38 research outputs found

    Immune phenotypes predict survival in patients with glioblastoma multiforme

    Get PDF
    Background: Glioblastoma multiforme (GBM), a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM. Methods: Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively. Results: Using descriptive statistics, we found that immune anomalies were distinct in individual patients. Defined marker profiles proved highly relevant for survival. A remarkable relation between activated NK cells and improved survival in GBM patients was in contrast to increased CD39 and IL-10 in patients with a detrimental course and very short survival. Recursive partitioning analysis (RPA) and Cox proportional hazards models substantiated the relevance of absolute numbers of CD8 cells and low numbers of CD39 cells for better survival. Conclusions: Defined alterations of the immune system may guide the course of disease in patients with GBM and may be prognostically valuable for longitudinal studies or can be applied for immune intervention

    A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy

    Get PDF
    Members of the PI3K/Akt/mTor signaling cascade are among the most frequently altered proteins in cancer, yet the therapeutic application of pharmacological inhibitors of this signaling network, either as monotherapy or in combination therapy (CT) has so far not been particularly successful. In this review we will focus on the role of PI3K/Akt/mTOR in two distinct tumors, Glioblastoma multiforme (GBM), an adult brain tumor which frequently exhibits PTEN inactivation, and Neuroblastoma (NB), a childhood malignancy that affects the central nervous system and does not harbor any classic alterations in PI3K/Akt signaling. We will argue that inhibitors of PI3K/Akt signaling can be components for potentially promising new CTs in both tumor entities, but further understanding of the signal cascade’s complexity is essential for successful implementation of these CTs. Importantly, failure to do this might lead to severe adverse effects, such as treatment failure and enhanced therapy resistance

    A Potential Role for the Inhibition of PI3K Signaling in Glioblastoma Therapy

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor and among the most difficult to treat malignancies per se. In almost 90% of all GBM alterations in the PI3K/Akt/mTOR have been found, making this survival cascade a promising therapeutic target, particular for combination therapy that combines an apoptosis sensitizer, such as a pharmacological inhibitor of PI3K, with an apoptosis inducer, such as radio- or chemotherapy. However, while in vitro data focusing mainly on established cell lines has appeared rather promising, this has not translated well to a clinical setting. In this study, we analyze the effects of the dual kinase inhibitor PI-103, which blocks PI3K and mTOR activity, on three matched pairs of GBM stem cells/differentiated cells. While blocking PI3K-mediated signaling has a profound effect on cellular proliferation, in contrast to data presented on two GBM cell lines (A172 and U87) PI-103 actually counteracts the effect of chemotherapy. While we found no indications for a potential role of the PI3K signaling cascade in differentiation, we saw a clear and strong contribution to cellular motility and, by extension, invasion. While blocking PI3K-mediated signaling concurrently with application of chemotherapy does not appear to be a valid treatment option, pharmacological inhibitors, such as PI-103, nevertheless have an important place in future therapeutic approaches

    Antimicrobial use in pediatric oncology and hematology in Germany and Austria, 2020/2021: a cross-sectional, multi-center point-prevalence study with a multi-step qualitative adjudication process

