52 research outputs found

    Estudio de proteínas solubles que unen lípidos (SLBP) intracelulares expresadas en sistemas que metabolizan grandes cantidades de lípidos : Caracterización biofisicoquímica, estructural y funcional de IFABP y LFABP de enterocito de mamífero e YLSCP2 de Yarrowia lipolytica

    Get PDF
    Los lípidos son compuestos que cumplen una gran variedad de funciones en la biología celular, desde componentes estructurales o nutrientes de reserva hasta señales hormonales o incluso feromonas pasando por moduladores de la transcripción y pigmentos fotosintéticos. Sin embargo, por definición, estos compuestos poseen una muy baja solubilidad en el medio acuoso celular. Por tal motivo, se cree que han evolucionado diferentes familias de proteínas solubles, capaces de unir lípidos en forma reversible en el citosol, las SLBP (Soluble Lipid Binding Proteins) intracelulares. Dentro de este conjunto de proteínas, las familias mejor caracterizadas corresponden a las proteínas que unen ácidos grasos (FABP) y las proteínas transportadoras de esteroles (SCP-2), ambas con capacidad de unir ácidos grasos de cadena larga. Cada familia de proteínas SLBP posee varias isoformas que presentan un patrón de expresión y especificidad de unión de ligando hidrofóbicos únicos. Se cree que estas diferencias residen en una baja identidad de secuencia (tan sólo un 20%), a pesar de la cual adoptan estructuras tridimensionales prácticamente superponibles. A fin de contribuir en la identificación determinantes estructurales críticos y las funciones específicas de las SLBP se estudiaron tres proteínas modelo que participan de tipos celulares que muestran una capacidad de metabolismo lipídico extraordinario, como son las células de enterocito intestinal de mamífero y las levaduras Yarrowia lipolytica. En el primer caso se coexpresan dos FABP en niveles prácticamente equivalentes. Por un lado se analizó in vitro el rol de residuos de Lys específicos de la IFABP en la transferencia de ácidos grasos, siendo estos importantes para el sensado de las características de las membranas aceptoras. Ensayos de interacción con membrana revelaron que tanto IFABP como LFABP muestran moduladores distintos de su interacción con bicapas fosfolipídicas, y que en particular las regiones α-helicoidal serían críticas para este fenómeno. Asimismo, se demostró la transferencia in vitro de ligandos entre ambas FABP intestinales. Finalmente, se comprobó que la expresión de LFABP en células Caco-2 en cultivo afecta la asimilación de ácidos grasos, así como su distribución a tiempos cortos. El análisis comparativo de estas proteínas parece indicar que cumplirían funciones diferentes dentro del entorno celular. En el caso de Y. lipolytica, sólo una SLBP es expresada con capacidad de unir ácidos grasos libres, representante de la familia de las SCP-2, YLSCP2. El análisis in vitro de sus capacidades de unión y de transferencia de ligandos hacia membranas aceptoras en distintas condiciones demostró que la YLSCP2 podría cumplir un rol de transporte de ligando hidrofóbicos hacia estructuras intracelulares específicas. En conclusión, estas proteínas no sólo son capaces de actuar como buffer citosólico de lípidos aumentando así su disponibilidad para los distintos procesos celulares, sino que también son capaces de modular o regular su metabolismo. Más estudios son necesarios para poder comprender mejor las funciones específicas de estas SLBP, pero los secretos que esconden sus estructuras podrían tener importantes aplicaciones en áreas diversas como medicina, nutrición, industria biotecnológica y el tratamiento de efluentes industriales.Facultad de Ciencias Exacta

