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The navigation of micro-robots in complex flow environments is controlled by rheotaxis, the
reorientation with respect to flow gradients. Here we demonstrate how payloads can be exploited to
enhance the motion against flows. Using fully resolved hydrodynamic simulations, the mechanisms
are described that allow micro-robots of different shapes to reorient upstream. We find that cargo
pullers are the fastest at most flow strengths, but pushers feature a non-trivial optimum as a function
of the counter flow strength. Moreover, the rheotactic performance can be maximised by tuning the
micro-robot shape or cargo size. These results may be used to control micro-swimmer navigation,
but they also apply to rheotaxis in microbial ecology and the prevention of bacterial contamination
dynamics.

INTRODUCTION

For unicellular microorganisms, motility is an essen-
tial feature of life [1]. To overcome or benefit from the
fluid drag forces, these microbes have devised numer-
ous swimming strategies [2]. Besides rich collective dy-
namics [3–5], even for isolated swimmers hydrodynam-
ics can gravely affect microbial life [6, 7], through shape
anisotropy [8], surface trapping [9], circular motion [10],
boundary accumulation [11, 12] and shear-induced ac-
cumulation [13, 14] and swimming reorientation [15–17].
Some microorganisms have also evolved to respond to
flows, such as N. scintillans dinoflagellates who exhibit
bioluminescence to reduce grazing by predators that gen-
erate flows [18] and S. ambiguum ciliates who perform
hydrodynamic communication [19]. However, so far only
circumstantial evidence exists concerning the behavioural
response to flow [20]. It is therefore important to eluci-
date the inherent hydrodynamic mechanisms at play in
microbiology.

In a bulk shear flow, one of the sources for the complex
behaviour is the geometry of the cells. Classical Jeffery
orbits [21] of elongated particles also apply to swimmer
dynamics [22], as seen in experiments with E. coli bacte-
ria [23]. The chirality of their flagella was also shown to
induce cross-streamline migration [24–26]. Interestingly,
a rheotactic response leading to upstream swimming in
bulk flows can also arise from viscoelasticity [27].

Conversely, surfaces are known to alter hydrodynamic
interactions in their vicinity, thus affecting the shear re-
sponse significantly even for rigid particles [28]. Sur-
faces may enhance rheotaxis by providing a strong en-
vironmental coupling in which swimmers react to an
external shear flow by orienting upstream. In particu-
lar, shear has been argued to aid navigation in mam-

malian sperm cells [29–31], and govern the contamina-
tion dynamics of bacteria in channel flows [32–34]. The
dominant mechanism behind this upstream reorientation,
termed the ‘weathervane effect’, relies on the anisotropic
and distance-dependent drag forces of the swimmer close
to the surface. Far from walls this effect vanishes, which
was also confirmed numerically [35, 36]. Even though
this mechanism of surface rheotaxis is fairly understood,
studies that couple this knowledge with other effects like
confined Jeffery orbits, hydrodynamic wall attraction and
chirality still lead to discoveries like oscillatory rheotaxis
[37] and long-tailed distributions of run-tumble dynamics
that can cause ‘super-contamination’ [38].

Understanding the influence of flow on microorganism
behaviour has opened the exploration of artificial rheo-
taxis, using synthetic nanoparticles and micro-robots.
For these, upstream swimming in response to shear was
also observed in a variety of contexts and for different
propulsion mechanisms, including chemical and acoustic
effects [39], photocatalytic autophoretic systems of col-
loidal rollers [40] and rod-shaped Janus particles [41, 42].
A generic swimming mechanism for natural swimmers
involving elastohydrodynamic coupling is also strongly
related to the dynamics of the environment and flow con-
ditions [43].

