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Abstract

The effects of histaminergic ligands on both ACh spontaneous release from the hippocampus and the expression of c-fos in the

medial septum±diagonal band (MSA-DB) of freely moving rats were investigated. Because the majority of cholinergic innervation

to the hippocampus is provided by MSA-DB neurons, we used the dual-probe microdialysis technique to apply drugs to the MSA-
DB and record the induced effects in the projection area. Perfusion of MSA-DB with high-KCl medium strongly stimulated

hippocampal ACh release which, conversely, was signi®cantly reduced by intra-MSA-DB administration of tetrodotoxin. Histamine

or the H2 receptor agonist dimaprit, applied directly to the hippocampus, failed to alter ACh release. Conversely, perfusion of
MSA-DB with these two compounds increased ACh release from the hippocampus. Also, thioperamide and ciproxifan, two H3

receptor antagonists, administered into MSA-DB, increased the release of hippocampal ACh, whereas R-a-methylhistamine, an

H3 receptor agonist, produced the opposite effect. The blockade of MSA-DB H2 receptors, caused by local perfusion with the H2

receptor antagonist cimetidine, moderated the spontaneous release of hippocampal ACh and antagonized the facilitation

produced by H3 receptor antagonists. Triprolidine, an H1 receptor antagonist, was without effect. Moreover, cells expressing c-fos

immunoreactivity were signi®cantly more numerous in ciproxifan- or thioperamide-treated rats than in controls, although no

colocalization of anti-c-fos and anti-ChAT immunoreactivity was observed. These results indicate a role for endogenous histamine
in modulating the cholinergic tone in the hippocampus.

Introduction

Hippocampal ACh release increases during various behaviours, such

as sensory stimulation (Nilsson et al., 1990; Inglis & Fibiger, 1995),

feeding and drinking (Mark et al., 1992), wakefulness (Mizuno et al.,

1994), exploratory activity (Aloisi et al., 1997; Ceccarelli et al.,

1999) and contextual fear conditioning (Nail-Boucherie et al., 2000).

The functional signi®cance of these increases is not clear yet;

nevertheless, basic and clinical studies have long recognized the

importance of cholinergic mechanisms operating within the medial

septum±banda diagonalis (MSA-DB) complex in cognitive processes

(Everitt & Robbins, 1997; Pepeu & Blandina, 1998). As a general

rule, increases of hippocampal ACh release improved performances

in hippocampal-related memory tasks (Givens & Olton, 1994; Givens

& Sarter, 1997; Dickinson-Anson et al., 1998). Conversely, lesions of

the ®mbria±fornix, which conveys MSA-DB cholinergic ®bres to the

hippocampus (Lewis & Shute, 1967), impaired performances in the

same tasks (Brito & Brito, 1990), possibly by preventing behaviour-

induced increases of hippocampal ACh (Nilsson et al., 1990). Indeed,

hippocampal ACh release depends upon impulse ¯ow in neurons

localized in the MSA-DB, which provide the cholinergic innervation

to the hippocampus (Mesulam et al., 1983; Nicoll, 1985; Gaykema

et al., 1990). Several neurotransmitters modulate the activity of these

neurons, thus in¯uencing learning and memory processes (Decker &

McGaugh, 1991; Moor et al., 1998; Passani & Blandina, 1998). The

current study focuses on the neuromodulatory action of histamine,

which is released from axon varicosities of neurons located in the

tuberomammillary nucleus of the hypothalamus (Panula et al., 1984;

Watanabe et al., 1984). These cells send efferents to brain regions

(Takeda et al., 1984; Wada et al., 1991) and, in the MSA-DB,

histaminergic projections create dense networks of ®bres (Inagaki

et al., 1988; Panula et al., 1989). Histamine exerts its effects in the

CNS by binding to its own speci®c receptors H1, H2 and H3, and to

the polyamine site on the NMDA receptor complex (Brown et al.,

2001). An early study indicates that ACh release from the CA1±CA3

region of hippocampus of urethane-anaesthetized rats could be

modulated by endogenous histamine (Mochizuki et al., 1994).

Indeed, an electrical stimulation applied to the tuberomammilary

nucleus greatly increased histamine and ACh release from both MSA-

DB and hippocampus. ACh release was inhibited by i.p. administra-

tion of zolantidine, an H2 receptor antagonist (Calcutt et al., 1988),

but not of mepyramine, an H1 receptor antagonist (Ison & Casy,

1971), thus suggesting an H2 receptor involvement. However,

systemic drug injections do not reveal sites of action, whereas
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localized infusions of drugs to speci®c brain regions provide evidence

of their site of action. In this study we used the dual-probe

microdialysis technique to apply histaminergic drugs to the MSA-

DB complex and to record the induced effects on ACh release from

the projection area, the hippocampus, of freely moving rats.

Moreover, it was investigated whether local administration of

histaminergic drugs in¯uenced c-fos protooncogene expression. c-

Fos-like immunoreactivity may identify areas of neuronal activity

and map functionally related neuronal pathways. Some of these

results have been reported in abstract form (Bacciottini et al., 1999).

Materials and methods

Animal housing

Male Wistar rats (225±275 g body weight) were housed in groups of

three in a temperature-controlled room (20±24 °C), allowed free

access to food and water, and kept on a 12-h light : 12-h dark cycle.

All the experiments were performed in strict compliance with the

EEC recommendations for the care and use of laboratory animals (86/

609/CEE), and were approved by the Animal Care Committee of the

Dipartimento di Farmacologia Preclinica e Clinica of the UniversitaÂ

di Firenze.

