44 research outputs found

    Plasma Formation Dynamics in Intense Laser-Droplet Interaction

    Full text link
    We study the ionization dynamics in intense laser-droplet interaction using three-dimensional, relativistic particle-in-cell simulations. Of particular interest is the laser intensity and frequency regime for which initially transparent, wavelength-sized targets are not homogeneously ionized. Instead, the charge distribution changes both in space and in time on a sub-cycle scale. One may call this the extreme nonlinear Mie-optics regime. We find that - despite the fact that the plasma created at the droplet surface is overdense - oscillating electric fields may penetrate into the droplet under a certain angle, ionize, and propagate in the just generated plasma. This effect can be attributed to the local field enhancements at the droplet surface predicted by standard Mie theory. The penetration of the fields into the droplet leads to the formation of a highly inhomogeneous charge density distribution in the droplet interior, concentrated mostly in the polarization plane. We present a self-similar, exponential fit of the fractional ionization degree which depends only on a dimensionless combination of electric field amplitude, droplet radius, and plasma frequency with only a weak dependence on the laser frequency in the overdense regime.Comment: 5 pages, 6 figure

    Features of ion acceleration by circularly polarized laser pulses

    Full text link
    The characteristics of a MeV ion source driven by superintense, ultrashort laser pulses with circular polarization are studied by means of particle-in-cell simulations. Predicted features include high efficiency, large ion density, low divergence and the possibility of femtosecond duration. A comparison with the case of linearly polarized pulses is made.Comment: 4 pages, 4 figure

    Ion-acoustic shocks with reflected ions: modeling and PIC simulations

    Full text link
    Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles remains incomplete. We present here the results of numerical modeling of an ion-acoustic collisionless shock based on one-dimensional (1D) kinetic approximation both for electrons and ions with a real mass ratio. Special emphasis is made on the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.Comment: 6 pages, 7 figures, International Workshop "Complex Plasma Phenomena in the Laboratory and in the Universe", January 19-20, 2015, Rome, Ital

    Bright single-cycle terahertz source based on gas cells irradiated by two-color laser pulses

    Full text link
    We study the excitation of electron currents in a transparent cell of sub-millimeter size filled by an atomic gas and illuminated by an intense two-color femtosecond laser pulse. The pulse consists of a strong fundamental component and its second harmonic of low intensity, both circularly polarized. We show that for sufficiently small 20μ20\mum cells the plasma oscillation excited by asymmetric ionization is almost spatially homogeneous within the interaction volume. This coherent dipole plasma oscillation results in a remarkably efficient conversion of the electron energy into that of radiation emitted in the terahertz frequency domain. Simultaneously, strong quasi-static electric fields of maximal strength Em10E_m\simeq 10MV/cm are shown to exist inside the cell during several hundred femtoseconds after the ionizing two-color laser pulse has gone.Comment: 7 pages, 2 figures, 1 table. XXXIst International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC 2019), Deauville, July 23-30, 201

    Efficiency of radiation friction losses in laser-driven "hole boring" of dense targets

    Full text link
    In the interaction of laser pulses of extreme intensity (>1023 Wcm2>10^{23}~{\rm W cm}^{-2}) with high-density, thick plasma targets, simulations show significant radiation friction losses, in contrast to thin targets for which such losses are negligible. We present an analytical calculation, based on classical radiation friction modeling, of the conversion efficiency of the laser energy into incoherent radiation in the case when a circularly polarized pulse interacts with a thick plasma slab of overcritical initial density. By accounting for three effects including the influence of radiation losses on the single electron trajectory, the global `hole boring' motion of the laser-plasma interaction region under the action of radiation pressure, and the inhomogeneity of the laser field in both longitudinal and transverse direction, we find a good agreement with the results of three-dimensional particle-in-cell simulations. Overall, the collective effects greatly reduce radiation losses with respect to electrons driven by the same laser pulse in vacuum, which also shift the reliability of classical calculations up to higher intensities.Comment: 15 pages, 3 figure