In this contribution, we explore the transport of cargo
by a model Najafi-Golestanian swimmer [44, 45] in an
external shear flow close to a planar boundary, where
one sphere is larger to hold the payload. Depending on
the swimmer type (cargo pusher or puller), we observe
different reorientation mechanisms that all lead to a pos-
itive rheotactic response. Hence, after reorienting up-
stream, the full three-dimensional dynamics reduce to a
two-dimensional motion in the shear plane. This allows
us to quantify the swimmer dynamics in a phase space
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Figure 1. Surface rheotaxis in three dimensions. (a). Diagram of a three-sphere swimmer in shear flow near a surface.
Shown is a pusher, with the large sphere at the front. (b). Geometry of cargo pushers and pullers. (c,d). Swimming
trajectories of (c) pullers and (d) pushers at various initial orientations ϕ0. The swimmers are initially released from z0 = 1
and parallel to the surface, θ0 = π/2. (e,f). 3D trajectories at various shear rates. The swimmers are again released from
z0 = 1 with orientations ϕ0 = θ0 = π/2.

spanned by the wall-separation distance and the head
orientation. By analysing the fixed points in these phase
diagrams we identify the rheotactic states, and their sta-
bility for the different swimmer geometries. Next, we
map out the upstream migration speed as a function of
imposed shear rate, and find that pushers and pullers
perform optimally in completely different external flow
conditions. Finally, the rheotactic performance is tuned
by regulating the cargo size at different flow strengths.

MODEL

We consider the dynamics of a neutrally buoyant
micro-robot subject to an externally applied shear flow
near a planar no-slip boundary in a Newtonian fluid.
As a model swimmer, we employ the linear three-
sphere micro-swimmer originally proposed by Najafi
and Golestanian [44, 45], as schematically illustrated in
Fig. 1(a). More generally, our results apply to a broader
class of micro-robots at low Reynolds numbers [1], so
with a size smaller than ∼ 1mm, and with a swimming
speed smaller than ∼ 1mm/s. Additionally, we consider
the deterministic limit without translational and rota-
tional diffusion. This is relevant when the (rotational)
Péclet number is large, Pér > 1, for micro-robots larger
than ∼ 10µm in size.
Throughout the paper, all quantities are non-

dimensionalised by scaling lengths with the mean swim-
mer arm length, L, and velocities are scaled by the in-

verse of the free swimming speed in the absence of ex-
ternal flows and boundaries, V0. The total mean length
of the swimmer is thus 2L. The surface is located at
z = 0 in Cartesian coordinates, and the flow is given by
u = γ̇zx̂ in terms of the shear rate γ̇. So, for clarity,
the dimensional shear rate is γ̇∗ = γ̇V0/L. The swimmer
is neutrally buoyant, and is composed of three spheres
joined by thin arms, all aligned along the swimming di-
rection, t̂. The arm lengths oscillate with frequency ω,
respectively, at an angle π/2 out of phase.
We consider both cargo-pushing swimmers with a

larger sphere at the front, and pullers with a cargo at
the back [Fig. 1b]. The hydrodynamic signature, the far-
field flow generated by such a three-sphere cargo pusher
(puller) corresponds to an extensile (contractile) Stokes
dipole [46–48]. The radius of the two smaller spheres is
a = 0.1 and the larger sphere has radius a+ = 0.12 un-
less mentioned otherwise. Particularly later in the paper,
where we will tune the upstream motility as a function
of the cargo size.

SIMULATION METHODS

The swimming dynamics are found by solving for the
hydrodynamic interactions between the spheres and the
wall, including the external shear flow. The swimmer is
constituted of three spherical particles connected by dra-
gless rods of negligible hydrodynamic effects to ensure
their co-linearity. In order to achieve self-propulsion at
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low Reynolds numbers, micro-swimmers have to undergo
a non-reciprocal sequence of shapes during their loco-
motion. Accordingly, by periodically varying the mutual
distance between the spheres in a non-reciprocal manner,
a net swimming motion over one full cycle is achieved [1].

