14 research outputs found

    Aspects of microbial communities in peatland carbon cycling under changing climate and land use pressures

    Get PDF
    This is the final version. Available on open access from the Finnish Peatland Society via the DOI in this record. Globally, major efforts are being made to restore peatlands to maximise their resilience to anthropogenic climate change, which puts continuous pressure on peatland ecosystems and modifies the geography of the environmental envelope that underpins peatland functioning. A probable effect of climate change is reduction in the waterlogged conditions that are key to peatland formation and continued accumulation of carbon (C) in peat. C sequestration in peatlands arises from a delicate imbalance between primary production and decomposition, and microbial processes are potentially pivotal in regulating feedbacks between environmental change and the peatland C cycle. Increased soil temperature, caused by climate warming or disturbance of the natural vegetation cover and drainage, may result in reductions of long-term C storage via changes in microbial community composition and metabolic rates. Moreover, changes in water table depth alter the redox state and hence have broad consequences for microbial functions, including effects on fungal and bacterial communities especially methanogens and methanotrophs. This article is a perspective review of the effects of climate change and ecosystem restoration on peatland microbial communities and the implications for C sequestration and climate regulation. It is authored by peatland scientists, microbial ecologists, land managers and non-governmental organisations who were attendees at a series of three workshops held at The University of Manchester (UK) in 2019–2020. Our review suggests that the increase in methane flux sometimes observed when water tables are restored is predicated on the availability of labile carbon from vegetation and the absence of alternative terminal electron acceptors. Peatland microbial communities respond relatively rapidly to shifts in vegetation induced by climate change and subsequent changes in the quantity and quality of below-ground C substrate inputs. Other consequences of climate change that affect peatland microbial communities and C cycling include alterations in snow cover and permafrost thaw. In the face of rapid climate change, restoration of a resilient microbiome is essential to sustaining the climate regulation functions of peatland systems. Technological developments enabling faster characterisation of microbial communities and functions support progress towards this goal, which will require a strongly interdisciplinary approach.Natural Environment Research Council (NERC

    Feedback control of the rate of peat formation

    No full text

    A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation

    No full text
    Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45°N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 ± 3% (standard deviation) for Sphagnum peat, 51 ± 2% for non-Sphagnum peat, and at 49 ± 2% overall. Dry bulk density averaged 0.12 ± 0.07 g/cm3, organic matter bulk density averaged 0.11 ± 0.05 g/cm3, and total carbon content in peat averaged 47 ± 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 ± 2 (standard error of mean) g C/m2/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25–28 g C/m2/yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu
    corecore