    Get PDF
    Background Due to the high risk of severe infection among pediatric hematology and oncology patients, antimicrobial use is particularly high. With our study, we quantitatively and qualitatively evaluated, based on institutional standards and national guidelines, antimicrobial usage by employing a point-prevalence survey with a multi-step, expert panel approach. We analyzed reasons for inappropriate antimicrobial usage. Methods This cross-sectional study was conducted at 30 pediatric hematology and oncology centers in 2020 and 2021. Centers affiliated to the German Society for Pediatric Oncology and Hematology were invited to join, and an existing institutional standard was a prerequisite to participate. We included hematologic/oncologic inpatients under 19 years old, who had a systemic antimicrobial treatment on the day of the point prevalence survey. In addition to a one-day, point-prevalence survey, external experts individually assessed the appropriateness of each therapy. This step was followed by an expert panel adjudication based upon the participating centers’ institutional standards, as well as upon national guidelines. We analyzed antimicrobial prevalence rate, along with the rate of appropriate, inappropriate, and indeterminate antimicrobial therapies with regard to institutional and national guidelines. We compared the results of academic and non-academic centers, and performed a multinomial logistic regression using center- and patient-related data to identify variables that predict inappropriate therapy. Findings At the time of the study, a total of 342 patients were hospitalized at 30 hospitals, of whom 320 were included for the calculation of the antimicrobial prevalence rate. The overall antimicrobial prevalence rate was 44.4% (142/320; range 11.1–78.6%) with a median antimicrobial prevalence rate per center of 44.5% (95% confidence interval [CI] 35.9–49.9). Antimicrobial prevalence rate was significantly higher (p < 0.001) at academic centers (median 50.0%; 95% CI 41.2–55.2) compared to non-academic centers (median 20.0%; 95% CI 11.0–32.4). After expert panel adjudication, 33.8% (48/142) of all therapies were labelled inappropriate based upon institutional standards, with a higher rate (47.9% [68/142]) when national guidelines were taken into consideration. The most frequent reasons for inappropriate therapy were incorrect dosage (26.2% [37/141]) and (de-)escalation/spectrum-related errors (20.6% [29/141]). Multinomial, logistic regression yielded the number of antimicrobial drugs (odds ratio, OR, 3.13, 95% CI 1.76–5.54, p < 0.001), the diagnosis febrile neutropenia (OR 0.18, 95% CI 0.06–0.51, p = 0.0015), and an existing pediatric antimicrobial stewardship program (OR 0.35, 95% CI 0.15–0.84, p = 0.019) as predictors of inappropriate therapy. Our analysis revealed no evidence of a difference between academic and non-academic centers regarding appropriate usage. Interpretation Our study revealed there to be high levels of antimicrobial usage at German and Austrian pediatric oncology and hematology centers with a significant higher number at academic centers. Incorrect dosing was shown to be the most frequent reason for inappropriate usage. Diagnosis of febrile neutropenia and antimicrobial stewardship programs were associated with a lower likelihood of inappropriate therapy. These findings suggest the importance of febrile neutropenia guidelines and guidelines compliance, as well as the need for regular antibiotic stewardship counselling at pediatric oncology and hematology centers. Funding European Society of Clinical Microbiology and Infectious Diseases, Deutsche Gesellschaft für Pädiatrische Infektiologie, Deutsche Gesellschaft für Krankenhaushygiene, Stiftung Kreissparkasse Saarbrücken

    Verbesserung der axonalen Regeneration durch Einsatz der Technik der RNA-Interferenz

    No full text
    Eine Verletzung des Axons führt bei Neuronen des zentralen Nervensystems (ZNS) zu einem irreversiblen Funktionsverlust. Das Regenerationsdefizit des ZNS ist hauptsächlich durch die verminderte intrinsische Aktivität zentraler Neurone zur Regeneration, durch inhibitorische Moleküle des Myelins und durch Ausbildung einer gliotischen Narbe an der Läsionsstelle begründet. Trotz vielversprechender Ansätze ist es bislang noch nicht gelungen, eine therapeutisch relevante Regeneration von Axonen zu erzielen. Da das Protein RhoA associated coiled-coil serine-threonine kinase (ROCK) maßgeblich an den regenerationsinhibitorischen Signalkaskaden beteiligt ist, sollte diese Kinase zur Steigerung der Wachstumsfähigkeit verletzter Axone in vitro und in vivo mittels der Technik der RNA-Interferenz in dieser Arbeit supprimiert werden. In Zellkultur führte die ROCK-Expressionshemmung zu einem deutlich gesteigerten Neuritenwachstum. Auf Myelin war eine signifikante Wachstumszunahme der Neuritenlänge um das 14-fache zu beobachten. Anschließend wurde unter Verwendung von Adeno-Assoziierten-Viren 2 (AAV-2) ein small-interfering-RNA (siRNA) produzierender Vektor zur ROCK- Expressionshemmung in retinale Ganglienzellen (RGZ) von Ratten eingebracht. Dies führte zu einer reduzierten Anzahl an RGZ an regenerierenden Axonen. Ein weiterer Aspekt dieser Arbeit bestand darin, dass neu entdeckten Protein lens injury induced factor of neuronal outgrowth promoting activity (LINA) genauer zu charakterisieren. Es zeigte sich, dass dieses Protein in Zellkultur wichtig für die Neuritogenese ist und in überexprimierter Form wachstumsfördernd wirkt, jedoch nicht über eine Neuralisation der Myelinkaskade. Zukünftig könnte eine kombinierte Vorgehensweise -bestehend aus der Überexpression eines regenerationsaktivierenden und Hemmung eines wachstumsinhibierenden Proteins- einen möglichen Ansatzpunkt darstellen, um eine Heilung verletzter Neuronen in Aussicht zu stellen