    Quantum effects on radiation friction driven magnetic field generation

    Full text link
    Radiation losses in the interaction of superintense circularly polarized laser pulses with high-density plasmas can lead to the generation of strong quasistatic magnetic fields via absorption of the photon angular momentum (so called inverse Faraday effect). To achieve the magnetic field strength of several Giga Gauss laser intensities 1024\simeq 10^{24}W/cm2^2 are required which brings the interaction to the border between the classical and the quantum regimes. We improve the classical modeling of the laser interaction with overcritical plasma in the "hole boring" regime by using a modified radiation friction force accounting for quantum recoil and spectral cut-off at high energies. The results of analytical calculations and three-dimensional particle-in-cell simulations show that, in foreseeable scenarios, the quantum effects may lead to a decrease of the conversion rate of laser radiation into high-energy photons by a factor 2-3. The magnetic field amplitude is suppressed accordingly, and the magnetic field energy - by more than one order in magnitude. This quantum suppression is shown to reach a maximum at a certain value of intensity, and does not grow with the further increase of intensities. The non monotonic behavior of the quantum suppression factor results from the joint effect of the longitudinal plasma acceleration and the radiation reaction force. The predicted features could serve as a suitable diagnostic for radiation friction theories.Comment: 10 pages, 3 figure

    Relativistic Attosecond Electron Bunches from Laser-Illuminated Droplets

    Full text link
    The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles which depend on the ratios of droplet radius to wavelength and plasma frequency to laser frequency. The mechanism behind the multi-MeV attosecond electron bunch generation is investigated using Mie theory. It is shown that the angular distribution and the high electron energies are due to a parameter-sensitive, time-dependent local field enhancement at the droplet surface.Comment: 4 pages, 5 figures, REVTeX-styl

    Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction

    Full text link
    Among the various attempts to understand collisionless absorption of intense ultrashort laser pulses a variety of models has been invented to describe the laser beam target interaction. In terms of basic physics collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target. The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our investigations are the Brunel-like hot electron distribution at the relativistic threshold; the minimum of absorption at Iλ2(0.31.2)×1021I\lambda^2 \cong (0.3-1.2)\times 10^{21} W/cm2μ^2\mum2^2, in the plasma target with the electron density of neλ21023n_e \lambda^2\sim 10^{23}cm3μ^{-3}\mum2;^2; the drastic reduction of the number of hot electrons in this domain and their reappearance in the highly relativistic domain; strong coupling of the fast electron jets with the return current through Cherenkov emission of plasmons. The hot electron energy scaling shows a strong dependence on intensity in the moderately relativistic domain Iλ2(10181020)I\lambda^2 \cong (10^{18} - 10^{20}) W/cm2μ^2\mum2^2, a scaling in vague accordance with current published estimates in the range Iλ2(0.143.5)×1021I\lambda^2 \cong (0.14-3.5)\times 10^{21} W/cm2μ^2\mum2^2, and a distinct power increase beyond I=3.5×1021I=3.5\times 10^{21} W/cm2μ^2\mum2^2.Comment: 11 pages, 10 figure

    Ion dynamics and coherent structure formation following laser pulse self-channeling

    Full text link
    The propagation of a superintense laser pulse in an underdense, inhomogeneous plasma has been studied numerically by two-dimensional particle-in-cell simulations on a time scale extending up to several picoseconds. The effects of the ion dynamics following the charge-displacement self-channeling of the laser pulse have been addressed. Radial ion acceleration leads to the ``breaking'' of the plasma channel walls, causing an inversion of the radial space-charge field and the filamentation of the laser pulse. At later times a number of long-lived, quasi-periodic field structures are observed and their dynamics is characterized with high resolution. Inside the plasma channel, a pattern of electric and magnetic fields resembling both soliton- and vortex-like structures is observed.Comment: 10 pages, 5 figures (visit http://www.df.unipi.it/~macchi to download a high-resolution version), to appear in Plasma Physics and Controlled Fusion (Dec. 2007), special issue containing invited papers from the 34th EPS Conference on Plasma Physics (Warsaw, July 2007

    Dynamics of charge-displacement channeling in intense laser-plasma interactions

    Get PDF
    The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterised with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.Comment: 5 figures, accepted for publication in New Journal of Physic
    corecore