Owing to the linearity of the Stokes equations, the
translational and rotational velocity of each sphere are
related to the hydrodynamic forces and torques, respec-
tively denoted as F and L, via the generalized mobility
tensor µ. Following Dhont [49], these velocities in the
laboratory (LAB) frame of reference are given by(

Vγ

Ωγ

)
=

3∑
λ=1

(
µtt

γλ µtr
γλ

µrt
γλ µrr

γλ

)
·
(
Fλ

Lλ

)
+

(
v∞(rγ)
ω∞(rγ)

)
+

(
Ct

γ
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γ

)
: E∞ , (1)

for λ, γ ∈ {1, 2, 3} being the sphere indices, where
v∞(r) = K∞ ·r is the external shear flow, with K being
the velocity gradient matrix, ω∞(r) = 1

2∇ × v∞(r) is
the fluid vorticity, and E∞ is the symmetric part of K∞.
Here, µαβ , with α ∈ {t, r} and β ∈ {t, r, d}, are the com-
ponents of the hydrodynamic mobility tensor, where the
superscripts t, r, and d stand for the translational, rota-
tional, and dipolar components, respectively. Moreover,
Ct and Cr denote the translational and rotational parts
of the shear disturbance tensor, respectively, given by

Ct
γ =

3∑
λ=1

µtd
γλ , Cr

γ =

3∑
λ=1

µrd
γλ . (2)

Our method uses an accurate representation of the solu-
tion of the mobility tensor of a sphere near the no-slip
surface, following Cichocki & Jones [50]. This method in-
cludes near-field effects and lubrication, and is accurate
at all separation distances between the particle and the
boundary. The interaction between the spheres is mod-
elled using the Rotne-Prager-Yamakawa approximation
for different-sized particles, following Zuk et al. [51]. Be-
cause the spheres are small compared to both the arm
length and the oscillation amplitude, this approximation
up to quadrupolar order is sufficient to capture the swim-
ming dynamics, as is demonstrated in earlier works.

In order to undergo autonomous motion, the resultant
of the forces and torques acting on the swimmer has to
vanish. Accordingly, we have

3∑
λ=1

Fλ = 0 ,

3∑
λ=1

(rλ − r0)× Fλ +Lλ = 0 , (3)

where r0 is a reference point for the torque moment cal-
culation that, for convenience, we choose as the position
of the central sphere, although any other choice would be
just as good.

The instantaneous orientation of the swimmer rela-
tive to the wall is described by the unit vector t̂ =
sin θ cosϕ êx + sin θ sinϕ êy + cos θ êz pointing along the
swimming direction. Here, θ and ϕ represent the polar
and azimuthal angles, respectively, in the spherical polar
coordinates basis associated with the microswimmer. In
addition, we define the unit vectors θ̂ = cos θ cosϕ êx +
cos θ sinϕ êy−sin θ êz and ϕ̂ = − sinϕ êx+cosϕ êy, such

that set of unit vectors (t̂, θ̂, ϕ̂) forms a direct orthonor-
mal system.

In addition, we assume that the length of the rod join-
ing the spheres varies periodically in time about a con-
stant mean value. Specifically,

r2 − r1 = g(t) t̂ , r1 − r3 = h(t) t̂ , (4)

where g and h are harmonic functions that prescribe the
instantaneous distances between the spheres. They are
given by

g(t) = L+u0 cos(ωt) , h(t) = L+u0 cos(ωt+δ) , (5)

where ω denotes the oscillation frequency, δ ∈ (0, 2π)
is a phase shift that is required for symmetry breaking.
Moreover, L is the mean length, and u0 is the amplitude
of periodic variations in the lengths of the rods, chosen
small enough to ensure that 2|u0|+a1+max{a2, a3} ≪ L.

By combining the first row in Eq. (1) providing the
translational velocity of the γth sphere with Eqs. (4)

upon requiring that Vγ =
drγ

dt , we obtain

3∑
λ=1

(
Gtt

λ Gtr
λ

Htt
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λ

)
·
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)
+
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2 −Ct
1
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3