Surgery and microdialysis

The rats were anaesthetized with chloral hydrate (400 mg/kg i.p.) and

placed in a stereotaxic frame (Stellar, Stoelting Co., Wood Dale, IL,

USA). Each rat was implanted with vertical microdialysis probes in

both the MSA-DB to deliver drugs locally, and the ipsilateral

hippocampus to measure the output of ACh (Fig. 1). In a subset of

experiments rats were implanted with a single probe in the

hippocampus to investigate the effects of local drug administration

on hippocampal ACh release. The microdialysis tubes were made of

AN 69 membrane (Dasco, Italy), 220 mm internal diameter and

310 mm external diameter, molecular weight cut-off 15 000 Da. The

coordinates used for the implantation of the microdyalisis tubes were

as follows: for the hippocampus AP ±5.5 mm, L 4.4 and H ±8 mm

from bregma; for the MSA-DB AP ±0.6 mm, L 0.4 and H ±8.5 mm.

All coordinates (Paxinos & Watson, 1982) were measured on the

bone surface and referred to bregma, with bregma and lambda on a

horizontal plane. Both cannulae were ®xed to the skull with acrylic

dental cement. After surgical manipulations rats were replaced in

cages (one rat per cage) to recover from surgery.

The microdyalisis experiments were performed 24 h after surgery.

The microdialysis probes were perfused at a rate of 2 mL/min using a

microperfusion pump (Carnegie Medicine, mod. CMA/100, Sweden)

with Ringer's solution (in mM: NaCl, 147; CaCl2, 2.5; KCl, 3.0;

pH 7.0). To recover detectable dialysate concentrations of ACh, a

cholinesterase inhibitor (physostigmine sulphate, 7 mM) was added to

the medium perfusing the hippocampus, but not to that perfusing the

MSA-DB. Solutes < 15.000 Da molecular weight were allowed to

cross the dialysis membrane according to their concentration

gradient. Hence, both suitable endogenous molecules and exogenous

compounds could feasibly be collected and administered, respect-

ively. Drugs, alone or in combination, were dissolved into the MSA-

DB perfusing medium. Drug addition did not modify the pH of the

medium. After an equilibration period of 60 min, 40-mL fractions

(resulting from 20-min intervals of perfusion) were collected. Rat

MSA-DB was perfused with control medium in the ®rst four fractions

to measure hippocampal ACh spontaneous release; drugs were then

added to the medium. Accurate placement of microdialysis mem-

branes was veri®ed post-mortem by observation under light

microscopy visualization (Leitz, Dialva EB) of coronal sections cut

through the probe paths. China ink (5 mL) was injected through the

probes at the end of each experiment to rats anaesthetized with

urethane (1.2 g/kg i.p.), before decapitation. Data from rats in which

the membranes were not correctly positioned (fewer than 10% of the

animals) were discarded.

FIG. 1. Schematic diagram showing the position of the dialysis membrane in the MSA-DB and the hippocampus.
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Assay and quanti®cation of ACh

ACh was determined by HPLC-electrochemical detection as

described previously (Giorgetti et al., 2000). The HPLC apparatus

consisted of a pump (Mod. 1350, Bio-Rad, Richmond, CA, USA), a

presaturation column (Chromspher 5 C18, 100 3 3 mm, Chrompack,

Middleburg, The Netherlands), an injector (Mod. 7125, Rhehodyne,

Cotati, CA, USA), a guard column (reverse phase), an analytical

column (Chromspher 5 C18, 100 3 3 mm, Chrompack), an enzyme

reactor (10 3 2.1 mm, Chrompack), an electrochemical detector

(Mod. LC4C, BioAnalytical System, West Lafayette, IN, USA) and a

Perkin Elmer chart recorder. Brie¯y, ACh was separated on the cation

exchange column. ACh was hydrolysed by acetylcholinesterase to

form acetate and choline in the postcolumn enzyme reactor, then

choline was oxidized by choline oxidase to produce betaine and

hydrogen peroxide. Hydrogen peroxide was detected with a platinum

electrode with the potential set at 0.5 V. Peaks were identi®ed by

comparison of their retention times with those of the standards. The

levels of ACh in the perfusates were calculated by comparison of

sample peak heights with external standard peak height and expressed

as pmol/20 min. Calibration curves for ACh were constructed by

plotting the heights of peaks against the concentrations. Regression

lines were then calculated and determination of unknown samples

was carried out by the method of inverse prediction. The sensitivity

limit was 500 fmol. ACh spontaneous release was calculated for each

experiment by averaging the mean of the four initially-collected 20-

min samples of perfusate. ACh release was expressed as a percentage

of its spontaneous release value. All values are expressed as means

6 SEM, and the number of experiments (n) is also indicated. The

in vitro recovery of ACh from the dialysis membrane was » 60% at

room temperature. Values reported here are not corrected for

recovery.

C-Fos procedure

In immunohistochemical experiments, drugs dissolved in physio-

logical saline were injected under general anaesthesia (chloral

hydrate, 400 mg/kg i.p.) in the MSA-DB of rats restrained in a

stereotaxic apparatus. The same coordinates were used as for the

implantation of the microdialysis probes according to Paxinos &

Watson (1982). The tip of the needle was placed 7.5 mm ventral to

bregma. The injection needle (outside diameter 0.3 mm) was

connected with a short piece of polyethylene tubing to a Hamilton

syringe that was ®xed to an electrode holder. Solutions (0.5 mL per

side) were injected over a 1-min period and the needle was left in

place for 2 min before withdrawing it. Control groups received

injections of saline. Two hours after drug injections, rats were

perfused transcardially with ice-cold 4% paraformaldehyde. The

brains were removed and post®xed in the 4% paraformaldehyde for

2 h and then immersed in 18% sucrose for 24 h. Coronal sections

were cut at 40 mm on a freezing cryostat, and were collected in

phosphate-buffered saline (PBS) until processed for immunohisto-

chemistry. Free-¯oating sections were incubated in anti c-fos

polyclonal antibodies 1 : 1500 in PBS containing 0.3% Triton X-

100 (Sigma) and 5 mg/mL bovine serum albumin (BSA), overnight.

The immunoreactive product was detected with the avidin±biotin

peroxidase system (Vectastain kit; Vector Laboratories, Burlingame,

CA, USA), as described previously (Giovannelli et al., 1990). After

washing with PBS, sections were mounted on gelatin-coated slides,

dehydrated in increasing concentrations of ethanol and coverslipped.

