
during a large disturbance and the influence of F must be
considered, which is the object of future work.

We have demonstrated that there exists an adequate alge-
braic state reconstruction such that x̂ ∼ x (in what follows
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we use these interchangeably). We can therefore replace an
input-output controller v = Ky by a linear state feedback
controller

v(x) = fx = f1x1 + f2x2 + f3x3 + . . . + fnxn (7)

With this feedback controller the closed-loop system be-
comes ẋ = Ax + Bsat(fx).

Our aim is to take an existing controller – labeled the
reference controller – and to enlarge its region of attraction
A (the region in state space from which the closed-loop
system asymptotically reaches the origin [3, 4]) to the null
controllable region C (the region in state space where there
exists an open-loop input that can steer the system to the
origin [3, 4]). In previous work we formally considered
a system with a single unstable pole and a single stable
pole. We derived the region of attraction of the closed-loop
system with saturation of the single input [5].

The null controllable region of (5) defined by C = {x ∈
R

n : |x1| < 1} is only restricted by the unstable state
(anti-stable system) while the stable states (stable subsys-
tem) can be controlled for any arbitrary values. By con-
sidering the linear controller (7), we can see that A = C
if and only if f2 = f3 = . . . = fn = 0 and if the linear
stability condition 1 + f1 < 0 is satisfied. But with this the
required performance is in general not achievable. How-
ever, for all other linear controllers in which at least one of
the parameters f2, f3 . . . fn is nonzero, A ⊂ C.

We have been able to enlarge the region of attraction
to include the full null controllable region A = C, with-
out loss of local performance, by introducing a continuous
nonlinear function in the controller [6, 7]. Consider the
modified controller

v(x) = f1x1 + k(x)(f2x2 + f3x3 + . . . + fnxn) (8)

with u = sat(v(x)). Assume that f has been chosen to
obtain the desired performance of the closed-loop system
near the origin for small disturbances. Compared to (7),
the new controller differs by the introduction of a smooth
nonlinearity k(x) by choosing i) within the null control-
lable region (|x1| < 1), k(x) = (1−x2

1
) and ii) outside the

null controllable region (|x1| ≥ 1), k(x) = 0. The idea be-
hind this nonlinear controller is as follows. If x1 ≈ 0, then
k(x) ≈1 and the controller tends towards the linear state
feedback controller v ≈ fx. In this case, the controller
concentrates on local performance. On the other hand, if
the unstable state approaches the boundary of the null con-
trollable region C, x1 ≈ ±1 and k(x) ≈ 0. This implies
that the controller tends towards the linear state feedback
v ≈ f1x1, and it focuses on the stabilisation of the unsta-
ble state and global stability (A = C). Moreover, since this
controller is a continous one, chattering is avoided.

3 TESTING THE METHOD ON ITER

We first implemented this approach on a closed-loop
model of ITER. The state was not estimated, but taken
directly from the equations. We compare via simulation

the reference controller [8], given by (7), against the new
continuous nonlinear controller (8) using phase diagrams.
Since we are dealing with a high order system (50 .. 100
states) we cannot show the evolution of all states. Thus,
the phase diagrams show the evolution of only two states:
the unstable state x1, and one of the most changing stable
states, denoted in the figures by xs. In what follows, the re-
gion of attraction of the reference controller is denoted by
Ar and the region of attraction of the continuous nonlinear
controller is denoted by An. To disturb the system away
from the equilibrium we apply an ELM-like disturbance.
The disturbance starts at t0, reaches its maximum at t1 and
vanishes at t2. Since it is difficult to know whether the state
remains in the region of attraction during the disturbance,
we have to wait until the disturbance vanishes at t2 to de-
termine if the controller was able to stabilise the system.

For the first test we do not disturb the system, but we set
non-zero initial conditions. The phase diagram (Figure 1)
shows the initial conditions point xinit, located inside the
null controllable region. Since for the nonlinear controller
the initial conditions are located in the region of attraction,
the trajectory converges to the origin. For the reference
controller the trajectory diverges, thus confirming by simu-
lation that Ar ⊂ C.
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Figure 1: Non-zero initial conditions (xinit); dashed: ref-
erence controller, solid: continuous nonlinear controller.

The second test shows the evolution of the trajectories
for both controllers during and after a large disturbance
(Figure 2). At t2 the states of the closed-loop systems with
both controllers are inside C. Since for the nonlinear con-
troller An = C, the trajectory converges to the origin. For
the reference controller the trajectory diverges and thus the
state is not in Ar.

The third test shows the trajectory for a much larger dis-
turbance amplitude (Figure 3). Both trajectories leave the
null controllable region C and only the trajectory for the
system with the nonlinear controller reenters C.

For all these tests, the unstable state x1 is brought back to
the origin faster when the continuous nonlinear controller
(8) is used. This is a benefit of the nonlinear function k(x)
which helps the controller concentrate on the unstable state
in the proximity of the boundaries of C and beyond it.
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Figure 2: Large disturbance; dashed: reference controller,
solid: continuous nonlinear controller.
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Figure 3: Very large disturbance; dashed: reference con-
troller, solid: continuous nonlinear controller.

4 TESTING THE METHOD ON JET

We implemented this technique on the CREATE-L
model of JET, including the closed-loop controller. We
generated an estimator of the unstable state directly from
the documented diagnostics. We increased the amplitude
of the disturbance until the closed-loop model lost control
due to saturation of the FRFA (Fast Radial Field Ampli-
fier) supply. The simulation was repeated with the modified
controller and control was no longer lost.

Figure 4 shows an example of the evolution of the ver-
tical position z and the FRFA control voltage for a very
large ELM disturbance in JET. The disturbance starts at t0,
reaches a maximum at t1 and vanishes at t2 (vertical dashed
lines). The reference controller loses stability just after t1.

5 DISCUSSION

A simple continuous nonlinear controller for the stabil-
isation of the ITER tokamak unstable vertical position in
the presence of voltage saturation is proposed. The princi-
ple is to modify an existing linear controller by introduc-
ing a simple nonlinear term into the control law. This new
controller enlarges the region of attraction to the maximal
reachable region of attraction under input saturation, which
is the null controllable region. Additionally, its local per-
formance around the origin is similar to that of the existing
linear controller. An additional advantage of the nonlinear
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Figure 4: The modifed controller (solid) on a JET simula-
tion. The reference controller (dashed) loses control.

controller is that the unstable state is brought back faster to
the origin and thus, the rejection of the disturbance is more
efficient. This is a benefit of the nonlinear function where
the controller concentrates on the control of the unstable
state in the proximity of the boundaries of null controllable
region and beyond it.
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