)
: E∞ =

(
ġ

ḣ

)
t̂+

(
g
h

)(
θ̇ θ̂ + ϕ̇ sin θ ϕ̂− γ̇ cos θ êx

)
, (6)

where we have defined, for convenience, the second-rank
tensors

Gαβ
λ := µαβ

2λ − µαβ
1λ , Hαβ

λ := µαβ
1λ − µαβ

3λ , (7)

with α, β ∈ {t, r}. The reference frame associated with
the swimmer can be obtained by performing two succes-
sive rotations following the standard Euler transforma-
tions [52], where ϕ and θ correspond to the precession
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Figure 2. Phase-space diagrams of upstream swimming, showing the dynamics in (θ, z) space for various flow strengths.
Grey lines are streamlines in this phase space, coloured lines show example trajectories, and the background colours indicate
the final state for each initial condition. Insets illustrate the corresponding final-state behaviours, as observed in real space,
where blue arrows on the axis of the swimmer indicate its orientation t̂ and the black arrows above show the overall (lab frame)
direction of motion, the sum of advection and self-propulsion. (a). Pullers at γ̇ = 1/3. Red indicates that the swimmer ends up
swimming upstream, parallel to the surface. Blue is moving downstream, parallel to the surface. (b). Pullers at γ̇ = 2. Green
indicates that the final state is moving downstream, but oriented upstream and parallel to the surface. Blue as before. (c).
Pushers at γ̇ = 1/3. Brown shows that all swimmers move upstream, oriented almost perpendicular to the surface. The orange
star indicates the final fixed point. (d). Pushers at γ̇ = 1. Cyan shows that all swimmers are advected downstream, following
an indefinite toppling motion detached from the surface. The white arc-like regions are inaccessible due to the swimmer shape.

and nutation angles, respectively. Accordingly, the an-
gular velocities of the three spheres relative to the LAB
frame are equal and are given by

Ωγ = −ϕ̇ sin θ θ̂ + θ̇ ϕ̂+
(
ϕ̇ cos θ + φ̇

)
t̂ , (8)

for γ ∈ {1, 2, 3}, where φ̇ is an unknown (proper) rota-
tion rate around the swimming axis. It follows from the
second row of Eq. (1) expressing the angular velocities
that

3∑
λ=1

(
Grt

λ Grr
λ

Hrt
λ Hrr

λ

)
·
(
Fλ

Lλ

)
+

(
Cr

2 −Cr
1

Cr
1 −Cr

3

)
: E∞ = 0 . (9)

By projecting Eqs. (6) onto the basis of spherical co-
ordinates, and eliminating the unknown rotation rates ϕ̇
and θ̇, four scalar equations are obtained. The projection
of Eqs. (3) and (9) yields twelve additional equations. In
addition, Eq. (8) provides a closure of the linear system
of equations by requiring that

Ω1 · θ̂ = −ϕ̇ sin θ , (10a)

Ω1 · ϕ̂ = θ . (10b)

The determination of the eighteen unknown compo-
nents of the internal forces and torques is thus achieved
by solving the resulting linear system of equations using
the standard substitution procedure. In order to obtain
the swimming trajectories of the swimmer, we choose
to track the instantaneous position of the central sphere
along with the orientation of the swimming axis. The
positions of the front and aft spheres follow forthwith.
As mentioned in the main body of the paper, we scale all
the lengths by the mean arm length L, and the times by
the inverse of the oscillation frequency ω.

For the numerical computation of the swimming tra-
jectories, we solve numerically the resulting dynami-
cal system of equations using a standard Runge-Kutta
scheme with adaptive time stepping [53]. In addition,
we use tabulated results for the hydrodynamic mobility
functions obtained using the exact multipole method of
Stokes flows [54]. Following the approach employed in
Ref. [55], we include an additional soft repulsive force
(excluded volume interactions) to avoid direct contact
with the wall.
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UPSTREAM SWIMMING DYNAMICS

The three-dimensional dynamics of these pullers and
pushers are first described for different initial orienta-
tions t̂0 parallel to the surface [Fig. 1c,d]. Indeed, we
observe that all swimmers will eventually align with the
shear plane, such that the component t̂ · ŷ → 0, for both
swimmer types [also see Videos 1, 2]. This alignment also
occurs for different shear rates [Fig. 1e,f]. As expected,
stronger flows will reorient the swimmers more quickly.
Of course, at very strong shear the swimming speed no
longer exceeds the local flow strength, leading to down-
stream advection [Videos 3, 4], but the swimmers can
still be oriented upstream.