In double labelling experiments, after c-fos immunostaining, sections

were incubated in polyclonal anticholine acetyltransferase (ChAT)

antibodies (Chemicon; Temecula, CA, USA) dissolved 1 : 1000 in

PBS plus Triton-X 100 and 5 mg/mL BSA, overnight. Sections were

washed in PBS, incubated in Cy3-conjugated antirabbit secondary

antibodies (Chemicon), mounted on gelatin-coated slides and cover-

slipped with 70% glycerol in PBS. The ¯uorescent immunoreaction

product was observed with a Zeiss microscope equipped for

epi¯uorescence.

Chemicals

The substances used in this study included histamine hydrochloride,

tetrodotoxin (Sigma Chemical Company Ltd, UK); dimaprit dihy-

drochloride, cimetidine (R)-a-methylhistamine dihydrochloride,

physostigmine sulphate, thioperamide maleate, triprolidine dihydro-

chloride (R.B.I., Natick, MA, USA); ciproxifan was provided by

Dr W. Schunack. All other reagents and solvents were of HPLC grade

or the highest grade available (Sigma).

Statistical analysis

All values are expressed as means 6 SEM and the number of

experiments (n) is also indicated. Comparisons between two means

were performed by Student's t-test. Differences among groups were

®rst determined by a one-way or a two-way analysis of variance

(ANOVA) followed by Bonferroni's or ScheffeÂ's test, as appropriate.

ScheffeÂ's procedure for post hoc comparisons performed all possible

comparisons of the means. For the purposes of clarity and biological

relevance, we report in ®gures and ®gure legends only the signi®cant

differences vs. the last sample before drug treatment. For all

statistical tests, P < 0.05 was considered signi®cant. Statistical

analysis was performed using StatView (Abacus Concepts, Inc.,

Berkeley, CA, USA) and GraphPad Prism (GraphPad Software, Inc.,

San Diego, CA, USA).

FIG. 2. In¯uence of administration into MSA-DB of TTX on spontaneous
release of ACh from the hippocampus of freely moving rats. Twenty-four
hours after implantation of the dialysis ®bres, ACh was measured in
hippocampal fractions collected every 20 min beginning 60 min after the
onset of the perfusion. Spontaneous release of ACh was calculated for each
experiment by averaging the mean of the four initially collected 20-min
samples of perfusate, and ACh release was expressed as percentage of its
spontaneous release value. At 40 min, 0.5 mM TTX was introduced into the
MSA-DB perfusing medium for 40 min. The mean spontaneous release was
0.51 6 0.21 pmol/20 min (n = 4). The bar shows the period of TTX
application. Shown are means 6 SEM of four experiments. *P < 0.05 vs.
last sample before TTX treatment (ANOVA and ScheffeÂ's test).
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Computerized counts of the c-fos-positive nuclei were performed

with Image-Pro Plus 3.0 by one of the experimenters unaware of the

animals' treatments. Numbers of c-fos-positive nuclei are averages of

at least two consecutive sections.

Results

Effects of MSA-DB perfusion with medium containing 1 mM

tetrodotoxin on ACh release from rat hippocampus

Twenty-four hours after surgery microdialysis probes were inserted in

the implanted guide tubes both in the hippocampus and the MSA-DB.

The one implanted in the hippocampus was perfused with Ringer's

solution containing 7 mM physostigmine, whereas that implanted in

the MSA-DB was perfused with Ringer's solution without physos-

tigmine (Fig. 1). After 60 min of equilibration, the rat hippocampus

spontaneously released ACh at stable rates, 0.79 6 0.05 pmol/

20 min (n = 62). Spontaneous release of ACh was calculated for

each experiment by averaging the mean of the four initially-collected

20-min samples of hippocampal perfusate, and did not decrease

signi®cantly with time.

The infusion of 0.5 mM tetrodotoxin (TTX), a voltage-dependent

Na+-channel blocker, for 80 min into the MSA-DB through the

dialysis probe reduced hippocampal ACh spontaneous release by

» 50% (Fig. 2). Spontaneous release averaged 0.51 6 0.21 pmol/

20 min (n = 4). After TTX was withdrawn from septum-perfusing

medium, ACh release returned slowly toward basal values (Fig. 2).

During the exposure to TTX the rats appeared to be more active but

did not show any abnormal behaviour.

MSA-DB perfusion with medium containing 100 mM histamine or

100 mM KCl increased the spontaneous release of ACh from the

hippocampus.

Introduction of 100 mM histamine into the medium perfusing the

MSA-DB for 40 min increased signi®cantly the release of ACh from

the hippocampus (Fig. 3). The maximal effect (109 6 11%) was

achieved in the second 20-min fraction collected after onset of MSA-

DB perfusion with histamine. The level of the spontaneous release of

hippocampal ACh was restored after withdrawal of histamine from

MSA-DB perfusion medium (Fig. 3). A depolarization, induced by

perfusing the MSA-DB for 20 min with a medium containing

100 mM KCl, was conducted 120 min after the end of the perfusion

with histamine, when hippocampal ACh release returned to basal

levels (Fig. 3). It strongly stimulated the release of ACh from the

hippocampus, producing a maximal increase of 119 6 16%, which

occurred in the 20-min fraction collected during the perfusion with

100 mM KCl. The level of the spontaneous release of hippocampal

ACh was restored during the subsequent MSA-DB perfusion with

control medium (Fig. 3). During the perfusion with high-KCl

medium, rats appeared to be more active but did not show any

abnormal behaviour. The two consecutive exposures to histamine and

100 mM KCl released similar maximal amounts of ACh, the mean

ratio of histamine-evoked ACh/KCl-evoked ACh release being

0.9 6 0.1 (n = 4). The spontaneous release of hippocampal ACh in

these experiments averaged 0.64 6 0.1 pmol/20 min (n = 4).

