6 research outputs found

    Observations of a GX 301-2 Apastron Flare with the X-Calibur Hard X-Ray Polarimeter Supported by NICER, the Swift XRT and BAT, and Fermi GBM

    No full text
    The accretion-powered X-ray pulsar GX 301-2 was observed with the balloon-borne X-Calibur hard X-ray polarimeter during late December 2018, with contiguous observations by the NICER X-ray telescope, the Swift X-ray Telescope and Burst Alert Telescope, and the Fermi Gamma-ray Burst Monitor spanning several months. The observations detected the pulsar in a rare apastron flaring state coinciding with a significant spin-up of the pulsar discovered with the Fermi GBM. The X-Calibur, NICER, and Swift observations reveal a pulse profile strongly dominated by one main peak, and the NICER and Swift data show strong variation of the profile from pulse to pulse. The X-Calibur observations constrain for the first time the linear polarization of the 15-35 keV emission from a highly magnetized accreting neutron star, indicating a polarization degree of (27+38-27)% (90% confidence limit) averaged over all pulse phases. We discuss the spin-up and the X-ray spectral and polarimetric results in the context of theoretical predictions. We conclude with a discussion of the scientific potential of future observations of highly magnetized neutron stars with the more sensitive follow-up mission XL-Calibur

    Discovery of X-ray polarization angle rotation in active galaxy Mrk 421

    Full text link
    The magnetic field conditions in astrophysical relativistic jets can be probed by multiwavelength polarimetry, which has been recently extended to X-rays. For example, one can track how the magnetic field changes in the flow of the radiating particles by observing rotations of the electric vector position angle Κ\Psi. Here we report the discovery of a Κx\Psi_{\mathrm x} rotation in the X-ray band in the blazar Mrk 421 at an average flux state. Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of 4-6 and 7-9 June 2022, Κx\Psi_{\mathrm x} rotated in total by ≄360∘\geq360^\circ. Over the two respective date ranges, we find constant, within uncertainties, rotation rates (80±980 \pm 9 and 91±8∘/day91 \pm 8 ^\circ/\rm day) and polarization degrees (Πx=10%±1%\Pi_{\mathrm x}=10\%\pm1\%). Simulations of a random walk of the polarization vector indicate that it is unlikely that such rotation(s) are produced by a stochastic process. The X-ray emitting site does not completely overlap the radio/infrared/optical emission sites, as no similar rotation of Κ\Psi was observed in quasi-simultaneous data at longer wavelengths. We propose that the observed rotation was caused by a helical magnetic structure in the jet, illuminated in the X-rays by a localized shock propagating along this helix. The optically emitting region likely lies in a sheath surrounding an inner spine where the X-ray radiation is released

    The design and performance of the XL-Calibur anticoincidence shield

    No full text
    The XL-Calibur balloon-borne hard X-ray polarimetry mission comprises a Compton-scattering polarimeter placed at the focal point of an X-ray mirror. The polarimeter is housed within a BGO anticoincidence shield, which is needed to mitigate the considerable background radiation present at the observation altitude of 40 km. This paper details the design, construction and testing of the anticoincidence shield, as well as the performance measured during the week-long maiden flight from Esrange Space Centre to the Canadian Northwest Territories in July 2022. The in-flight performance of the shield followed design expectations, with a veto threshold 100 keV and a measured background rate of 0.5 Hz (20–40 keV). This is compatible with the scientific goals of the mission, where %-level minimum detectable polarisation is sought for a Hz-level source rate

    Discovery of X-ray polarization angle rotation in the jet from blazar Mrk 421

    No full text
    In June 2022, the IXPE satellite observed a shock passing through the jet of active galaxy Markarian 421. The rotation of the X-ray-polarized radiation over a 5-day period revealed that the jet contains a helical magnetic field.The magnetic-field conditions in astrophysical relativistic jets can be probed by multiwavelength polarimetry, which has been recently extended to X-rays. For example, one can track how the magnetic field changes in the flow of the radiating particles by observing rotations of the electric vector position angle & psi;. Here we report the discovery of a & psi;(X) rotation in the X-ray band in the blazar Markarian 421 at an average flux state. Across the 5 days of Imaging X-ray Polarimetry Explorer observations on 4-6 and 7-9 June 2022, & psi;(X) rotated in total by & GE;360 & DEG;. Over the two respective date ranges, we find constant, within uncertainties, rotation rates (80 & PLUSMN; 9 & DEG; per day and 91 & PLUSMN; 8 & DEG; per day) and polarization degrees (& pi;(X) = 10% & PLUSMN; 1%). Simulations of a random walk of the polarization vector indicate that it is unlikely that such rotation(s) are produced by a stochastic process. The X-ray-emitting site does not completely overlap the radio, infrared and optical emission sites, as no similar rotation of & psi; was observed in quasi-simultaneous data at longer wavelengths. We propose that the observed rotation was caused by a helical magnetic structure in the jet, illuminated in the X-rays by a localized shock propagating along this helix. The optically emitting region probably lies in a sheath surrounding an inner spine where the X-ray radiation is released

    Discovery of X-ray polarization angle rotation in the jet from blazar Mrk 421

    Get PDF
    International audienceThe magnetic-field conditions in astrophysical relativistic jets can be probed by multiwavelength polarimetry, which has been recently extended to X-rays. For example, one can track how the magnetic field changes in the flow of the radiating particles by observing rotations of the electric vector position angle Κ. Here we report the discovery of a ΚX rotation in the X-ray band in the blazar Markarian 421 at an average flux state. Across the 5 days of Imaging X-ray Polarimetry Explorer observations on 4-6 and 7-9 June 2022, ΚX rotated in total by ≄360°. Over the two respective date ranges, we find constant, within uncertainties, rotation rates (80 ± 9° per day and 91 ± 8° per day) and polarization degrees (ΠX = 10% ± 1%). Simulations of a random walk of the polarization vector indicate that it is unlikely that such rotation(s) are produced by a stochastic process. The X-ray-emitting site does not completely overlap the radio, infrared and optical emission sites, as no similar rotation of Κ was observed in quasi-simultaneous data at longer wavelengths. We propose that the observed rotation was caused by a helical magnetic structure in the jet, illuminated in the X-rays by a localized shock propagating along this helix. The optically emitting region probably lies in a sheath surrounding an inner spine where the X-ray radiation is released

    Detection of X-Ray Polarization from the Blazar 1ES 1959+650 with the Imaging X-Ray Polarimetry Explorer

    No full text
    Observations of linear polarization in the 2–8 keV energy range with the Imaging X-ray Polarimetry Explorer (IXPE) explore the magnetic field geometry and dynamics of the regions generating nonthermal radiation in relativistic jets of blazars. These jets, particularly in blazars whose spectral energy distribution peaks at X-ray energies, emit X-rays via synchrotron radiation from high-energy particles within the jet. IXPE observations of the X-ray-selected BL Lac–type blazar 1ES 1959+650 on 2022 May 3–4 showed a significant linear polarization degree of Π _x = 8.0% ± 2.3% at an electric-vector position angle ψ _x = 123° ± 8°. However, on 2022 June 9–12, only an upper limit of Π _x ≀ 5.1% could be derived (at the 99% confidence level). The degree of optical polarization at that time, Π _O ∌ 5%, is comparable to the X-ray measurement. We investigate possible scenarios for these findings, including temporal and geometrical depolarization effects. Unlike some other X-ray-selected BL Lac objects, there is no significant chromatic dependence of the measured polarization in 1ES 1959+650, and its low X-ray polarization may be attributed to turbulence in the jet flow with dynamical timescales shorter than 1 day
    corecore