As a result of this alignment with the shear plane,
the 3D trajectories reduce to two dimensions over time.
This is true in all tested cases, regardless of initial con-
ditions, shear rate or swimmer type, as long as the
swimmers come close enough to interact hydrodynam-
ically with the surface. Then, the orientation of the
swimmer in the shear plane is given by the pitch angle,
θ ∈ (−π, π], where negative (positive) values indicate up-
stream (downstream) orientations. Still, the mechanism
of rheotaxis is not trivial. Both pullers and pushers tend
to swim upstream at weak flows, but they do so in a
completely different fashion.

On the one hand, we describe the rheotaxis of pullers
at low shear, as shown in the in the laboratory frame and
the co-moving frame, respectively [see Videos 5, 6]. The
three-sphere pullers tend to swim almost parallel to the
surface, θ ≲ −π/2, with the director t̂ slightly pointing
towards the surface. Hence, the back sphere with the
larger radius tends to stick out into the liquid where the
flow gets stronger for larger z values, so the puller can
rotate against the flow. This reorientation is referred to
as the ‘weathervane effect’, as described for example in
Refs. [32, 37]. The pullers tend to align with the shear
plane rather slowly, taking tens to hundreds of oscillation
periods.

On the other hand, we describe the pusher dynamics at
low shear [see Videos 7, 8]. The three-sphere pushers tend
to swim almost perpendicular to the surface, θ ≳ −π,
with the director t̂ slightly pointing upstream. While the
front sphere almost touches the surface, the back sphere
sticks out into the flow so it gets advected downstream,
leading to an upstream orientation. Because the tail of
the perpendicular pusher sticks out much further than
the parallel puller, the ‘weathervane effect’ is stronger,
so the pushers have a much faster reorientation rate and
only require a few three-sphere oscillations to turn up-
stream. Rather than a burden, the cargo can therefore
also be exploited to enhance rheotaxis. This fundamen-
tal difference in the steady-state orientation also affects
the velocity at which the two swimmer types can move
against the flow. This is described in detail below, when

we discuss the fixed point analysis.

SWIMMING STATE DIAGRAMS

Until now we have described the upstream motion at
low shear, which is already fairly complex, but more intri-
cate dynamics emerge at stronger flows. We aim to quan-
tify this systematically for different shear rates and initial
conditions. Because the 3D dynamics reduce to 2D over
time, we can cast them into a dynamical system where
the relevant variables are the pitch angle, θ, and the posi-
tion of the central sphere, z. Figure 2 shows the evolution
of these dynamics in (θ, z) phase-space diagrams, where
the top row shows the behaviours for pullers and the
bottom row for pushers. The steady-state swimming be-
haviours correspond to stable fixed points in these phase
portraits, which change for different flow rates.

At weak flows, at γ̇ = 1/3, [Fig. 2(a)], the pullers
mostly tend to swim upstream parallel to the surface
(red), a stable fixed point around (−π/2, 1/2), in agree-
ment with the observations in Fig. 1. A small fraction
of initial conditions also leads to downstream swimming
parallel to the surface (blue), a stable fixed point around
(π/2, 1/2). The phase portraits corresponding to γ̇ = 2/3
and γ̇ = 1 are essentially the same as panel (a). At strong
flows, at γ̇ = 2, [Fig. 2(b)], almost all pullers are first ad-
vected downstream during a transient ‘toppling’ motion.
However, over time they will end up in a stable state
on the surface, oriented upstream. If the external flow
is stronger than the self-propulsion, this leads to down-
stream advection in the upstream orientation (green).
The transition of the final state from moving upstream
(red) to downstream (green) occurs at γ̇ ≈ 1.33, as dis-
cussed below.

