55 research outputs found

    Dynamic Control of Explore/Exploit Trade-Off In Bayesian Optimization

    Full text link
    Bayesian optimization offers the possibility of optimizing black-box operations not accessible through traditional techniques. The success of Bayesian optimization methods such as Expected Improvement (EI) are significantly affected by the degree of trade-off between exploration and exploitation. Too much exploration can lead to inefficient optimization protocols, whilst too much exploitation leaves the protocol open to strong initial biases, and a high chance of getting stuck in a local minimum. Typically, a constant margin is used to control this trade-off, which results in yet another hyper-parameter to be optimized. We propose contextual improvement as a simple, yet effective heuristic to counter this - achieving a one-shot optimization strategy. Our proposed heuristic can be swiftly calculated and improves both the speed and robustness of discovery of optimal solutions. We demonstrate its effectiveness on both synthetic and real world problems and explore the unaccounted for uncertainty in the pre-determination of search hyperparameters controlling explore-exploit trade-off.Comment: Accepted for publication in the proceedings of 2018 Computing Conferenc

    Towards an analytical description of active microswimmers in clean and in surfactant-covered drops

    Get PDF
    Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.Comment: 19 pages, 7 figures. Regular article contributed to the Topical Issue of the European Physical Journal E entitled "Physics of Motile Active Matter" edited by Gerhard Gompper, Clemens Bechinger, Holger Stark, and Roland G. Winkle

    Dynamics of a microswimmer-microplatelet composite

    Get PDF
    Guiding active microswimmers by external fields to requested target locations is a promising strategy to realize complex transport on the microscale. To this end, one possibility consists of attaching the microswimmers to orientable passive components. Accordingly, we analyze theoretically, using a minimal model, the dynamics of a microswimmer when rigidly attached tangentially to a (significantly larger) microplatelet, here represented by a thin circular disk. On this way, we determine the flow field in the whole space induced by a Stokeslet that is located above the center of a spatially fixed rigid disk of no-slip surface conditions. Finally, we determine and analyze possible trajectories of the overall composite. To this end, the platelet is additionally endowed with a permanent magnetic moment, which allows to steer the motion of the whole composite by a homogeneous external magnetic field. As previous experimental studies suggest, related setups may be helpful to guide sperm cells to requested targets or for the purpose of coordinated drug delivery.Comment: 18 pages, 4 figures. To appear in Phys. Fluid

    Surface rheotaxis of three-sphere microrobots with cargo

    Get PDF
    Upstream swimming governs bacterial contamination, but also the navigation of microrobots transporting cargo in complex flow environments. We demonstrate how such payloads can be exploited to enhance the motion against flows. Using fully resolved simulations, the hydrodynamic mechanisms are revealed that allow microrobots of different shapes to reorient upstream. Cargo pullers are the fastest at most flow strengths, but pushers feature a non-trivial optimum that can be tuned by their geometry. These results can be used to control navigation and prevent contamination from first principles.Comment: 6 pages, 3 figure

    The non-Gaussian tops and tails of diffusing boomerangs

    Get PDF
    Experiments involving the two-dimensional passive diffusion of colloidal boomerangs tracked off their centre of mobility have shown striking non-Gaussian tails in their probability distribution function [Chakrabarty et al., Soft Matter, 2016, 12, 4318]. This in turn can lead to anomalous diffusion characteristics, including mean drift. In this paper, we develop a general theoretical explanation for these measurements. The idea relies on calculating the two-dimensional probability densities at the centre of mobility of the particle, where all distributions are Gaussian, and then transforming them to a different reference point. Our model clearly captures the experimental results, without any fitting parameters, and demonstrates that the one-dimensional probability distributions may also exhibit strongly non-Gaussian tops. These results indicate that the choice of tracking point can cause a considerable departure from Gaussian statistics, potentially causing some common modelling techniques to fail.This research was funded in part by an ERC grant to EL and a Mobility Plus Fellowship from the Polish Ministry of Science and Higher Education to ML

    Phoretic flow induced by asymmetric confinement

    Get PDF
    Internal phoretic flows due to the interactions of solid boundaries with local chemical gradients may be created using chemical patterning. Alternatively, we demonstrate here that internal flows might also be induced by geometric asymmetries of chemically homogeneous surfaces. We characterise the circulatory flow created in a cavity enclosed between two eccentric cylindrical walls of uniform chemical activity. Local gradients of the diffusing solute induce a slip flow along the surface of the cylinders, leading to a circulatory bulk flow pattern which can be solved analytically in the diffusive limit. The flow strength can be controlled by adjusting the relative positions of the cylinders, and an optimal configuration is identified. These results provide a model system for tunable phoretic pumps.This work was funded in part by a David Crighton Fellowship at the University of Cambridge (ML), a Mobility Plus Fellowship from the Polish Ministry of Science and Higher Education (ML), the EU through a Marie-Curie CIG grant (EL) and the French Ministry of Defense DGA (SM).This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.40