The pattern of ACh release in response to MSA-DB perfusion with

100 mM exogenous histamine did not change when thioperamide

(300 nM) was infused into MSA-DB simultaneously with histamine

(Fig. 4). It is noteworthy that exogenous histamine elicited maximal

FIG. 3. In¯uence of administration into MSA-DB of histamine (HA) and
100 mM KCl on spontaneous release of ACh from the hippocampus of
freely moving rats. Methods are identical to those described for Fig. 2. At
80 min, histamine (100 mM) was administered for 40 min through the
dialysis ®bre into the MSA-DB. At 240 min the NBM perfusing medium
was changed from 4 to 100 mM KCl for 20 min. Isotonicity was mantained
by reducing NaCl concentration. The mean spontaneous release was
0.64 6 0.1 pmol/20 min (n = 4). The bars show the period of histamine and
high-KCl medium applications. Shown are means 6 SEM of four
experiments. *P < 0.05 and **P < 0.01 vs. last sample before histamine
application (ANOVA and ScheffeÂ's test).

FIG. 4. In¯uence of simultaneous administration into MSA-DB of 100 mM

histamine (HA) and 300 nM thioperamide on spontaneous release of ACh
from the hippocampus of freely moving rats. Methods are identical to those
described for Fig. 2. At 80 min, histamine (100 mM) and thioperamide
(300 nM) were administered for 40 min through the dialysis ®bre into the
MSA-DB. The mean spontaneous release was 0.31 6 0.03 pmol/20 min
(n = 3). The bars show the period of histamine and thioperamide
applications. Shown are means 6 SEM of three experiments. ***P < 0.001
vs. last sample before drug application (ANOVA and ScheffeÂ's test).
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increases of ACh release of similar amplitude either in the absence

(109 6 11%) or the presence (109 6 13%) of thioperamide. The

spontaneous release of hippocampal ACh in these experiments

averaged 0.31 6 0.03 pmol/20 min (n = 3).

Opposite effects of local administration of histamine H2 and
H3 receptor agonists into MSA-DB on the spontaneous
release of hippocampal ACh

Dimaprit added to the MSA-DB perfusing medium for 40 min at a

concentration of 100 mM signi®cantly stimulated hippocampal ACh

release, causing a maximal increase of 77 6 12% (Fig. 5). The

spontaneous release of hippocampal ACh averaged 0.63 6 0.2 pmol/

20 min (n = 6). The maximal effect was always achieved in the

second 20-min fraction collected after onset of the septum perfusion

with dimaprit, and hippocampal ACh release was restored to control

levels during subsequent MSA-DB perfusion with control medium

(Fig. 5). Conversely, addition of 10 mM R-a-methylhistamine, an H3

receptor-selective agonist (Arrang et al., 1987) to the MSA-DB

perfusing medium for 40 min resulted in a signi®cant decrease in

ACh spontaneous release from the hippocampus (Fig. 6). The

response to R-a-methylhistamine was of longer duration than the

actual presence of the drug in the MSA-DB perfusing medium, and

the maximal inhibition (±47 6 4%) was achieved in the 20-min

fraction collected after R-a-methylhistamine was withdrawn from the

perfusing medium. Eventually hippocampal ACh release returned to

baseline (Fig. 6). In these experiments the spontaneous release of

hippocampal ACh averaged 0.89 6 0.11 pmol/20 min (n = 8).

Local administration of H3 receptor antagonists into MSA-DB
increased the spontaneous release of ACh from the
hippocampus

A signi®cant increase in spontaneous release of ACh from the

hippocampus was observed following the perfusion of the MSA-DB

for 40 min with medium containing 0.3 mM thioperamide, a selective

H3 receptor antagonist (Arrang et al., 1987) (Fig. 7A). The maximal

effect, 106 6 25% increase, was achieved very rapidly, and

hippocampal ACh release was restored to control levels during

subsequent MSA-DB perfusion with control medium (Fig. 7A). The

spontaneous release of hippocampal ACh averaged

0.67 6 0.15 pmol/20 min (n = 5). An identical MSA-DB perfusion

with 0.05 mM ciproxifan, another H3 receptor antagonist (Ligneau

et al., 1998), elicited a 78 6 5% maximal increase of hippocampal

ACh release with a time course comparable to that obtained with

thioperamide (Fig. 8A). As for thioperamide, the ciproxifan effect

was completely reversible. The spontaneous release of hippocampal

ACh averaged 1.6 6 0.4 pmol/20 min (n = 7).

H2 receptor antagonism in the MSA-DB moderated the spontan-

eous release of ACh from the hippocampus and antagonized the

facilitation produced by H3 receptor antagonists.

The effect of blocking H2 receptors on ACh spontaneous release

from the hippocampus was tested by perfusing the MSA-DB with

100 mM cimetidine, a selective H2 antagonist (Durant et al., 1977).

Perfusion through the dialysis probe in the MSA-DB with 100 mM

cimetidine for 80 min decreased signi®cantly, although only by

» 30%, the spontaneous release of ACh from the hippocampus

(Fig. 9). ACh release was restored to control levels during subsequent

perfusion with control medium (Fig. 9). The spontaneous ACh

release averaged 0.25 6 0.03 pmol/20 min (n = 5).

FIG. 5. Time course of release ACh from the hippocampus of freely moving
rats evoked by administration into MSA-DB of dimaprit. Methods are
identical to those described for Fig. 2. Dimaprit (100 mM) was administered
at 80 min into the MSA-DB through the dialysis probe for 40 min. The
mean spontaneous release was 0.63 6 0.2 pmol/20 min (n = 6). The bar
shows the period of dimaprit application. Shown are means 6 SEM of six
experiments. **P < 0.01 and ***P < 0.001 vs. last sample before drug
treatment (ANOVA and ScheffeÂ's test)

FIG. 6. Time course of release ACh from the hippocampus of freely moving
rats evoked by administration of R-a-methylhistamine into MSA-DB.
Methods are identical to those described for Fig. 2. R-a-methylhistamine
(10 mM) was administered at 80 min into the NBM through the dialysis
probe and stopped at 120 min. The bar shows the period of R-a-
methylhistamine application. The mean spontaneous release was
0.89 6 0.11 pmol/20 min (n = 8). Shown are means 6 SEM of eight
experiments. **P < 0.01, ***P < 0.001 vs. last sample before drug
treatment (ANOVA and ScheffeÂ's test).
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Figure 7B shows the time course of ACh release from the

hippocampus evoked by local administration into MSA-DB of

thioperamide in the presence of cimetidine. After collection of four

20-min baseline samples from the hippocampus, 100 mM cimetidine

was added to the MSA-DB perfusing medium alone for 40 min, and

then in combination with 0.3 mM thioperamide for a further 40 min.