The pushers show very different dynamics, because
the two fixed points around (±π/2, 1/2), of orientations
parallel to the surface, are both unstable. Instead, at
γ̇ = 1/3, [Fig. 2(c)], the pushers tend to orient them-
selves almost normal to the wall (brown), but still a lit-
tle directed upstream. This corresponds to a fixed point
around (−0.8π, 0.9), which is marked with an orange star.
Regardless of the initial conditions, all pushers end in this
state, for all cases tested. As the flow strength grows,
the phase portraits corresponding to γ̇ = 0.4 and γ̇ = 0.5
remain essentially the same as panel (c). At even larger
shear rates, however, at γ̇ = 1, [Fig. 2(d)], the orange star
fixed point also becomes unstable, so the pushers tend to
detach from the wall and topple downstream indefinitely
(cyan). These are the arc-like trajectories depicted in
Fig. 1(f).
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upstream downstream upstream toppling

Figure 3. Rheotactic performance. We compare (a) pullers and (b) pushers, as a function of applied shear rate. Shown
are the swimmer velocity Vx(γ̇) in blue squares, where negative values indicate upstream swimming, the pitch angle θ(γ̇) in
green open circles, and the position of the central sphere z(γ̇) in green filled circles. Note the different axes. Note, V0 is the
bulk speed of a neutral (a+ = a) swimmer in the absence of external flows and boundaries.

VARYING THE FLOW STRENGTH

Having identified the stable fixed points of the phase
diagrams, we can determine the properties of these
steady-state swimming modes as a function of shear rate.
In particular, we compute the velocity component Vx(γ̇),
which is negative for upstream swimming, the pitch an-
gle θ(γ̇), and the vertical position z(γ̇). These quantities
evolve very differently for pushers and pullers.

Pullers in weak flows can move upstream very fast,
Vx ≳ −V0, almost their free swimming speed [Fig. 3(a)].
As the shear rate increases, Vx increases linearly [blue
line]. This trend is also enhanced because the verti-
cal position gradually increases [green line], exposing the
swimmer to more flow. Therefore, the upstream swim-
ming velocity tends to zero around γ̇0 ≈ 1.35. At higher
shear the pullers are still oriented upstream, but they are
advected downstream.

Surprisingly, the pushers show the opposite behaviour
[Fig. 3(b)]. Their vertical position decreases with shear
rate [filled circles], and the pitch angle changes from
swimming perpendicular to parallel to the surface [open
circles], so the swimmer is less exposed. As a result,
Vx is almost zero in weak flows, but it decreases with
shear rate, leading to faster upstream motion. Moreover,
around γ̇c ≈ 0.38 there is a sharp transition. The vertical
position suddenly drops even further, so the upstream
swimming speed also jumps up to −Vx/V0 ≈ 0.8. At
higher shear it stays relatively constant, until the push-
ers detach due to the toppling instability. The critical
shear rate at which this occurs is γ̇t ≈ 0.56.

TUNING THE CARGO SIZE

Next, we vary the cargo size across the range a+/a ∈
[1, 3] both for pushers and pullers. Initially we confirmed
that the mechanisms of rheotaxis remain unchanged.
That is, the swimmers still reorient against the flow as
described in Figures 1-3. Then, when mapping out the
upstream swimming velocity, we observe a non-trivial de-
pendence on the cargo size [Fig. 4a,b]. With increasing
a+, both pushers and pullers first move faster against the
flow, but for large cargo they move slower. So there is an
optimal cargo size.

The position of this maximum can approximated an-
alytically: Using the linearised theory of Eq. (12-13) in
Ref. [45] with a1 = a2 = a and a3 = a+, arm length
L and oscillation amplitude u0, we can approximate the
bulk swimming speed as

Vs =
21

8

a2a+
(2a+ a+)2

u2
0

L2
, (11)

in the absence of flows and surfaces, as shown in Fig. 4c.
Equating to zero the derivative of Eq. (11) with respect
to a+, we find that this bulk swimming speed features
a maximum at a∗+/a = 2. However, the position of the
maximum shifts because of the influence of the surface
and the flow. This can be understood by considering the
downstream advection speed Va = hγ̇, where h = h(a+)
is the exposure height of the swimmer. This expose in-
creases with cargo size, so h increases with a+. There-
fore, the maximum of the upstream swimming speed
Vx ≈ Vs sin θ+Va shifts to smaller a+ values for stronger
flows, as expected. Hence, the cargo size can be tuned to
achieve the largest possible rheotactic performance.
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Bulk speed

