130 research outputs found

    Oxidative Stress and Inflammation as Targets for Novel Preventive and Therapeutic Approches in Non Communicable Diseases

    Get PDF
    As recently reported by the World Health Organization (WHO), Non-Communicable Diseases (NCDs) has been rising over the last century representing the main cause of death and disability for the general population regardless of age, region, or gender [...

    Modulation of the Senescence-Associated Inflammatory Phenotype in Human Fibroblasts by Olive Phenols

    Get PDF
    Senescent cells display an increase in the secretion of growth factors, inflammatory cytokines and proteolytic enzymes, termed the “senescence-associated-secretory-phenotype” (SASP), playing a major role in many age-related diseases. The phenolic compounds present in extra-virgin olive oil are inhibitors of oxidative damage and have been reported to play a protective role in inflammation-related diseases. Particularly, hydroxytyrosol and oleuropein are the most abundant and more extensively studied. Pre-senescent human lung (MRC5) and neonatal human dermal (NHDF) fibroblasts were used as cellular model to evaluate the effect of chronic (4–6 weeks) treatment with 1 μM hydroxytyrosol (HT) or 10 μM oleuropein aglycone (OLE) on senescence/inflammation markers. Both phenols were effective in reducing β-galactosidase-positive cell number and p16 protein expression. In addition, senescence/inflammation markers such as IL-6 and metalloprotease secretion, and Ciclooxigenase type 2 (COX-2) and α-smooth-actin levels were reduced by phenol treatments. In NHDF, COX-2 expression, Nuclear Factor κ-light-chain-enhancer of activated B cells (NFκB) protein level and nuclear localization were augmented with culture senescence and decreased by OLE and HT treatment. Furthermore, the inflammatory effect of Tumor Necrosis Factor α (TNFα) exposure was almost completely abolished in OLE- and HT-pre-treated NHDF. Thus, the modulation of the senescence-associated inflammatory phenotype might be an important mechanism underlying the beneficial effects of olive oil phenols

    The comet assay as a tool in human biomonitoring studies of environmental and occupational exposure to chemicals: a systematic scoping review

    Get PDF
    This work was supported by the affiliated institutions, European Regional Development Fund project KK.01.1.1.02.0007 (Rec-IMI), the Croatian Science Foundation (HUMNap project #1192), the Horizon Europe (EDIAQI project #101057497), the European Union—Next Generation EU 533-03-23-0006 (BioMolTox), and the International Comet Assay Working Group (ICAWG).Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.info:eu-repo/semantics/publishedVersio

    Extremely low-frequency electromagnetic fields do not affect DNA damage and gene expression profiles of yeast and human lymphocytes

    Get PDF
    We studied the effects of extremely low-frequency (50 Hz) electromagnetic fields (EMFs) on peripheral human blood lymphocytes and DBY747 Saccharomyces cerevisiae. Graded exposure to 50 Hz magnetic flux density was obtained with a Helmholtz coil system set at 1, 10 or 100 microT for 18 h. The effects of EMFs on DNA damage were studied with the single-cell gel electrophoresis assay (comet assay) in lymphocytes. Gene expression profiles of EMF-exposed human and yeast cells were evaluated with DNA microarrays containing 13,971 and 6,212 oligonucleotides, respectively. After exposure to the EMF, we did not observe an increase in the amount of strand breaks or oxidated DNA bases relative to controls or a variation in gene expression profiles. The results suggest that extremely low-frequency EMFs do not induce DNA damage or affect gene expression in these two different eukaryotic cell systems

    Folate, genomic stability and colon cancer: the use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring.

    Get PDF
    Intake of folate (vitamin B9) is strongly inversely linked with human cancer risk, particularly colon cancer. In general, people with the highest dietary intake of folate or with high blood folate levels are at a reduced risk (approx. 25%) of developing colon cancer. Folate acts in normal cellular metabolism to maintain genomic stability through the provision of nucleotides for DNA replication and DNA repair and by regulating DNA methylation and gene expression. Folate deficiency can accelerate carcinogenesis by inducing misincorporation of uracil into DNA, by increasing DNA strand breakage, by inhibiting DNA base excision repair capacity and by inducing DNA hypomethylation and consequently aberrant gene and protein expression. Conversely, increasing folate intake may improve genomic stability. This review describes key applications of single cell gel electrophoresis (the comet assay) in assessing genomic instability (misincorporated uracil, DNA single strand breakage and DNA repair capacity) in response to folate status (deficient or supplemented) in human cells in vitro, in rodent models and in human case-control and intervention studies. It highlights an adaptation of the SCGE comet assay for measuring genome-wide and gene-specific DNA methylation in human cells and colon tissue
    • …
    corecore