Washout with control medium was carried out for the ®nal three 20-

min fractions. In the presence of cimetidine, the facilitatory effect of

thioperamide on ACh release from hippocampus was completely

abolished. There was a signi®cant effect of both

Concentration 3 Time interaction (F1,88 = 11.15, P < 0.0001) and

drug treatment (F1,10 = 13.66, P < 0.0001; two-way ANOVA). The

seventh, eighth and ninth 20-min fractions shown in Fig. 7A were

signi®cantly different when compared to the corresponding 20-min

fractions of Fig. 7B (P < 0.001, Bonferroni's test). A similar effect

was observed when ciproxifan was infused into the MSA-DB in the

presence of cimetidine. Figure 8B shows that the facilitatory effect of

ciproxifan (0.05 mM) on ACh release was fully counteracted by

cimetidine (100 mM). There was a signi®cant effect of both

Concentration 3 Time interaction (F1,90 = 7.904, P < 0.0001) and

drug treatment (F1,9 = 14.39, P < 0.0001) (two-way ANOVA). Both

seventh and eighth 20-min fractions shown in Fig. 8A were

signi®cantly different when compared to the corresponding 20-min

fractions of Fig. 8B (P < 0.001, Bonferroni's test). ACh spontaneous

release averaged 1.12 6 0.29 pmol/20 min (n = 5) in the experi-

ments with thioperamide and cimetidine, and 0.96 6 0.22 pmol/

20 min (n = 3) in those with ciproxifan and cimetidine.

Local administration of triprolidine into MSA-DB failed to
antagonize the release of hippocampal ACh elicited by
thioperamide

Perfusion of MSA-DB with 0.5 mM triprolidine, an H1 receptor

antagonist (Ison & Casy, 1971), failed to alter ACh spontaneous

release from the hippocampus during a 40-min perfusion. The

changes in hippocampal ACh release were always within the range of

variability (6 15%) seen between individual 20-min collection

periods during MSA-DB perfusion with control medium (data not

shown). In these experiments the spontaneous release of hippocampal

ACh averaged 0.60 6 0.04 pmol/20 min (n = 3).

FIG. 7. Time course of release ACh from the hippocampus of freely moving
rats evoked by administration into MSA-DB of thioperamide (THIO) in the
absence (A)and in the presence (B)of cimetidine (CIM). Methods are
identical to those described for Fig. 2. THIO (0.3 mM) was administered at
120 min into the MSA-DB through the dialysis probe for 40 min in (A) the
absence or (B) the presence of CIM (100 mM) that was added to MSA-DB
perfusing medium 40 min before administration of THIO. Hippocampal
ACh spontaneous release averaged 0.67 6 0.15 pmol/20 min (n = 5) in the
experiments shown in panel A, and 1.12 6 0.29 pmol/20min (n = 5) in
those shown in panel B. The bars show the period of drug applications.
There was a signi®cant effect of Concentration 3 Time interaction
(F1,88 = 11.15, P < 0.0001) and of drug treatment (F1,10 = 13.66,
P < 0.0001) (two-way ANOVA). Each point represents the mean value
6 SEM of (A) ®ve and (B) ®ve experiments. ***P < 0.001 vs. THIO
+ CIM (Bonferroni's test).

FIG. 8. Time course of release ACh from the hippocampus of freely moving
rats evoked by administration into MSA-DB of ciproxifan (CIP) in (A)the
absence and (B)the presence of cimetidine (CIM). Methods are identical to
those described for Fig. 2. CIP (0.05 mM) was administered at 120 min into
the MSA-DB through the dialysis probe for 40 min in (A) the absence or
(B) the presence of CIM (100 mM) that was added to MSA-DB perfusing
medium 40 min before administration of CIP. Hippocampal ACh
spontaneous release averaged 1.6 6 0.4 pmol/20 min (n = 7) in the
experiments shown in panel A, and 0.96 6 0.22 pmol/20 (n = 3) in those
shown in panel B. The bars show the period of drug applications. There
was a signi®cant effect of Concentration 3 Time interaction (F1,90 = 7.904,
P < 0.0001) and of drug treatment (F1,9 = 14.39, P < 0.0001) (two-way
ANOVA). Each point represents the mean value 6 SEM of (A) seven and (B)
three experiments. ***P < 0.001 vs. CIP + CIM (Bonferroni's test).
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The effect of 0.5 mM triprolidine on 0.3 mM thioperamide-evoked

release of hippocampal ACh was also examined. After collection of

four 20-min baseline samples from the hippocampus, triprolidine was

added to the MSA-DB perfusing medium alone for 40 min, and then

in combination with thioperamide for a further 40 min (Fig. 10). The

presence of triprolidine failed to modify thioperamide-evoked release

of hippocampal ACh (Fig. 10). In these experiments hippocampal

ACh spontaneous release averaged 0.44 6 0.02 pmol/20 min

(n = 3).

