2,327 research outputs found

    Global Sentry: NASA/USRA high altitude reconnaissance aircraft design, volume 2

    Get PDF
    The Global Sentry is a high altitude reconnaissance aircraft design for the NASA/USRA design project. The Global Sentry uses proven technologies, light-weight composites, and meets the R.F.P. requirements. The mission requirements for the Global Sentry are described. The configuration option is discussed and a description of the final design is given. Preliminary sizing analyses and the mass properties of the design are presented. The aerodynamic features of the Global Sentry are described along with the stability and control characteristics designed into the flight control system. The performance characteristics are discussed as is the propulsion installation and system layout. The Global Sentry structural design is examined, including a wing structural analysis. The cockpit, controls and display layouts are covered. Manufacturing is covered and the life cost estimation. Reliability is discussed. Conclusions about the current Global Sentry design are presented, along with suggested areas for future engineering work

    Stochastic Co-design of Storage and Control for Water Distribution Systems

    Full text link
    Water distribution systems (WDSs) are typically designed with a conservative estimate of the ability of a control system to utilize the available infrastructure. The controller is subsequently designed and tuned based on the designed water distribution system. This sequential approach may lead to conservativeness in both design and control steps, impacting both operational efficiency and economic costs. In this work, we consider simultaneously designing infrastructure and developing a control strategy, the co-design problem, to improve the overall system efficiency. However, implementing a co-design problem for water distribution systems is a challenging task given the presence of stochastic variables (e.g. water demands and electricity prices). In this work, we propose a tractable stochastic co-design method to design the best tank size and optimal control parameters for WDS, where the expected operating costs are established based on Markov chain theory. We also give a theoretical result that investigates the average long-run co-design cost converging to the expected cost with probability 1. Furthermore, the method can also be applied to an existing WDS to improve operation of the system. We demonstrate the proposed co-design method on three examples and a real-world case study in South Australia

    Data-driven aerodynamic shape design with distributionally robust optimization approaches

    Full text link
    We formulate and solve data-driven aerodynamic shape design problems with distributionally robust optimization (DRO) approaches. Building on the findings of the work \cite{gotoh2018robust}, we study the connections between a class of DRO and the Taguchi method in the context of robust design optimization. Our preliminary computational experiments on aerodynamic shape optimization in transonic turbulent flow show promising design results

    Use of Pharmacokinetic Modeling to Design Studies for Pathway-Specific Exposure Model Evaluation

    Get PDF
    Validating an exposure pathway model is difficult because the biomarker, which is often used to evaluate the model prediction, is an integrated measure for exposures from all the exposure routes and pathways. The purpose of this article is to demonstrate a method to use pharmacokinetic (PK) modeling and computer simulation to guide the design of field studies to validate pathway models. The children’s dietary intake model is discussed in detail as an example. Three important aspects are identified for a successful design to evaluate the children’s dietary intake model: a) longitudinally designed study with significant changes in the exposure for the route/pathway of interest, b) short biologic half-life of the selected chemical, and c) surface loading of the selected chemical at sufficient levels. Using PK modeling to guide a study design allowed a path-specific exposure model to be evaluated using urinary metabolite biomarkers

    A Classic Type 2 QSO

    Get PDF
    In the Chandra Deep Field South 1Msec exposure we have found, at redshift 3.700 +- 0.005, the most distant Type 2 AGN ever detected. It is the source with the hardest X-ray spectrum with redshift z>3. The optical spectrum has no detected continuum emission to a 3sigma detection limit of ~3 10^{-19} ergs/s/cm^2/AA and shows narrow lines of Ly_alpha, CIV, NV, HeII, OVI, [OIII], and CIII]. Their FWHM line widths have a range of ~700-2300 km/s with an average of approximately ~1500 km/s. The emitting gas is metal rich (Z ~2.5-3 Z_solar). In the X-ray spectrum of 130 counts in the 0.5-7 keV band there is evidence for intrinsic absorption with N_H > 10^{24} cm^{-2}. An iron K_alpha line with rest frame energy and equivalent width of ~6.4 keV and ~1 keV, respectively, in agreement with the obscuration scenario, is detected at a 2sigma level. If confirmed by our forthcoming XMM observations this would be the highest redshift detection of FeK_alpha. Depending on the assumed cosmology and the X-ray transfer model, the 2-10 keV rest frame luminosity corrected for absorption is ~10^{45 +- 0.5} ergs/s, which makes our source a classic example of the long sought Type 2 QSOs. From standard population synthesis models, these sources are expected to account for a relevant fraction of the black-hole-powered QSO distribution at high redshift.Comment: 24 LaTeX pages including 6 postscript figures. Revised version, accepted by Ap
    • 

    corecore