    Microscopía óptica

    Get PDF
    La microscopía es un conjunto de técnicas que se ha desarrollado por más de 300 años, que incluyen distintas metodologías altamente especializadas. Se clasifican en 3 grandes grupos: La Microscopía Óptica, la Microscopía Electrónica y la Microscopía por Sondas. Este capítulo está centrado en presentar una serie de técnicas incluidas dentro de la Microscopía Óptica que permiten estudiar procesos bioquímicos y biofísicos hasta a nivel (sub-)micrométrico, es decir a nivel de tejidos, celular, subcelular, o incluso molecular. Una de las grandes ventajas de la microscopía es que se pueden emplear los mismos fenómenos físicos, descritos en capítulos anteriores para el análisis de biomacromoléculas in vitro, pero ahora incorporando también información espacial, en particular, en relación a las estructuras biológicas relevantes de cada sistema en estudio, como la estructura de un tejido, la célula, el núcleo, organelas, etc.Facultad de Ciencias Exacta

    Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes: Support for a multistep process

    Get PDF
    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the α-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the α-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the α-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the α2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the α2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the α2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.Instituto de Investigaciones Bioquímicas de La Plat

    Fluorescencia

    Get PDF
    La fluorescencia es una de las técnicas más ampliamente empleadas dentro de las áreas de las ciencias biológicas y químicas. Su alta sensibilidad se combina con un alto grado de especificidad que permite trabajar en un amplio rango de concentraciones y, en particular, dentro de los valores relevantes para los sistemas vivos, ya sean células, tejidos o animales. En el presente capítulo nos centraremos en analizar los fundamentos de la técnica así como distintas variables y parámetros que pueden asociarse al fenómeno de fluorescencia. Luego describiremos los equipos y las técnicas más comunes para el estudio in vitro de reacciones químicas y la caracterización de biomacromoléculas. Por otro lado, las aplicaciones en células y tejidos serán dejadas para el Capítulo 13, en el que se describen las técnicas de Microscopía Óptica. Finalmente, concluiremos el presente capítulo resumiendo las propiedades más sobresalientes de los fluoróforos más frecuentemente empleados.Facultad de Ciencias Exacta

    Fatty acid signaling mechanisms in neural cells: Fatty acid receptors

    Get PDF
    Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types. FAs can serve as secondary messengers, as well as modulators of enzymatic activities and substrates for cytokines synthesis. More recently, it has been documented a direct activity of free FAs as ligands of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged, demonstrating its participation in a wide range of physiological and pathological conditions. It has been long known that the central nervous system is enriched with poly-unsaturated FAs, such as arachidonic (C20: 4ω-6) or docosohexaenoic (C22: 6ω-3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth, development, memory, and inflammatory response. Furthermore, a whole family of low molecular weight compounds derived from FAs has also gained special attention as the natural ligands for cannabinoid receptors or key cytokines involved in inflammation, largely expanding the role of FAs as precursors of signaling molecules. Nutritional deficiencies, and alterations in lipid metabolism and lipid signaling have been associated with developmental and cognitive problems, as well as with neurodegenerative diseases. The molecular mechanism behind these effects still remains elusive. But in the last two decades, different families of proteins have been characterized as receptors mediating FAs signaling. This review focuses on different receptors sensing and transducing free FAs signals in neural cells: (1) membrane receptors of the family of G Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly discuss the advantages of evaluating them as potential targets for drug design in order to manipulate lipid signaling. A thorough characterization of lipid receptors of the nervous system could provide a framework for a better understanding of their roles in neurophysiology and, potentially, help for the development of novel drugs against aging and neurodegenerative processes.Fil: Falomir Lockhart, Lisandro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Cavazzutti, Gian Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Giménez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Toscani, Andrés Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentin

    Dataset on pyrene-labelled apolipoprotein A-I, model development and fitting to monitor oligomeric species of its lipid-free form

    Get PDF
    This article contains data for the self-association of pyrene-labelled single Cys-mutants of apolipoprotein A-I (apoA-I). Mathematical models were developed to characterise the self-association events at different cysteine positions on apoA-I obtained as a function of protein concentration based on the multi-parametric spectrum of pyrene, particularly P-value and excimer emissions. The present work complements data related to the article entitled “Analysis of pyrene-labelled apolipoprotein A-I oligomerisation in solution: Spectra deconvolution and changes in P-value and excimer formation” Tárraga et al. [1].Fil: Tarraga, Wilson Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Garda, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Médicas; ArgentinaFil: Falomir Lockhart, Lisandro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Gonzalez, Marina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentin

    Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes: Support for a multistep process

    Get PDF
    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the α-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the α-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the α-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the α2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the α2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the α2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.Instituto de Investigaciones Bioquímicas de La Plat

    Análisis estructural y funcional de macromoléculas

    Get PDF
    El objetivo de este libro es incentivar a alumnos y docentes del área de bioquímica y afines a acercarse a un grupo de metodologías modernas que se aplican a la comprensión de los principios moleculares responsables de los procesos biológicos, en particular aquellos referidos a las proteínas. Desde los años ´90, el advenimiento de la genómica y proteómica ha permitido identificar un gran número de proteínas para las cuáles sólo se cuenta con su estructura primaria. Para profundizar la caracterización estructural y funcional de dichas proteínas, ha sido necesario contar con diversas herramientas bioquímicas y biofísicas. Hoy en día se han desdibujado los límites entre las distintas disciplinas de las ciencias naturales, siendo necesaria una visión integral, provista por la biofisicoquímica, que abarque las técnicas complementarias disponibles actualmente. (Párrafo extraído del texto a modo de resumen)Facultad de Ciencias Exacta

    Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors

    Get PDF
    Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types. FAs can serve as secondary messengers, as well as modulators of enzymatic activities and substrates for cytokines synthesis. More recently, it has been documented a direct activity of free FAs as ligands of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged, demonstrating its participation in a wide range of physiological and pathological conditions. It has been long known that the central nervous system is enriched with poly-unsaturated FAs, such as arachidonic (C20:4ω-6) or docosohexaenoic (C22:6ω3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth, development, memory, and inflammatory response. Furthermore, a whole family of low molecular weight compounds derived from FAs has also gained special attention as the natural ligands for cannabinoid receptors or key cytokines involved in inflammation, largely expanding the role of FAs as precursors of signaling molecules. Nutritional deficiencies, and alterations in lipid metabolism and lipid signaling have been associated with developmental and cognitive problems, as well as with neurodegenerative diseases. The molecular mechanism behind these effects still remains elusive. But in the last two decades, different families of proteins have been characterized as receptors mediating FAs signaling. This review focuses on different receptors sensing and transducing free FAs signals in neural cells: (1) membrane receptors of the family of G Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly discuss the advantages of evaluating them as potential targets for drug design in order to manipulate lipid signaling. A thorough characterization of lipid receptors of the nervous system could provide a framework for a better understanding of their roles in neurophysiology and, potentially, help for the development of novel drugs against aging and neurodegenerative processes.Instituto de Investigaciones Bioquímicas de La Plat

    Fatty acid transfer from Yarrowia lipolytica sterol carrier protein 2 to phospholipid membranes

    Get PDF
    Sterol carrier protein 2 (SCP2) is an intracellular protein domain found in all forms of life. It was originally identified as a sterol transfer protein, but was recently shown to also bind phospholipids, fatty acids, and fatty-acyl-CoA with high affinity. Based on studies carried out in higher eukaryotes, it is believed that SCP2 targets its ligands to compartmentalized intracellular pools and participates in lipid traffic, signaling, and metabolism. However, the biological functions of SCP2 are incompletely characterized and may be different in microorganisms. Herein, we demonstrate the preferential localization of SCP2 of Yarrowia lipolytica (YLSCP2) in peroxisome-enriched fractions and examine the rate and mechanism of transfer of anthroyloxy fatty acid from YLSCP2 to a variety of phospholipid membranes using a fluorescence resonance energy transfer assay. The results show that fatty acids are transferred by a collision-mediated mechanism, and that negative charges on the membrane surface are important for establishing a "collisional complex". Phospholipids, which are major constituents of peroxisome and mitochondria, induce special effects on the rates of transfer. In conclusion, YLSCP2 may function as a fatty acid transporter with some degree of specificity, and probably diverts fatty acids to the peroxisomal metabolism.Instituto de Investigaciones Bioquímicas de La PlataInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
    corecore