Effects of hippocampal perfusion with medium containing
100 mM histamine or dimaprit on ACh release from rat
hippocampus

Twenty-four hours after rats were implanted with a microdialysis

probe in the hippocampus, the probe was perfused with Ringer's

solution containing 7 mM physostigmine. The introduction of 100 mM

histamine into hippocampal perfusing medium failed to alter ACh

release from the hippocampus during a 40-min perfusion. The

changes in hippocampal ACh release were always within the range of

variability (6 15%) seen between individual 20-min collection

periods during hippocampal perfusion with control medium (data

not shown). In these experiments hippocampal ACh spontaneous

release averaged 0.71 6 0.09 pmol/20 min (n = 5). Also, dimaprit, a

highly selective H2 receptor agonist (Parson et al., 1977), added to the

hippocampal-perfusing medium for 40 min at a concentration of

100 mM, failed to modify signi®cantly hippocampal ACh release. The

spontaneous release of hippocampal ACh averaged

0.76 6 0.19 pmol/20 min (n = 4).

Thioperamide and ciproxifan modulate c-fos expression in
MSA-DB neurons

The counts were taken in sections close to the needle tip and involved

the corresponding portions of MSA-DB. As shown in Fig. 11, cells

expressing c-fos immunoreactivity were signi®cantly more numerous

in thioperamide- and ciproxifan-treated rats than in controls. The

photomicrograph shows the cloud of c-fos-positive cell nuclei around

the track of the needle tip in thioperamide-treated rats. Double

labelling experiments with anti ChAT antibodies were carried out in a

subset of experiments in an attempt to characterize the c-fos-positive

cell. No colocalization of anti-c-fos and anti-ChAT immunoreactiv-

ity, though, was observed (n = 3; data not shown).

Discussion

This study demonstrates that histamine facilitates ACh release from

the hippocampus through interactions with H2 receptors in the MSA-

DB. Indeed, intra-MSA-DB, but not intrahippocampal, administration

of exogenous histamine or of the H2 receptor-selective agonist

dimaprit increased the spontaneous release of ACh from the

hippocampus. Moreover, the blockade of H3 receptors in MSA-DB

by thioperamide and ciproxifan indicates a role for endogenous

histamine in modulating the cholinergic tone in the hippocampus.

The effects of perfusion of MSA-DB with histaminergic drugs on the

rate of hippocampal ACh spontaneous release were investigated by

means of a dual-probe microdialysis method. Because both in rats and

in humans projections from the MSA-DB provide the majority of

cholinergic innervation to the hippocampus (Lewis et al., 1967;

FIG. 9. Time course of release ACh from the hippocampus of freely moving
rats evoked by administration into MSA-DB of cimetidine (CIM). Methods
are identical to those described for Fig. 2. CIM (100 mM) was administered
at 80 min into the NBM through the dialysis probe for 40 min. The mean
spontaneous release was 0.77 6 0.08 pmol/20 min (n = 5). The bar shows
the period of cimetidine application. Shown are means 6 SEM of ®ve
experiments. *P < 0.05 vs. last sample before drug treatment (ANOVA and
ScheffeÂ's test).

FIG. 10. Time course of release ACh from the hippocampus of freely
moving rats evoked by administration of thioperamide (THIO) into MSA-
DB in the presence of triprolidine (TRIP). Methods are identical to those
described for Fig. 2. THIO (0.3 mM) was administered at 120 min into the
MSA-DB through the dialysis probe for 40 min in the presence of TRIP
(0.5 mM) that was administered into MSA-DB for 40 min before
administration of THIO. Hippocampal ACh spontaneous release averaged
0.44 6 0.02 pmol/20 min (n = 3). The bars show the period of drug
applications. Shown are means 6 SEM of three experiments. *P < 0.05 and
**P < 0.01 vs. last sample before drug treatment (ANOVA and ScheffeÂ's
test).
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Nyakas et al., 1987; De Lacalle et al., 1994), a ®rst vertical

microdialysis probe was implanted in the MSA-DB to deliver locally

different drugs, and a second one was inserted in the hippocampus to

measure ACh extracellular levels. The feasibility of such an approach

was validated by the demonstration that hippocampal ACh extra-

cellular levels depended on the activity of MSA-DB neurons. Indeed,

when the KCl concentration in the MSA-DB perfusing medium was

changed from 4 to 100 mM KCl for 20 min, it elicited a pronounced

and rapid increase in hippocampal ACh release. This concentration of

KCl is only apparently very high, considering its rapid dilution into

the extracellular ¯uid and the low recovery of the microdialysis

membrane (Westerink & de Vries, 1996). Conversely, administration

of the nerve impulse blocker TTX into MSA-DB decreased ACh

spontaneous release from the hippocampus by > 50%, thus indicating

the presence of spontaneous impulse activity in MSA-DB cholinergic

neurons at rest. The increase of ACh release produced by 100 mM

KCl suggests that in vivo the resting MSA-DB cholinergic neurons

may increase their ®ring frequency according to the intensity of the

stimulus. This evidence is consistent with the intrinsic membrane

properties of these neurons described previously in electrophysiolo-

gical studies (Segal, 1986; Gorelova & Reiner, 1996; Wu et al.,

2000). Therefore, the dual probe is a useful approach for investigating

the neurochemical activity of the MSA-DB±hippocampal pathway,

and infusion of TTX and high KCl is a reliable method for evaluating

the implantation of the microdialysis probes, consistent with earlier

observations in the nucleus basalis magnocellularis±cortical pathway

(Cecchi et al., 2001).

The presence of physostigmine in the perfusion medium may be

criticized because the cholinesterase inhibition might alter the

modulation of ACh spontaneous release, as in the case of dopamine

on striatal ACh release (DeBoer & Abercrombie, 1996). However,

the hippocampus, as well as the amygdala (Passani et al., 2001) and

FIG. 11. Injections of H3 receptor antagonists in the septum increased the expression of c-fos. (A) Schematic drawing of a brain section through the MSA-DB
showing the area sampled for c-fos-immunopositive nuclei (black square). (B) The number of cell nuclei expressing c-fos-like immunoreactivity was
signi®cantly higher in the septum of animals that received intraseptal injections of either thioperamide (3 mM) or ciproxifan (500 nM). The number of c-fos-
positive cells is the average of at least two adjacent sections per animal. (C and D) Photomicrographs of c-fos-like immunoreactivity in the medial septum
after (C) thioperamide and (D) saline injection. The track of the needle is visible at the centre of each photomicrograph. Shown are means 6 SEM of 3±5
experiments. *P < 0.05 and **P < 0.01 vs. control (ANOVA and ScheffeÂ's test).
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the cortex (Herrera-Marschitz et al., 1990; Consolo et al., 1994;

Giovannini et al., 1998), release much lower levels of ACh than does

the striatum, thus requiring the presence of cholinesterase inhibitors

in the perfusion ¯uid. It is noteworthy that concentrations up to

0.5 mM neostigmine, which is » 10 times more potent than

physostigmine, failed to alter qualitatively cortical ACh release

patterns in response to behavioural activation (Himmelheber et al.,

1998).