    Mobility of an axisymmetric particle near an elastic interface

    Get PDF
    Using a fully analytical theory, we compute the leading-order corrections to the translational, rotational and translation–rotation coupling mobilities of an arbitrary axisymmetric particle immersed in a Newtonian fluid moving near an elastic cell membrane that exhibits resistance towards stretching and bending. The frequency-dependent mobility corrections are expressed as general relations involving separately the particle’s shape-dependent bulk mobility and the shape-independent parameters such as the membrane–particle distance, the particle orientation and the characteristic frequencies associated with shearing and bending of the membrane. This makes the equations applicable to an arbitrary-shaped axisymmetric particle provided that its bulk mobilities are known, either analytically or numerically. For a spheroidal particle, these general relations reduce to simple expressions in terms of the particle’s eccentricity. We find that the corrections to the translation–rotation coupling mobility are primarily determined by bending, whereas shearing manifests itself in a more pronounced way in the rotational mobility. We demonstrate the validity of the analytical approximations by a detailed comparison with boundary integral simulations of a truly extended spheroidal particle. They are found to be in a good agreement over the whole range of applied frequencies.A.D.-M.-I. and S.G. thank the Volkswagen Foundation for financial support and acknowledge the Gauss Center for Supercomputing e.V. for providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Center. This work has been supported by the Ministry of Science and Higher Education of Poland via the Mobility Plus Fellowship awarded to M.L. This article is based upon work from COST Action MP1305, supported by COST (European Cooperation in Science and Technology)

    Hydrodynamic coupling and rotational mobilities near planar elastic membranes

    Get PDF
    We study theoretically and numerically the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance towards shear and bending. Using a combination of the multipole expansion and Faxen's theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities, and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied frequencies.Comment: 14 pages, 7 figures. Revised manuscript resubmitted to J. Chem. Phy

    In silico analysis of gene expression in V3a and the superior occipital gyrus. Relevance for migraine

    Get PDF
    Introduction: Visual manifestations are the most prominent non-painful features of migraine. During the last decades, visual area V3a has gathered attention of headache scientists because of its apparent implication on aura initiation, photophobia and cortical hyper-responsiveness related to visual motion perception. In this hypothesis-generating study, we performed an in silico analysis of gene expression in left V3a and the cerebral gyrus that harbours it (left superior occipital gyrus (lSOG)) searching for transcriptomic patterns that could be linked with migraine’s pathophysiology. Materials and methods: Neurotransmitter receptor gene expression levels in left V3a were extracted from validated brain mRNA expression models using a probabilistic volumetric mask of this region. The primary visual cortex and other sensory cortices (auditory, olfactory and somatosensory) were used as comparators. Genome-wide transcriptomic differences between the gyrus harbouring left V3a (lSOG) and the rest of the cerebral cortex were assessed using the Allen Brain Institute Human RNA micro array atlas/database. Results: Adrenergic receptor β1, dopaminergic receptor D3 and serotoninergic receptors 1B, 1F and 2A, which have been previously implicated in migraine’s pathophysiology and/or treatment, showed significantly higher expression levels on left V3a. Transcriptomic differences between the lSOG harbouring V3a and the rest of the cortex comprise genes whose products are involved in neuronal excitability (SLC17A6, KCNS1, KCNG1 and GABRQ), activation of multiple signal transduction pathways (MET) and cell metabolism (SPHKAP via its interaction with cAMP-dependent protein kinase). Conclusions: Focal gene expression analysis of V3a suggests some clues about its implication in migraine. Further studies are warranted

    Desarrollo de una aplicación móvil para seguimiento de pacientes con diagnóstico de migraña

    Get PDF
    La migraña es una patología crónica que afecta un gran número de personas a nivel mundial. Es una enfermedad multifactorial, en general responde a una predisposición interna aumentada por la presencia de desencadenantes externos que suelen ser específicos para cada paciente. La identificación de los estadíos de vulnerabilidad y de los factores desencadenantes permite prescribir un tratamiento más efectivo. Las nuevas tecnologías, vinculadas a dispositivos móviles, han probado ser útiles en el seguimiento estos pacientes, motivo por el cual se comenzó el desarrollo de una aplicación móvil capaz de recabar un conjunto de información relativa a crisis de pacientes migrañosos con el objetivo de mejorar el tratamiento y la calidad de vida de los mismos.Sociedad Argentina de Informática e Investigación Operativa (SADIO
    corecore