5 research outputs found

    Role of Hydrophilicity and Length of Diblock Arms for Determining Star Polymer Physical Properties

    No full text
    We present a molecular simulation study of star polymers consisting of 16 diblock copolymer arms bound to a small adamantane core by varying both arm length and the outer hydrophilic block when attached to the same hydrophobic block of poly-δ-valerolactone. Here we consider two biocompatible star polymers in which the hydrophilic block is composed of polyethylene glycol (PEG) or polymethyloxazoline (POXA) in addition to a polycarbonate-based polymer with a pendant hydrophilic group (PC1). We find that the different hydrophilic blocks of the star polymers show qualitatively different trends in their interactions with aqueous solvent, orientational time correlation functions, and orientational correlation between pairs of monomers of their polymeric arms in solution, in which we find that the PEG polymers are more thermosensitive compared with the POXA and PC1 star polymers over the physiological temperature range we have investigated

    Insights into the Transport of Aqueous Quaternary Ammonium Cations: A Combined Experimental and Computational Study

    No full text
    This study focuses on understanding the relative effects of ammonium substituent groups (we primarily consider tetramethylammonium, benzyltrimethylammonium, and tetraethylammonium cations) and anion species (OH<sup>–</sup>, HCO<sub>3</sub><sup>–</sup>, CO<sub>3</sub><sup>2–</sup>, Cl<sup>–</sup>, and F<sup>–</sup>) on ion transport by combining experimental and computational approaches. We characterize transport experimentally using ionic conductivity and self-diffusion coefficients measured from NMR. These experimental results are interpreted using simulation methods to describe the transport of these cations and anions considering the effects of the counterion. It is particularly noteworthy that we directly probe cation and anion diffusion with pulsed gradient stimulated echo NMR and molecular dynamics simulations, corroborating these methods and providing a direct link between atomic-resolution simulations and macroscale experiments. By pairing diffusion measurements and simulations with residence times, we were able to understand the interplay between short-time and long-time dynamics with ionic conductivity. With experiment, we determined that solutions of benzyltrimethylammonium hydroxide have the highest ionic conductivity (0.26 S/cm at 65 °C), which appears to be due to differences for the ions in long-time diffusion and short-time water caging. We also examined the effect of CO<sub>2</sub> on ionic conductivity in ammonium hydroxide solutions. CO<sub>2</sub> readily reacts with OH<sup>–</sup> to form HCO<sup>–</sup><sub>3</sub> and is found to lower the solution ionic conductivity by almost 50%

    Structural transition of nanogel star polymers with pH by controlling PEGMA interactions with acid or base copolymers

    Get PDF
    <p>We use small angle X-ray scattering (SAXS) to characterise a class of star diblock polymers with a nanogel core on which the outer block arms are comprised of random copolymers of temperature sensitive PEGMA with pH sensitive basic (PDMAEMA) and acidic (PMAA) monomers. The acquired SAXS data show that many of the nanogel star polymers undergo a sharp structural transition over a narrow range of pH, but with unexpectedly large shifts in the apparent pKa with respect to that of the acidic or basic monomer unit, the linear polymer form or even an alternate star polymer with a tightly cross-linked core chemistry. We have demonstrated a distinct and quantifiable structural response for the nanogel star copolymers by altering the core or by pairing the monomers PDMAEMA–PEGMA and PMAA–PEGMA to achieve structural transitions that have typically been observed in stars through changes in arm length and number.</p> <p></p
    corecore