The increase of ACh release caused by thioperamide or ciproxifan

is attributable to blockade of H3 receptors localized in the MSA-DB.

Indeed, comparable increases of hippocampal ACh release were

elicited by MSA-DB perfusion with medium containing either

300 nM thioperamide, a competitive antagonists at H3 receptors

with pA2 values in cortical slices of 8.96 (Arrang et al., 1987), or

50 nM ciproxifan, another highly selective H3-antagonist » 10 times

more potent than thioperamide (Ligneau et al., 1998). Conversely, the

histaminergic agonist R-a-methylhistamine, added to the MSA-DB

perfusing medium at a concentration selective for the H3 receptor

(Arrang et al., 1987; Blandina et al., 1996), decreased signi®cantly

hippocampal ACh release. The H3 receptor was initially discovered

on histaminergic neurons as a presynaptic autoreceptor whose

activation inhibited, whilst its blockade increased, the release of

histamine (Arrang et al., 1983). A physiological function of

endogenous histamine in the control of hippocampal ACh release is

indicated by the facilitation produced by thioperamide and ciproxifan.

Indeed, the increase in hippocampal ACh release could be most

simply explained by an interaction with H3 autoreceptors whose

blockade may have produced an increase in endogenous histamine

release. Therefore, the present study indicates that activation of

histaminergic neurons projecting to the MSA-DB facilitates the

cholinergic tone in the hippocampus. Postsynaptic H2 receptors

appear to mediate this effect because pretreatment with cimetidine, at

a concentration suf®cient to fully block H2 receptors (Durant et al.,

1977), completely abolished the effect of both thioperamide and

ciproxifan. A different localization of H2 and H3 receptors is also

suggested by the observation that exogenous histamine (100 mM)

produced increases in ACh release of similar amplitude either in the

presence or in the absence of a concentration of thioperamide that

fully blocks H3 receptors. Indeed, histamine showed higher af®nity

for the H3 (pD2 value of 7.4) than for the H2 receptor (pD2 value of

6.0) (Leurs et al., 1995); thus the increase in ACh release elicited by

the infusion with 100 mM exogenous histamine is the result of

stimulation of both receptor types. It is conceivable that H3 receptors

are localized on histaminergic terminals. However, a 100-mM

concentration of exogenous histamine fully activated postsynaptic

H2 receptors, and any variation of endogenous histamine by H3

autoreceptor activation had no in¯uence on ACh release. H2 receptor

involvement is also supported by the observation that infusion of

MSA-DB with a highly selective H2 receptor agonist, dimaprit

(Parson et al., 1977), increased hippocampal ACh release with a

pattern similar to that of exogenous histamine. MSA-DB displayed

both H2 receptor binding and its gene transcripts (Vizuete et al.,

1997; Karlstedt et al., 2001). These receptors are positively coupled

with adenylyl cyclase (Johnson, 1982), and their activation in neurons

led to mainly excitatory effects through blockade of calcium-

activated potassium current and modulation of the hyperpolariza-

tion-activated cation channel (Brown et al., 2001). Stimulation of

transmitter release by H2 receptor activation occurs in other brain

regions, because H2 receptor activation released endogenous

noradrenaline from rat hypothalamic slices (Blandina et al., 1989)

and endogenous enkephalin from mouse striatum (Garbarg et al.,

1991). Conversely, modulation of ACh release from the hippocampus

did not involve H1 receptors because MSA-DB perfusion with the H1

antagonist triprolidine, at a concentration > 500 times its Kd for the

H1 receptor (Ison & Casy, 1971), failed to modify both spontaneous

and thioperamide-evoked release of ACh.

In addition to preventing the stimulation elicited by H3 antagonists,

intra-MSA-DB administration of cimetidine alone decreased hippo-

campal ACh spontaneous release, thus indicating that MSA-DB

histaminergic input tonically facilitated hippocampal cholinergic

activity. This hypothesis is consonant with the observation that R-a-

methylhistamine moderated hippocampal ACh release. This inhib-

ition may depend on a decrease of endogenous histamine release due

to activation of H3 autoreceptors. It is noteworthy that H3 receptors

are present in the MSA-DB complex (Pollard et al., 1993), which

exhibits moderate to dense levels of histaminergic ®bres (Wouterlood

et al., 1988; Panula et al., 1989). The tonic activation of H2 receptors

was not detected in anaesthetized rats (Mochizuki et al., 1994), but

differences in administration route of H2 receptor antagonists

(systemically in Mochizuki's study and locally into the MSA-DB in

the current study) could account for the discrepancy. Moreover,

intrinsic properties of cholinergic septal neurons of anaesthetized rats

differ from those of unanaesthetized rats. In anaesthetized rats, about

half of these neurons ®red rhytmically in single spikes or short bursts

(Lamour et al., 1984; Dutar et al., 1986), whereas in awake rats the

proportion of rhytmically bursting neurons is smaller and the mean

spontaneous activity is higher (Lee et al., 1991; Sweeney et al.,

1992).

