10 research outputs found

    Sensitivity of NS3 Serine Proteases from Hepatitis C Virus Genotypes 2 and 3 to the Inhibitor BILN 2061

    No full text
    Hepatitis C virus (HCV) displays a high degree of genetic variability. Six genotypes and more than 50 subtypes have been identified to date. In this report, kinetic profiles were determined for NS3 proteases of genotypes 1a, 1b, 2ac, 2b, and 3a, revealing no major differences in activity. In vitro sensitivity studies with BILN 2061 showed a decrease in affinity for proteases of genotypes 2 and 3 (K(i), 80 to 90 nM) compared to genotype 1 enzymes (K(i), 1.5 nM). To understand the reduced sensitivity of genotypes 2 and 3 to BILN 2061, active-site residues in the proximity of the inhibitor binding site were replaced in the genotype-1b enzyme with the corresponding genotype-2b or -3a residues. The replacement of five residues at positions 78, 79, 80, 122, and 132 accounted for most of the reduced sensitivity of genotype 2b, while replacement of residue 168 alone could account for the reduced sensitivity of genotype 3a. BILN 2061 remains a potent inhibitor of these non-genotype-1 NS3-NS4A proteins, with K(i) values below 100 nM. This in vitro potency, in conjunction with the good pharmacokinetic data reported for humans, suggests that there is potential for BILN 2061 as an antiviral agent for individuals infected with non-genotype-1 HCV

    Polyadenylation-dependent screening assay for respiratory syncytial virus RNA transcriptase activity and identification of an inhibitor

    No full text
    RNA-dependent RNA polymerase from respiratory syncytial virus (RSV) is a multi-subunit ribonucleoprotein (RNP) complex that, in addition to synthesizing the full 15 222 nt viral genomic RNA, is able to synthesize all 10 viral mRNAs. We have prepared crude RNP from RSV-infected HEp-2 cells, based on a method previously used for Newcastle disease virus, and established a novel polyadenylation-dependent capture [poly(A) capture] assay to screen for potential inhibitors of RSV transcriptase activity. In this homogeneous assay, radiolabeled full-length polyadenylated mRNAs produced by the viral RNP are detected through capture on immobilized biotinylated oligo(dT) in a 96-well streptavidin-coated FlashPlate™. Possible inhibitors identified with this assay could interfere at any step required for the production of complete RSV mRNAs, including transcription, polyadenylation and, potentially, co-transcriptional guanylylation. A specific inhibitor of RSV transcriptase with antiviral activity was identified through screening of this assay

    In Vitro Resistance Profile of the Hepatitis C Virus NS3 Protease Inhibitor BI 201335

    No full text
    The in vitro resistance profile of BI 201335 was evaluated through selection and characterization of variants in genotype 1a (GT 1a) and genotype 1b (GT 1b) replicons. NS3 R155K and D168V were the most frequently observed resistant variants. Phenotypic characterization of the mutants revealed shifts in sensitivity specific to BI 201335 that did not alter susceptibility to alpha interferon. In contrast to macrocyclic and covalent protease inhibitors, changes at V36, T54, F43, and Q80 did not confer resistance to BI 201335

    Inhibitors of Respiratory Syncytial Virus Replication Target Cotranscriptional mRNA Guanylylation by Viral RNA-Dependent RNA Polymerase

    Get PDF
    Respiratory syncytial virus (RSV) is a major cause of respiratory illness in infants, immunocompromised patients, and the elderly. New antiviral agents would be important tools in the treatment of acute RSV disease. RSV encodes its own RNA-dependent RNA polymerase that is responsible for the synthesis of both genomic RNA and subgenomic mRNAs. The viral polymerase also cotranscriptionally caps and polyadenylates the RSV mRNAs at their 5′ and 3′ ends, respectively. We have previously reported the discovery of the first nonnucleoside transcriptase inhibitor of RSV polymerase through high-throughput screening. Here we report the design of inhibitors that have improved potency both in vitro and in antiviral assays and that also exhibit activity in a mouse model of RSV infection. We have isolated virus with reduced susceptibility to this class of inhibitors. The mutations conferring resistance mapped to a novel motif within the RSV L gene, which encodes the catalytic subunit of RSV polymerase. This motif is distinct from the catalytic region of the L protein and bears some similarity to the nucleotide binding domain within nucleoside diphosphate kinases. These findings lead to the hypothesis that this class of inhibitors may block synthesis of RSV mRNAs by inhibiting guanylylation of viral transcripts. We show that short transcripts produced in the presence of inhibitor in vitro do not contain a 5′ cap but, instead, are triphosphorylated, confirming this hypothesis. These inhibitors constitute useful tools for elucidating the molecular mechanism of RSV capping and represent valid leads for the development of novel anti-RSV therapeutics
    corecore