Figure 4. Tuning the cargo size. (a) The rheotactic performace of pullers as a function of cargo size a+, for different applied
shear rates γ̇. Shown is the swimmer velocity in the direction of the flow Vx(γ̇), where negative values indicate upstream
swimming. As before, V0 is the bulk speed of a neutral (a+ = a) swimmer, in the absence of external flows and boundaries.
(b) The same for cargo pushers. (c) The bulk swimming speed as a function of cargo size, without flows and boundaries. We
compare simulations for pullers (green circles) and pullers (red squared) with the linearised theory of Eq. 11 (black line).

DISCUSSION

In summary, the rheotactic performance could be en-
hanced by exploiting the cargo, by tuning the swimmer
geometry for a given shear rate. Indeed, both cargo push-
ers and pullers tend to swim upstream near surfaces, but
in a very different manner. Pullers move almost paral-
lel to the wall, so they are less susceptible to flow. As
a result, it takes longer to reorient against the flow, but
their upstream swimming speed is generally large. This
speed decreases in strong currents, but even when de-
tached they tend to return to the surface and move up-
stream. Pushers, however, move almost perpendicular to
the wall, so they are more susceptible to currents. Con-
sequently, they can reorient against the flow much faster,
but their upstream swimming speed is poor at low shear.
Interestingly, this speed significantly improves at inter-
mediate shear, to an extend that the pushers will actu-
ally outperform the pullers. But in even stronger flows
the pushers will detach from the wall and are washed
downstream. Thus, each cargo configuration has its own
advantages, which may be optimised for different appli-
cations. For example, if the swimmer were to be used
to transport cargo [56] upstream in fluctuating flow en-
vironments, it may be beneficial to use a puller for its
robustness, while in strong but stable flows a pusher can
be more expedient.

A natural extension of our work would be to include
effects of chirality, as observed in the dynamics of sper-
matozoa [29, 30] or bacterial flagella [30]. This chirality
induces an additional torque that leads to circular mo-
tion in the absence of flow [10], but in flows it can lead
to different dynamical regimes separated by critical shear
rates [37]. These predictions could be tested with three-
sphere swimmers by introducing a counter-rotation to the
head and tail spheres. Furthermore, the effects of rota-
tional diffusion, run-and-tumble dynamics and temporal

motor variability [57] would be required in the future to
connect this work better with microbial ecology and bac-
terial contamination dynamics. Or even more generally,
besides the swimmer shape, also the swimming stroke
may be tuned to design optimal navigation strategies.

Some important insights are revealed when compar-
ing our work with related literature. For autophoretic
Janus (Au/Pt) nanorods, the pullers assume a larger
tilt angle compared to pushers and they reorient faster
against the flow [41], while we see that the opposite is
true for three-sphere swimmers. For spherical squirm-
ers [35], the pullers (B2/B1 > 0) also feature two stable
fixed points facing upstream and downstream, like three-
sphere swimmers, both almost parallel to the surface.
But unlike three-sphere swimmers, the majority of ini-
tial conditions leads to escape from the surface or down-
stream motion. Spherical catalytic Janus particles can
also move upstream near surfaces [40]. Here a high sur-
face coverage with catalyst results in orientations almost
perpendicular to the wall, while a half coverage results
in motion almost parallel to the wall [35]. These pitch
angles may be observed in holography experiments [58].