Whether H2 receptors are located on cholinergic perikarya or on

hypothetical interneurons is not clear yet. It has been reported that

histamine depolarized MSA-DB cholinergic neurons in a slice

preparation of rat brain, producing an increase in sodium conductance

which led these neurons to threshold for ®ring spontaneous action

potentials (Gorelova & Reiner, 1996); this observation favours the

hypothesis of a direct mechanism. However, this depolarization was

attributed to H1 receptor activation, being signi®cantly reduced by

mepyramine and promethazine (Gorelova & Reiner, 1996), whereas

Mochizuki et al. (1994) and the current study failed to show any

effect in modulating hippocampal ACh release by H1 receptor

antagonists. One may argue that H1 receptor antagonists were

employed in the study by Gorelova & Reiner (1996) at concentrations

to high for excluding H1-receptor-unrelated effects (Hill, 1990; Hill

et al., 1997), but also another explanation could be offered for the

lack of effect of H1 receptor antagonists in microdialysis studies.

Depolarization induced by histamine was transient, desensitization

within seconds being its prominent feature, and the excitation

diminished despite continued application of histamine (Gorelova &

Reiner, 1996). If the effect on ACh release was transient as well and

very short, it is possible that it became obscured during the attainment

of the 20-min perfusion sample, thus explaining the lack of effects of

H1 receptor blockade on hippocampal cholinergic activity.

Systemic administration of thioperamide increased whilst that of

R-a-methylhistamine decreased ACh spontaneous release from the

hippocampus of anaesthetized rats (Mochizuki et al., 1994). The

current study extends these ®ndings in freely moving rats, and

demonstrates that histaminergic drugs acted in the MSA-DB com-

plex. Indeed, the interaction between histaminergic and cholinergic

systems occurs only at this level, because histamine and dimaprit

locally applied to the hippocampus failed to alter extracellular levels

of local ACh. The report that H3 receptor-elicited modulation of [3H]-

ACh release from rat hippocampal slices was not detectable (Alves-

Rodrigues et al., 1998) agrees with our ®ndings. Although the

hippocampus receives only a weak histaminergic innervation

(Wouterlood et al., 1988), in vitro and in vivo studies demonstrated
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that histamine exerts in this area many prominent effects which are

likely to be important in the induction of synaptic plasticity and

consolidation of memory (see review by Brown et al., 2001). In this

regard, given that MAP kinase activation is necessary for synaptic

plasticity (English & Sweatt, 1996), the reports that histaminergic

receptors are coupled to MAP-kinase signalling pathways in COS-7

cells (Drutel et al., 2001) and CA3 hippocampal neurons (Blandina

et al., 2001) are intriguing.

The speci®c behavioural signi®cance of the interactions between

histaminergic and MSA-DB cholinergic systems remains to be

explored, but a role in cognitive processes is suggested by the

observation that post-training intraseptal injection of both H2 receptor

agonists and H3 receptor antagonists improved retention in a T-maze

avoidance task, whilst that of H3 receptor agonists and H2 receptor

antagonists had the opposite effect (Flood et al., 1998). Post-training

administration of these compounds excludes any in¯uence of the

treatment on acquisition and on other processes that indirectly affect

learning (McGaugh & Izquierdo, 2000). According to our ®ndings,

the improvement elicited by H2 receptor agonists and H3 receptor

antagonists may re¯ect an enhanced release of hippocampal ACh,

whilst cognitive de®cits caused by H3 receptor agonists and H2

receptor antagonists may occur as a consequence of hippocampal

cholinergic tone inhibition. The role of histamine as an important

neurotransmitter in the mammalian brain and as a modulator of

cognitive processes has recently gained attention (Leurs et al., 1998;

Passani et al., 2000; Bacciottini et al., 2001), and the signi®cance of

interactions between histaminergic and cholinergic systems in

learning and memory processes have been clearly demonstrated in

the cortex (Blandina et al., 1996; Giovannini et al., 1999) and the

amygdala (Passani et al., 2001).

Intraseptal administration of thioperamide or ciproxifan also

increased the number of c-fos-immunopositive cells in MSA-DB.

Expression of the c-fos gene is an indirect correlate of increased

neuronal activity (Dragunow & Faull, 1989; Herrera & Robertson,

1996); it can therefore be used to detect speci®c activation in

restricted brain sites. The increased c-fos expression does not seem to

occur in cholinergic cells within the MSA, as colocalization of anti-

ChAT and anti-c-fos antibodies was never observed. As previously

mentioned, the cytoarchitectonic relationship between histaminergic

and cholinergic cells is not known. In the MSA-DB there are

subpopulations of parvalbumin-positive GABAergic neurons, inter-

spersed with the cholinergic cells, that project to the hippocampus

(Kiss et al., 1990; Van der Zee & Luiten, 1994). In the medial septum

there are also peptide-containing neurons (Gall & Moore, 1984), in

particular galanin-positive cells, giving rise to septo-hippocampal

efferents (Senut et al., 1989). Given the complexity of the local

circuitry within the medial septum and also in relation to the efferent

projections (Onteniente et al., 1986; Onteniente et al., 1987; Senut

et al., 1989), several plausible synaptic arrangements can be

envisaged to explain the effect of histaminergic compounds on both

ACh release in the hipocampus and c-fos expression in the septum.

Increased hippocampal ACh release by histaminergic agents may

have implications for the treatment of disorders associated with

impaired septo-hippocampal cholinergic functions. Treatment strat-

egies that take advantage of noncholinergic drugs potentiating

cholinergic functions may produce bene®cial effects on disorders

associated with impaired cholinergic functions, such as Alzheimer's

disease (Buccafusco & Terry, 2000). This indirect approach appears

preferable to cholinomimetic strategies, because cholinergic drugs

have resulted in greater stimulation of inhibitory autoreceptors either

by increasing the half-life of acetylcholine in the synaptic cleft (Davis

et al., 1992), or by directly activating these receptors due to the poor

selectivity of the agonists available (Gauthier et al., 1991). The

histaminergic system might well represent a target for these new

therapies. The implications of the present study and the report that H3

receptor antagonists improve learning and memory in senescence-

accelerated mice (Meguro et al., 1995) and scopolamine-impaired

(Giovannini et al., 1999) rats support this contention.
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