    Killing Me Softly—Future Challenges in Apoptosis Research

    No full text
    The induction of apoptosis, a highly regulated and clearly defined mode of cell dying, is a vital tenet of modern cancer therapy. In this review we focus on three aspects of apoptosis research which we believe are the most crucial and most exciting areas currently investigated and that will need to be better understood in order to enhance the efficacy of therapeutic measures. First, we discuss which target to select for cancer therapy and argue that not the cancer cell as such, but its interaction with the microenvironment is a more promising and genetically stable site of attack. Second, the complexity of combination therapy is elucidated using the PI3-K-mediated signaling network as a specific example. Here we show that the current clinical approach to sensitize malignancies to apoptosis by maximal, prolonged inhibition of so-called survival pathways can actually be counter productive. Third, we propose that under certain conditions which will need to be clearly defined in future, chronification of a tumor might be preferable to the attempt at a cure. Finally, we discuss further problems with utilizing apoptosis induction in cancer therapy and propose a novel potential therapeutic approach that combines the previously discussed features

    Sequential dosing in chemosensitization : targeting the PI3K/Akt/mTOR pathway in neuroblastoma

    Get PDF
    Breaking resistance to chemotherapy is a major goal of combination therapy in many tumors, including advanced neuroblastoma. We recently demonstrated that increased activity of the PI3K/Akt network is associated with poor prognosis, thus providing an ideal target for chemosensitization. Here we show that targeted therapy using the PI3K/mTOR inhibitor NVP-BEZ235 significantly enhances doxorubicin-induced apoptosis in neuroblastoma cells. Importantly, this increase in apoptosis was dependent on scheduling: while pretreatment with the inhibitor reduced doxorubicin-induced apoptosis, the sensitizing effect in co-treatment could further be increased by delayed addition of the inhibitor post chemotherapy. Desensitization for doxorubicin-induced apoptosis seemed to be mediated by a combination of cell cycle-arrest and autophagy induction, whereas sensitization was found to occur at the level of mitochondria within one hour of NVP-BEZ235 posttreatment, leading to a rapid loss of mitochondrial membrane potential with subsequent cytochrome c release and caspase-3 activation. Within the relevant time span we observed marked alterations in a ~30 kDa protein associated with mitochondrial proteins and identified it as VDAC1/Porin protein, an integral part of the mitochondrial permeability transition pore complex. VDAC1 is negatively regulated by the PI3K/Akt pathway via GSK3β and inhibition of GSK3β, which is activated when Akt is blocked, ablated the sensitizing effect of NVP-BEZ235 posttreatment. Our findings show that cancer cells can be sensitized for chemotherapy induced cell death – at least in part – by NVP-BEZ235-mediated modulation of VDAC1. More generally, we show data that suggest that sequential dosing, in particular when multiple inhibitors of a single pathway are used in the optimal sequence, has important implications for the general design of combination therapies involving molecular targeted approaches towards the PI3K/Akt/mTOR signaling network

    Analysis of mitochondrial metabolism in situ: Combining stable isotope labeling with selective permeabilization.

    Get PDF
    To date, it is well-established that mitochondrial dysfunction does not only play a vital role in cancer but also in other pathological conditions such as neurodegenerative diseases and inflammation. An important tool for the analysis of cellular metabolism is the application of stable isotope labeled substrates, which allow for the tracing of atoms throughout metabolic networks. While such analyses yield very detailed information about intracellular fluxes, the determination of compartment specific fluxes is far more challenging. Most approaches for the deconvolution of compartmented metabolism use computational models whereas experimental methods are rare. Here, we developed an experimental setup based on selective permeabilization of the cytosolic membrane that allows for the administration of stable isotope labeled substrates directly to mitochondria. We demonstrate how this approach can be used to infer metabolic changes in mitochondria induced by either chemical or genetic perturbations and give an outlook on its potential applications

    Immune phenotypes predict survival in patients with glioblastoma multiforme

    No full text
    Background: Glioblastoma multiforme (GBM), a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM. Methods: Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively. Results: Using descriptive statistics, we found that immune anomalies were distinct in individual patients. Defined marker profiles proved highly relevant for survival. A remarkable relation between activated NK cells and improved survival in GBM patients was in contrast to increased CD39 and IL-10 in patients with a detrimental course and very short survival. Recursive partitioning analysis (RPA) and Cox proportional hazards models substantiated the relevance of absolute numbers of CD8 cells and low numbers of CD39 cells for better survival. Conclusions: Defined alterations of the immune system may guide the course of disease in patients with GBM and may be prognostically valuable for longitudinal studies or can be applied for immune intervention
    corecore