44 research outputs found

    (M-theory-)Killing spinors on symmetric spaces

    Full text link
    We show how the theory of invariant principal bundle connections for reductive homogeneous spaces can be applied to determine the holonomy of generalised Killing spinor covariant derivatives of the form D=∇+ΩD= \nabla + \Omega in a purely algebraic and algorithmic way, where Ω:TM→Λ∗(TM)\Omega : TM \rightarrow \Lambda^*(TM) is a left-invariant homomorphism. Specialising this to the case of symmetric M-theory backgrounds (i.e. (M,g,F)(M,g,F) with (M,g)(M,g) a symmetric space and FF an invariant closed 4-form), we derive several criteria for such a background to preserve some supersymmetry and consequently find all supersymmetric symmetric M-theory backgrounds.Comment: Updated abstract for clarity. Added missing geometries to section 6. Main result stand

    Rationale and design of the prevention of paclitaxel-related neurological side effects with lithium trial – Protocol of a multicenter, randomized, double-blind, placebo-controlled proof-of-concept phase-2 clinical trial

    Get PDF
    INTRODUCTION: Chemotherapy-induced polyneuropathy (CIPN) and post-chemotherapy cognitive impairment (PCCI) are frequent side effects of paclitaxel treatment. CIPN/PCCI are potentially irreversible, reduce quality of life and often lead to treatment limitations, which affect patients’ outcome. We previously demonstrated that paclitaxel enhances an interaction of the Neuronal calcium sensor-1 protein (NCS-1) with the Inositol-1,4,5-trisphosphate receptor (InsP3R), which disrupts calcium homeostasis and triggers neuronal cell death via the calcium-dependent protease calpain in dorsal root ganglia neurons and neuronal precursor cells. Prophylactic treatment of rodents with lithium inhibits the NCS1-InsP3R interaction and ameliorates paclitaxel-induced polyneuropathy and cognitive impairment, which is in part supported by limited retrospective clinical data in patients treated with lithium carbonate at the time of chemotherapy. Currently no data are available from a prospective clinical trial to demonstrate its efficacy. METHODS AND ANALYSIS: The PREPARE study will be conducted as a multicenter, randomized, double-blind, placebo-controlled phase-2 trial with parallel group design. N = 84 patients with breast cancer will be randomized 1:1 to either lithium carbonate treatment (targeted serum concentration 0.5–0.8 mmol/l) or placebo with sham dose adjustments as add-on to (nab-) paclitaxel. The primary endpoint is the validated Total Neuropathy Score reduced (TNSr) at 2 weeks after the last (nab-) paclitaxel infusion. The aim is to show that the lithium carbonate group is superior to the placebo group, meaning that the mean TNSr after (nab-) paclitaxel is lower in the lithium carbonate group than in the placebo group. Secondary endpoints include: (1) severity of CIPN, (2) amount and dose of pain medication, (3) cumulative dose of (nab-) paclitaxel, (4) patient-reported symptoms of CIPN, quality of life and symptoms of anxiety and depression, (5) severity of cognitive impairment, (6) hippocampal volume and changes in structural/functional connectivity and (7) serum Neurofilament light chain protein concentrations. ETHICS AND DISSEMINATION: The study protocol was approved by the Berlin ethics committee (reference: 21/232 – IV E 10) and the respective federal agency (Bundesinstitut für Arzneimittel und Medizinprodukte, reference: 61-3910-4044771). The results of the study will be published in peer-reviewed medical journals as well as presented at relevant (inter)national conferences. CLINICAL TRIAL REGISTRATION: [https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00027165], identifier [DRKS00027165]

    Crystallographic reconstruction study of the effects of finish rolling temperature on the variant selection during bainite transformation in C-Mn high-strength steels

    Full text link
    The effect of finish rolling temperature (FRT) on the austenite- () to-bainite () phase transformation is quantitatively investigated in high-strength C-Mn steels. In particular, the present study aims to clarify the respective contributions of the conditioning during the hot rolling and the variant selection (VS) during the phase transformation to the inherited texture. To this end, an alternative crystallographic reconstruction procedure, which can be directly applied to experimental electron backscatter diffraction (EBSD) mappings, is developed by combining the best features of the existing models: the orientation relationship (OR) refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. The applicability of this method is demonstrated on both quenching and partitioning (Q&P) and as-quenched lath-martensite steels. The results obtained on the C-Mn steels confirm that the sample finish rolled at the lowest temperature (829{\deg}C) exhibits the sharpest transformation texture. It is shown that this sharp texture is exclusively due to a strong VS from parent brass {110}, S {213} and Goss {110} grains, whereas the VS from the copper {112} grains is insensitive to the FRT. In addition, a statistical VS analysis proves that the habit planes of the selected variants do not systematically correspond to the predicted active slip planes using the Taylor model. In contrast, a correlation between the Bain group to which the selected variants belong and the FRT is clearly revealed, regardless of the parent orientation. These results are discussed in terms of polygranular accommodation mechanisms, especially in view of the observed development in the hot-rolled samples of high-angle grain boundaries with misorientation axes between and

    Withanolides and related steroids

    Get PDF
    Since the isolation of the first withanolides in the mid-1960s, over 600 new members of this group of compounds have been described, with most from genera of the plant family Solanaceae. The basic structure of withaferin A, a C28 ergostane with a modified side chain forming a δ-lactone between carbons 22 and 26, was considered for many years the basic template for the withanolides. Nowadays, a considerable number of related structures are also considered part of the withanolide class; among them are those containing γ-lactones in the side chain that have come to be at least as common as the δ-lactones. The reduced versions (γ and δ-lactols) are also known. Further structural variations include modified skeletons (including C27 compounds), aromatic rings and additional rings, which may coexist in a single plant species. Seasonal and geographical variations have also been described in the concentration levels and types of withanolides that may occur, especially in the Jaborosa and Salpichroa genera, and biogenetic relationships among those withanolides may be inferred from the structural variations detected. Withania is the parent genus of the withanolides and a special section is devoted to the new structures isolated from species in this genus. Following this, all other new structures are grouped by structural types. Many withanolides have shown a variety of interesting biological activities ranging from antitumor, cytotoxic and potential cancer chemopreventive effects, to feeding deterrence for several insects as well as selective phytotoxicity towards monocotyledoneous and dicotyledoneous species. Trypanocidal, leishmanicidal, antibacterial, and antifungal activities have also been reported. A comprehensive description of the different activities and their significance has been included in this chapter. The final section is devoted to chemotaxonomic implications of withanolide distribution within the Solanaceae. Overall, this chapter covers the advances in the chemistry and biology of withanolides over the last 16 years.Fil: Misico, Rosana Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); ArgentinaFil: Nicotra, V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Oberti, Juan Carlos María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; ArgentinaFil: Gil, Roberto Ricardo. University Of Carnegie Mellon; Estados UnidosFil: Burton, Gerardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); Argentin
    corecore