This comparison with different types of micro-
swimmers shows that the far-field hydrodynamic signa-
ture (dipole moment) is by itself not a good classifier
of surface rheotaxis. Instead, near-field flows must be
considered for different systems, and the terms ‘puller’
and ‘pusher’ should rather be interpreted in terms of the
swimmer shape itself. In our case that is whether the
robot pushes or pulls cargo. However, the fact that dif-
ferent micro-robot types can employ a diversity of up-
stream swimming mechanisms need not be a disadvan-
tage. If anything, it is interesting that there are different
routes to the same goal. It reemphasises our main result
that rheotaxis can be regulated by swimmer shape and
cargo size, which allows for tuning designs for specific
applications.
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Indeed, throughout this paper we have studied the
Najafi-Golestanian three-sphere swimmer because it is
well established, analytically tractable, and easy to sim-
ulate to ensure reproducibility. An experimental realisa-
tion of this swimmer was developed recently [59], made
from a motile magnetocapillary self-assembly [60]. How-
ever, we expect that our conclusions will apply to a much
wider class of micro-robots that push or pull cargo. En-
gineered or natural bacteria, for example, can resemble
cargo pushers safe for the additional counter-rotation of
the head and tail and run-tumble dynamics (see para-
graph above). Dreyfus et al. [61] presented another re-
lated micro-robot that uses an active filament of mag-
netic beads to transport a red blood cell. Also, phoretic
colloids will likely be engineered with different shapes in
future, to push or pull larger cargo vesicles. Moreover,
recent advances in nanotechnology include the design
of origami micro-machines [62, 63], four-dimensionally
printed active materials [64], and artificial cilia [65–67].
It would be very interesting if tuning the upstream swim-
ming velocity of a micro-robot with cargo could be ex-
plored with these technologies.
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SUPPLEMENTARY INFORMATION VIDEOS

• Video 1: Upstream swimming by cargo pullers.
The external shear rate is weak, γ̇ = 1/3. Their
motion is shown in the laboratory frame, projected
on the xy plane, as seen from above the surface.
The swimmers are initially released from z0 = 1
at various initial orientations ϕ0, all parallel to the
surface, θ0 = π/2. All swimmers end up moving
against the flow.

• Video 2: Upstream swimming by cargo pushers.
The external shear rate is weak, γ̇ = 1/3. Their
motion is shown in the laboratory frame, projected
on the xy plane, as seen from above the surface.
The swimmers are initially released from z0 = 1
at various initial orientations ϕ0, all parallel to the
surface, θ0 = π/2. All swimmers end up moving
against the flow.

• Video 3: Rheotaxis of a cargo puller in a strong
flow, γ̇ = 2. Their motion is shown in the labora-
tory frame, projected on the xy plane, as seen from
above the surface. The swimmers are initially re-
leased from z0 = 1 at various initial orientations ϕ0,
all parallel to the surface, θ0 = π/2. All swimmers
end up oriented upstream but they are advected
downstream because the flow is too strong.

• Video 4: Rheotaxis of a cargo pusher in a strong
flow, γ̇ = 2. Their motion is shown in the labora-
tory frame, projected on the xy plane, as seen from
above the surface. The swimmers are initially re-
leased from z0 = 1 at various initial orientations ϕ0,
all parallel to the surface, θ0 = π/2. All swimmers
end up oriented upstream but they are advected
downstream because the flow is too strong.

• Video 5: Upstream swimming by a cargo puller,
shown in the laboratory frame. The external shear
rate is γ̇ = 2/3. The swimmer position in 3D space
is shown in blue, its projection onto the xz plane
is shown in orange, and its projection onto the yz
plane is shown in green. This reveals how its ori-
entation evolves over time. The swimmer is ini-
tially released from z0 = 1 at initial orientations
ϕ0 = π/2 and parallel to the surface, θ0 = π/2.
The swimmer ends up moving against the flow.

• Video 6: Same as Video 5, shown in the frame co-
moving with the swimmer.

• Video 7: Upstream swimming by a cargo pusher,
shown in the laboratory frame. The external shear
rate is γ̇ = 1/3. The swimmer position in 3D space
is shown in blue, its projection onto the xz plane
is shown in orange, and its projection onto the yz
plane is shown in green. This reveals how its ori-
entation evolves over time. The swimmer is ini-
tially released from z0 = 1 at initial orientations
ϕ0 = π/2 and parallel to the surface, θ0 = π/2.
The swimmer ends up moving against the flow.

• Video 8: Same as Video 7, shown in the frame co-
moving with the swimmer.
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